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• In submitting the solutions there is no need to rephrase the 
problem. “Solution for 1a” is sufficient. 

• The submission format for explanations and plots is a PDF 
file. Also, include any and all software scripts used to 
establish your answer(s) and/or produce plots. 

• Working in groups or any communication about the 
problems is prohibited. Using the internet as a resource is 
encouraged, but soliciting any help is also prohibited. 

• Please do not zip the files for submission 

• Some questions have multiple parts. For full credit, all 
parts must be done. 

Info
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• Each problem is worth 20% of the Final Exam grade 

• At the discretion of the grader, small amounts of bonus 
credit, e.g. 1-2%, can be acquired for exceptionally 
insightful or thorough answers, even when the answer 
might not be fully correct 

• Questions with 3 parts, each have -7% for each part, but 
cannot go past -20% if all 3 parts are skipped

Grading
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• There is a file posted online which has 5 columns, each 
representing a physical observable of interest generated 
from some underlying function. There are thousands of 
entries, i.e. rows. 

• http://www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob1.txt 

• The first 3 variables/columns are independent distributions with no 
correlation to the other variables 

• The last two variables/columns are unused 

• Be mindful about accounting for truncated ranges as well as 
likelihood functions that have periodic components which will create 
local minima/maxima

Problem 1

4

http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob1.txt
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• The data in each column 
is produced from one of 
the functions shown at 
right 

• Note that these 
functions may be 
unnormalized 

• Hint: Some will require a 
normalization to convert 
them to probability 
distribution functions

Lists of Distributions
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• Using the separate data from the first three columns, identify 
the function on slide 4 from which each was generated and 
find the best-fit values for that distribution using the maximum 
likelihood method 

• E.g. if f(x)=sin(ax+b)*exp(-x+c)+x/k! were one of the functions, then find 
the best-fit values for a, b, c, and k 

• Degeneracies exist, e.g. sin(x)=cos(a+x), which can produce functionally 
identical data distributions 

• Any function, with associated best-fit parameters which is statistically 
compatible with the data in the files will be accepted as a proper solution. 
Only one is necessary. 

• Data in columns 1 and 2 have artificially truncated ranges 

• Column 1 is only sampled in the independent variable from 0 to 2 

• Column 2 is only sampled from -1 to 1 

• Column 3 is not truncated

Problem 1a
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• Distribution 1 is  

• F = ampl * numpy.sin( x_*freq) + ampl 

• ampl_true = 0.87 and freq_true = 12.11±0.017 
• I don’t actually request the uncertainty, so it’s optional for all answers 

to Problem 1. Maybe change for future years. 

• The amplitude variable doesn’t actually matter too much here 
because it’s only used for scaling, and therefore any value would 
produce the same data distribution

Problem 1a Solutions
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|      | Name  |  Value   | Para Err |   Err-   |   Err+   |  Limit-  |  Limit+  |          | 
---------------------------------------------------------------------------------------------- 
|    0 |  ampl =  0.5     |  0.7178  |          |          |  0.01    |  1       |          | 
|    1 |  freq =  12.1    |  0.01723 |          |          |  0       |  15      |          | 
---------------------------------------------------------------------------------------------- 

********************************************************************** 
{'freq': 12.101346311072076, 'ampl': 0.5000000000002252} 
best-fit LLH:  1882.37351494 
true LLH:  1882.528733
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• It is also possible to use the sin(ax+1)2 distribution with the 
solution of a⋍5.9

Problem 1a Solutions
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• Distribution 1 is  

• The freq. dimension of the LLH landscape has a lot of minima, so if 
people start their minimizer near zero, they’ll get a bad fit. 

• The likelihood is easy enough to scan over though, so they should 
be able to drop their minimizer into the right region or else use a 
MCMC

Problem 1a Solutions
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• Distribution 2 is  

• F = (1 + alpha*x_ + beta*x_**2) where the normalization factor 
influences the best-fit (2 + 2*beta/3) 

• a_true = 0.20 and b_true = 0.40 

• a = 0.195±0.042 and b = 0.419±0.088 
• We covered this exact likelihood in class so there’s no excuse for 

anyone to get this wrong

Problem 1a Solutions
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---------------------------------------------------------------------------------------------- 
|      | Name  |  Value   | Para Err |   Err-   |   Err+   |  Limit-  |  Limit+  |          | 
---------------------------------------------------------------------------------------------- 
|    0 | alpha =  0.1953  |  0.04239 |          |          |          |          |          | 
|    1 |  beta =  0.4189  |  0.08844 |          |          |          |          |          | 
---------------------------------------------------------------------------------------------- 

********************************************************************** 
{'alpha': 0.1952721738139312, 'beta': 0.4188894802371008} 
Beta best-fit LLH:  4519.26969334 
Beta true LLH:  4517.66933547
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• Distribution 3 is a discrete poisson with an expectation of 3 

• Don’t even need to fit this if you know what it looks like 

• But, it can also be a binomial for large values of N and low value of 
p, e.g. 𝒪(140) and 𝒪(0.02) respectively.

Problem 1a Solutions

11
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• Plot the data and the corresponding best-fit function on 
the same plots  

• 3 separate 1-dimension plots 

• Plot as a function of the independent variable 

• Histogram the data, and scale the best-fit function to be ‘reasonable’ 
so that the features of both the data and best-fit function can be 
visually compared

Problem 1b
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Solution 1b
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• A cancer study in 1991 conducted in Wisconsin collected data 
from ~700 patients. There were 9 variables associated with the 
digitized image of a fine needle aspirate biopsy sample of a 
tissue mass. Each variable has discrete values from 1-10. There 
was also the patient identifier (code number) and whether the 
sample mass was ultimately benign or malignant.

Problem 2

14

   #  Attribute                         Domain/Range 
    ————————————————————— 
   1. Sample code number            id number 
   2. Clump Thickness                    1 - 10 
   3. Uniformity of Cell Size           1 - 10 
   4. Uniformity of Cell Shape        1 - 10 
   5. Marginal Adhesion                 1 - 10 
   6. Single Epithelial Cell Size       1 - 10 
   7. Bare Nuclei                             1 - 10 
   8. Bland Chromatin                     1 - 10 
   9. Normal Nucleoli                      1 - 10 
  10. Mitoses                                  1 - 10 
  11. Class:                        (2 for benign, 4 for malignant)
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• There are two files online: training data and blind data 

• The following training data includes the aforementioned variables as 
well as whether the biopsy was benign or malignant (www.nbi.dk/
~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-
wisconsin_train-test.txt) 

• The following data includes the same variables, but the information 
of whether the biopsy was benign or malignant has been removed, 
i.e. a blind sample, (www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_mod_real.txt) 

• Using some method (straight cuts, support vector machine, 
boosted decision tree, etc.) and the training data, come up 
with a classification algorithm which uses the 9 variables to 
identify malignant and benign tissue samples 
• Note: the separate variables can be assumed to have the same 

features and shape between the training and blind sample

Problem 2a 
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http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_train-test.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_train-test.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_train-test.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_mod_real.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/breast-cancer-wisconsin_mod_real.txt


D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• With a developed algorithm, run the classifier over the 
training sample and calculate the efficiency of identifying a 
malignant mass 

• It is possible to get 100% efficiency, provided the method is 
overtrained 

• But, you will have to use the same settings for classifying the blind 
sample in Problem 2b 

• Calculate the overall classification efficiency for the whole 
training sample 

• (classified_true_malignant + classified_true_benign)/
(total_trainingtest_sample)

Problem 2a cont.

16
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• Calculate the overall classification efficiency for the whole 
training sample 

• (classified_true_malignant + classified_true_benign)/
(total_trainingtest_sample) 

• Students should be at least getting better than 90%, and 
possibly ~99%, all without overtraining.

Problem 2a Solution

17
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• Using the same setting(s) as developed in Problem 2a, run 
the classifier over all the entries in the blind sample 
(breast-cancer-wisconsin_mod_real.txt) 

• Produce a text file which contains only the ID of the samples which 
your classifier classifies as malignant (last_name.malignant_ID.txt) 

• Produce a text file which contains only the ID of the samples which 
your classifier classifies as benign (last_name.benign_ID.txt) 

• Basic text files. No Microsoft Word documents, Adobe PDF, or any 
other extraneous text editor formats. Only a single ID number per 
line in the text file that can be easily read by numpy.loadtxt(). 
• Example online at http://www.nbi.dk/~koskinen/Teaching/

AdvancedMethodsInAppliedStatistics2016/data/koskinen.benign_ID.txt 

• Any and all duplicates, i.e. two samples with the same ID, should be 
kept and included in the text files and analysis

Problem 2b
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http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/koskinen.benign_ID.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/koskinen.benign_ID.txt
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• I was able to get 90-91% training, so the breakdown will 
be 

• >87% Full Credit 

• 83-87%   -2% 

• 80-83%  -4% 

• < 79%  -6%

Problem 2b

19



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Data has the following probability distribution function G(x) 
with an unknown value of   : 

• The data is generated over a truncated range of 1 ≤ x ≤ 10 
and can be found at 
• (www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/

Exam_Prob3.txt)

Problem 3

20
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http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob3.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob3.txt
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Problem 3 info

21
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• We want to find f, but the likelihood as a function of f has 
many local minima/maxima. For this problem the search 
range will be constrained to 0 < f ≤ 20 for simplicity. 

• From other sources, there is a bayesian prior on the ‘true’ 
value of f. The prior is a normalized gaussian with a 
gaussian width of 0.5, i.e. σf =0.5, centered at f=15. 

• Using the above prior and the function from the previous 
slide, find the maximum a posteriori (MAP) value of f, i.e. 
mode of the bayesian posterior 

• Use a Markov Chain Monte Carlo technique 

• Remember: from Lec. 4                            and

Problem 3a
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• Because the likelihood have 3-4 local maxima in the range 
of f from 12-18 (which is a 6 sigma range on the prior when 
f=15 and sigma=0.5) the MAP can be in somewhere near 
multiple values: 12.85, 14.9, 15.6, and 16.9

Solutions 3a
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Note: Many students either got 
f=6.11 for both 3a and 3c, or one 
of 14.9 or 16.8 for both 3a or 3c. 

Because this shows a clear 
deficiency in the MCMC posterior 
sampling construction I considered 

either error to be -7%  
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• Using the same likelihood and prior from the previous 
slides for Problem 3, plot a histogram of the stable 
posterior distribution sampled points as a function of f 
• Whether to include or omit burn-in points/trials/steps is up to you 

• The histogram should include at least 500 sample points/trials/steps, 
but preferably less than 10001 

• Remember, the posterior distribution may have multiple local 
maxima/minima so you may end up with multiple bumps related to 
those minima/maxima

Problem 3b

24
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• Every so often a chain will find the likelihood best-fit value 
of 6.11, but it isn’t a stable posterior because it’s so very, 
very far away from the prior

Solution 3b
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• Plot the posterior distribution using the same likelihood 
and the normalized gaussian prior center at f=15, but now 
the prior has a gaussian width of σf = 2.5 

• Does the posterior distribution change from when the gaussian 
width was 0.5? 

• If not describe why, and if so describe the changes. 

• What is the maximum a posterior value after including the new prior 
with a gaussian width of 2.5?

Problem 3c

26
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• With the sigma on the gaussian prior widened, the MCMC 
should find the true maxima of 6.11

Solution 3c
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• You are playing a strategic turn-based computer game and 
you want to better understand likely outcomes. You have 6 
units which are fighting 6+ enemies. In a turn, your units 
act only once and inflict damage in successive iteration to 
the first enemy in the queue, until the enemy has 0 or 
negative health, whereby that enemy is defeated.  Once 
an enemy has been defeated, any of your remaining units 
which have not acted now inflict damage to the next 
enemy in the queue, and on and on until all your units 
have acted 

• Your units only individually act once during a turn to inflict damage 

• Damage inflicted follows a poisson likelihood

Problem 4

28
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• Find the mean number of enemies defeated in a single 
turn: 

• When the expected damage inflicted individually by each of your 
units is 5 

• Enemies can individually take 12 damage before being defeated 

• Your 6 units always individually inflict damage, i.e. any random 
samples of 0 should be rounded up to 1 

• An example illustration is on the next slide 

• Make a histogram of the number of ‘defeated enemies per 
turn’ for 1000 unique and independent trials/turns 

• Each trial is a fresh set of enemies, i.e. for each trial all of the 
enemies should start w/ 12 health

Problem 4a
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Single Turn Example

30
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Solution 4a

31

h1Alive
Entries  1000
Mean    1.793
RMS    0.4797

defeated enemies per turn
0 1 2 3 4 5 6 7 8 9 100

100

200

300

400

500

600

700

h1Alive
Entries  1000
Mean    1.793
RMS    0.4797



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Using the same values from 4a now include that your 6 
units vary in individual accuracy and have some probability 
to inflict damage, or miss thereby inflicting no damage 

• The probability per unit to inflict damage is [ 90%, 80%, 60%, 90%, 
60%, 70%] 

• Follow the order in the above array for calculations/plots 

• Out of 5000 trials, what percentage of the time will no 
enemies be defeated in a turn, and what is the uncertainty 
on that percentage?

Problem 4b

32
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• There are 251/5000 pseudo-trials that defeat 0 enemies. 
So the percentage is 251/5000=0.0502 and sqrt(251)/
5000=0.003168

Solution 4b

33
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• Using the same setup and values from 4b, test the new 
reorderings below, of your units inflicting damage versus 
the ordering in 4b of [ 90%, 80%, 60%, 90%, 60%, 70%] 

• Sorted ascending [ 60%,  60%,  70%,  80%,  90%,  90%] 

• Sorted descending [  90%,  90%, 80%, 70%, 60%,  60%] 

• Are the ascending and descending statistically compatible 
with the original ordering for the number of enemies 
defeated per turn? 

• Show and/or briefly explain your results

Problem 4c
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• They are statistically compatible because they are well 
within the statistical uncertainty of the other distribution 

• Here red is ascending and blue is normal

Solution 4c
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Select only 1 of the 
following problems for 
submission. Do all the 
parts.

36
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• Apply the likelihood ratio test to the experiment from 
question 1 of Problem Set 2, with the PDF given below.  

• I have changed the previously poor notation to avoid some 
confusion, and ‘τ’ is now replaced by ‘b’ 

• Neither b nor σt are explicitly known, and we want to test 
whether b=1 second can be rejected. We can do so via a 
hypothesis test, where the two hypotheses H0 and H1 are 
given as:

Problem 5
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• Use the likelihood ratio test: 

• Where         is the value of the null hypothesis likelihood 
calculated using the maximum likelihood estimator(s)  

• Compute:

Problem 5 (cont.)

38

⌦ given by 0 < b < 1, 0 < �t < 1
! given by b = b0, 0 < �t < 1
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• There are 20000 events in the online file below, which 
corresponds to 100 simulated pseudo-experiments where 
each pseudo-experiment has 200 events. 

• For each of the 100 pseudo-experiments find the values of 
the ln-likelihoods that are maximized for the two 
hypotheses, i.e.               and               and calculate -2ln(𝜆) 

• As a histogram, plot the values of -2ln(𝜆) 

• The data is at http://www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/
Exam_Prob5_NucData.txt

Problem 5a

39

ln(L(!̂)) ln(L(⌦̂))

http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob5_NucData.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob5_NucData.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob5_NucData.txt
http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/Exam_Prob5_NucData.txt
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Solution 5a

40
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• Assuming that -2ln(𝜆) is chi-squared distributed, how many 

pseudo-experiments of the 100 are expected to have 
-2ln(𝜆) > 2.706? 

• How many pseudo-experiments actually have -2ln(𝜆) > 

2.706? 

• Bonus question: Why did I choose 2.706?

Problem 5b

41
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• The distribution is chi-squared distributed and with 1 
degree of freedom 2.706 is 90%, so i expect 10 pseudo-
trials 

• In actuality I get 9 pseudo-experiments above 2.706

Solution 5b

42
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• Using all 20000 events as a single pseudo-experiment, can 
the null hypothesis (H0) be rejected at 3σ confidence?

Problem 5c

43
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• The full fit gives -2ln(𝜆) = 2.275, which is not even at the 1σ 

level, and well below the 3σ level. Ergo, the null 
hypothesis is not rejected at 3σ.

Solution 5c
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Note: Some students reinterpreted 
the -2ln(𝜆) to a p-value and then 

sometimes (errantly) back to a 
sigma-like quantity. While the 
methodology was sometimes 

wrong, the student received much 
of the benefit of the doubt if the 

answer was correct. I didn’t ask for 
justification, but I will in future 

years.
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• The artist Jackson Pollock was famous for creating 
paintings that look fractal, or scale invariant. On the next 
slide is an image of his piece “One: Number 31.”  

• A script has been used to convert the entire image to black 
and white and then write a single horizontal row of pixels 
into a text file at (http://www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/
One_row.txt) 

• Values are in 8-bit grayscale 

• 0 is black 

• 255 is white

Problem 6
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• Lower resolution image than the image posted on the class webpage 
(http://www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/One_Number31.png)

Problem 6 - Photo
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• Wavelet coefficients are labelled by two indices: a scale (or 
level), and a positional index. The RMS of those 
coefficients that all have the same scale index provides a 
measure of the activity in a signal at that given scale.  

• Enlarging a small section of a scale-invariant signal will 
result in a new signal that has the same characteristics as 
the original signal from which the small piece was taken. 
This means that the size of fluctuations in a scale-invariant 
signal must be proportional to the scale of the signal. 

Problem 6 (cont.)
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• Take the single row of Jackson Pollock data in the file 
below and plot the RMS of the wavelet coefficients vs. the 
scale of the wavelet coefficients. 

• (http://www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/One_row.txt) 

• What would you expect this plot to look like if the signal 
were purely scale-invariant? 

• Does Pollock’s artwork deviate from scale invariance, and if 
so, how? 

Problem 6a
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• White noise is not scale invariant because the size of 
fluctuations is constant vs. scale, meaning the power 
spectrum is flat in the frequency domain. However, other 
types of noise are scale invariant, an example being the 
sound of the sea.  

• Use the Haar and D4 wavelet bases to generate two scale-
invariant noise samples, each 256 bins long. What are the 
differences between these two samples? 

• Bonus Question: A frequent cigarette smoker while 
working, many Pollock paintings have cigarette stubs 
embedded in the paint. Would it be worthwhile to develop 
a “Pollock” wavelet bases to account for non-paint debris?

Problem 6b
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