
Course Information

D. Jason Koskinen <u>koskinen@nbi.ku.dk</u>

Advanced Methods in Applied Statistics Feb - Apr 2016

Photo by Howard Jackman University of Copenhagen

Niels Bohr Institute

Times & Locations

- Hours
 - Course is in Block A
 - Tuesday 08:00 12:00
 - Thursday 08:00 12:00 and 13:00 17:00
- Location
 - Auditorium M at Blegdamsvej
 - Possibly the adjacent room to Aud. M for doing group work
- In-class Activities
 - ~20-30% of the time will be lecture
 - Most of the time will be practical exercises
 - Finding appropriate software package or function
 - Properly instantiating the relevant statistical method
 - Debugging
 - Documentation, plotting, code clean-up, maybe even in-line comments, etc.

From 08:30-09:00 I will be in Aud. M but I will only be there for discussion and student Q&A, i.e. no new material until 09:00

Me

- I go by "Jason", although 'incredible Dr. Koskinen' will also work
- My scientific focus is on experimental neutrino oscillation, where I work on the IceCube neutrino observatory situated at the South Pole

Computers & Software

- Everyone should have a laptop
- Software specifics are left to the student
 - Suggestions are python, R, or C/C++
 - The more common the language the more likely you can use the internet for help
 - Lectures and examples will be mostly in python using some external packages:
 - ROOT (<u>https://root.cern.ch</u>), note that ROOT is not necessary and can be painful to install
 - SciPy (<u>http://www.scipy.org</u>)
 - NumPy (<u>http://www.numpy.org</u>)
 - PyMC for Markov Chain Monte Carlo (<u>https://pypi.python.org/pypi/pymc</u>)
- I encourage you to find at least one person who is nominally using the same setup, e.g. Windows 10, R 3.2.3
 - I'll post online who's expecting to use certain software

Software, Checklist, & Skills

- Have an installed text editor for writing/editing software
- Have some package for the production of plots and diagrams (ROOT, matplotlib, R, gnuplot, Matlab, etc.)
- Provide:
 - Name, and preferably a photo too so I know whom you are
 - Area of physics research or interest
 - Anticipated software usage
 - Preferably in this google doc (<u>http://tinyurl.com/j5pjvf3</u>) or by email (<u>koskinen@nbi.ku.dk</u>) to me
- I strongly recommend reviewing the undergraduate stats course (<u>http://www.nbi.dk/~petersen/Teaching/</u> <u>AppliedStatistics2015.html</u>)
 - Actually do the exercises, not just scan the material, and see what isn't clear or familiar

Course Material

- NO required text or textbooks. I will cover many topics w/ in-class lectures where the notes will be posted online. But, this may be insufficient in depth or explanation for your personal preference, so students can use...
- The Internet
 - Seriously. Probably the best source for information and help.
- "Statistical Data Analysis" by Glen Cowan
- "Modern Statistical Methods for Astronomy" by Feigelson
 & Babu
- Journal articles
 - Any that you might find relevant
 - Some posted by me

Student Assessment

- Oral Presentation and 1-page summary (10%)
 - Take topic and/or relevant article for presentation to the class
 - Can be done in groups, but no more than 3 people
- Graded problem sets (15%)
 - Can be done in groups of any size, but must be submitted individually, along with all code (unzipped)
- Project (25%)
 - Larger data analysis project, nominally related to your field of research
 - Can be done in groups (no more than 3 people) with a single 4-6 page written report
- Final Exam (50%)

Student Assessment

- All assessment material will be graded based on the results
 - Code can be sloppy and inefficient and will not affect your grade
 - Obviously, the exception is cheating, e.g. using the 97% of the code of someone else and only changing the comments , variable names, line colors, etc.
- I encourage you to share solutions, efficient code, elegant solutions, etc. for everything other than the final exam
 - If you use a portion of someone else's code (which is fine by me) make in-line acknowledgement in the comments of your code
 - Beware, that if your code starts to look like a collection of only other people's code, it's unlikely that the Final Exam will go well

Final Exam

- 1-day (~24 hour) take home test
- Requires computers, writing/modifying code that has been developed during the course

• You must work on your own!!!

- Along with the answers, the code producing the results must also be submitted
- Here is one topic which is guaranteed to be on the Final Exam. I will generate a joint dataset that is comprised of at least 3, but no more than 20, different underlying distributions, where you will be asked to:
 - Find out how many distinct distributions, their types (gaussian, exponential, linear, step-wise, etc.), and properties of the underlying distributions
 - The data set will have at least thousands of entries, probably multivariate, and I may include 'experimental' systematics or biases

Challenges

- Multiple student backgrounds and multiple topics mean that some students may feel like they would benefit from more challenging material... have no fear
- I have collected some projects/questions from colleagues
- No guarantee that undertaking any advanced challenges will result in a better grade. Similarly, students may earn top marks in the course without ever looking at extra topics
- Potentially pick something on your own and discuss it with me, maybe even put together some lecture material and add it to the course

Expectations

- As graduate students, the days 'of being spoon fed information from a text book or professor' are ending
- Software and hardware difficulties and solutions are the sole domain of each student. You can do all the projects on a PlayStation 4 w/ screenshots if you want.
- These are nominally advanced topics
 - Open to suggestions about topics
 - In the absence of unassailable experts, discussion and participation by individuals and groups is important
- Leave the course with at least 1 new tool that you can use in your research