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L ooking for Rare Events

First of all, what is considered rare?

Certainly anything that happens once in
the span of a lifetime. Maybe once in a

vear?

“You'll know one when you see one ... If
YOU See one’

More formal:




Dealing with Rare Events

e SO what can we do”? Seem to be three
solutions:

o \Nait

e Predict from other information

* |nterpret the results we have




Rare Events

e | et’'s assume that anything that happens
< 1 time per month is rare

e Could be many things... meteor strikes,
government upheavals, floods,
birthdays...

e Can we do anything predictive with this
class of events?




Answer: Maybe’?

e Discrete physical phenomena tend to
follow a power law distribution

e (Can be used with earthquake magnitude

e (Gutenberg-Richter law
N = 10"

N - number of earthquakes
M - magnitude of the earthquake
a,b - constants




Earthquake Data

e Data on recent earthqua

ne
ed

ra:

Kes IS avallable

thg

nttp://earthquake.

USQs.qov/

uakes/teed/v1.0/csv.php

e (Can you predict the n
occurrences of magn

umber of
itude 57 67

e How accurate are the predictions?



http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

Dark Matter Introduction
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Dark Matter

What do we know?

1.Long lived (survived until current day)

2 .Non-baryonic (Hydrogen:Deuterium Ratio)

3.No EM interactions (haven’t seen it)

4.80% of all matter (rotation curves, CMB)

O.Non-relativistic (galactic structure
formation, rotation curves)
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Dark Matter Detection

Two primary types: direct and indirect

Interaction of particle Products of self-interaction
INside the detector outside the detector
X X X Regular Matter

Regular Matter Regular Matter X Regular Matter
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Dark Matter Math

mass fraction coupling nuclear recoll
of target enhancement quenching factor
dR ~—N ~—N 5 ~—N
dE., = Upi(A) X §(A7 ERJ) x I(A) Xf (4, ERJ) x g(A) X e(Ey)
A B 28 . 28 Y
phase space nuclear form factor detector
cross-section distribution of response

trapped DM function

A - Atomic Number
Er - nuclear recoil energy
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Direct Detection Methods

o All experiments search for small energy
deposits

e Make some assumptions to find
MAXIMUM energy deposited

o My=100 GeV = 1.8x1025 kg
e v=220km/s =2.2x10°m/s

1 1
T = §m02 = 5 1.8 107%° % (2.2 x 10°)* = 4.4 x 1071°J

e Equivalent to a mosquito flying at
0.00015 kph
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Background Bemoval

e Because of this small energy deposit,
DM experiments are all about dealing
with backgrounds

e Done In two ways

1.Don’t have interactions you don’t want

2. Tell the “bad” interactions from the
“gOOd”
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Background Removal

CRESST 1
CUORE

PICASSO CDMS
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PICO
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Background Removal

CRESST 1
CUORE
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PICASSO + COUPP = PICO

e P|CO is a novel detector using superheated
liquid to amplify the energy deposit

e Small deposit of energy triggers the
formation of large bubbles, detectable using
acoustic or visual methods

X X

\
o
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Seitz Model

e [he currently used model says that the
energy for the formation of the bubble
must come from the interaction, not the
surrounding fluid

® [his requires a threshold energy deposit in
a critical radius

d 4 4
Ethreshold A 47”“3 <U = O-> T3 e

dT
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Seitz Model

e [he currently used model says that the
energy for the formation of the bubble
must come from the interaction, not the
surrounding fluid

® [his requires a threshold energy deposit in
a critical radius

Overcoming surface tension Double counting

do A 4
Fihreshold = 4nr> o =T o hy — hy) — —r2 (P, — P
threshold 7T7“c<0 dT>+37“,0b(b ) 37“0(19 )

) - L
——

Vaporization of fluid
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Backgrounds Method 1

e Gammas and betas are effectively not
detected by the detector as they do not
meet the Etnreshold IN e requirement.

Temperature (C)
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Backarounds Method 2
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The Ultimate Goal (?)
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Figure 8. Expanded plot showing spin-independent WIMP-nucleon cross section limits, including closed
contours showing hints for low-mass WIMP signals.
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Figure 9. Spin-dependent WIMP-neutron (left) and WIMP-proton (right) cross section limits versus
WIMP mass for direct detection experiments[-7, 25, 25, 35, 20, 10, 11], compared with the model-dependent
Ice Cube results (model-dependent) as of summer 2013 [17].

e (Goal should be discovery...

21

UNIVERSITY OF

TORONTO




Calculation of Limit

e (Calculation based on 4 parameters

e Background rate B

o Background misidentification 3
® Signal acceptance a

e cxposure MT (mass x time)
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Calculation of Limit

e \With NO discrimination (3=1) all
iNnteractions are potentially DM

e |f there are no events, the 90% CL




Calculation of Limit

e \With NO discrimination (3=1) all
INnteractions are potentially DM

e |f there are no events, the 90% CL

SQO —

aM'T

e (Obviously scales with the exposure time
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Calculation of Limit

e \With far more events than expected
signal, assume all events are background

Ngg + 1.28v/Npg
aMT

59() —

e [his can be expressed as

g _5|1.28 bB
9O_a' Q MT
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Calculation of Limit

Zero Events Discriminating Detector  Non-Discriminating

S = VR
( 3

Sensitivity (O)

Exposure (MT)
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A Better \Way’?

o | et’s study a bit more complex example

CRESST 1
CUORE
PICASSO CDMS
coupp  CRESST EDELWEISS
PICO
Scintillation
(Least Energy) XEN ON
DEAP COGeNT
CLEAN DM
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Scintillation and lonization

e Example used here is

LUX
S2

e Xenon used in both liquid

and gas state within an

electric field to amplify |

small deposit . Drift time

Particl e/_/-—/ L indicates depth

e Two different scintillations — 4 ‘

detected, the ratio of LS

which discriminates

signal from background

— ionization electrons
VN UV scintillation photons (~175 nm) iniage by CH Faham (Brown)
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Scintillation and lonization

e Example used here is
LUX

e Xenon used in both liquid
and gas state within an
electric field to amplify
small deposit

¢ [wo different scintillations
detected, the ratio of
which discriminates
signal from background

2.6~§‘

log, O(S2b/S1) X,y ,Zz corrected

24}

221 Wiy

FIG. 4.

20
S1 x,y,z corrected (phe)

30 40 50

The LUX WIMP signal region. Events in the

118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. [3] with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation

analysis.
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Phonons and lonization

~=+20c Nuclear Recoil Yield Selection
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CDMS similarly uses
two channels 1o

distinguish
background from

signal

Co
0N
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discrimination

INg both
ion and
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RISks

e [he main (and obvious) risk to removing
backgrounds is to the livetime of the

experiment

e Aggressive cleaning puts you back into
the region discussed previously
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Setting a Limit

e Need to know the number of counts and
the distribution of the probabillity function

e Also need to know the expected number
of counts seen
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Expected Counts

The simplest expectation is:
d_R _ EQ—ER/E()T
dER E()T

—R IS the recoll energy

Ro IS the total event rate

—0 IS the most probable dark matter
energy

AMp My
(Mp + Mr)?

T =

33



Trick Is In the Ro

e Define the RO so that it can be calculated

e |t's the event rate per unit mass for the
earth velocity is O and the escape
velocity Is infinite

2 No pp

RO: 7T1/2 A MD

X X%
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Defining The Bounds

e Really need to define the bounds on the
observed number of events

e [his has to take into account the
backgrounds and the uncertainty
associated with those backgrounds

* [hree methods here:

1. Feldman Cousins
2. Yellin
3. Binned Likelihood

35



Feldman Cousins

e \Want to know the confidence region for

the number of signal events given the
number of observed and background

(Iu _|_ b)ne_(:u_l_b)

P(n|p) =

n!

* [hen maximize the probability, changing

Uoest aNd the ratio Is the pa
to define 90%

P(n|p)
(n‘ﬂbest)

R —
P

36
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Feldman Cousins

Plot this and read the results for your
experiment!

becccadacccnnbeaa

Signal Mea
®
I
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But... I'm not sure about my

Backgrounds

o All DM experiments are in a new region
of detector physics

* [he backgrounds are not completely
understood

® [he best measurement of the
backgrounds is the dark matter data
itself. ..
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Yellin to the Rescue!

dGamma/dE

—

0 0 BN BN 0
Energy

e |he events don't match the expectation
well

e Use the "maximum gap” and find the
cross-section at which 90% of the trials
have a gap smaller than this
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More Yellin

® [his can only set an upper limit, and can
never be used for discovery

* Also generates one-sided (upper) limits

e No information about the background
goes into this (it may be unknown)
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Binned Maximum Likelihood

e \\e want to use all the information

e Assume we have one discriminator

e Bin the number of counts In that
parameter
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Binned Maximum Likelihood

Use Poisson for low statistics (as before)

k — Mg, T
ln[l:Zln(e .,uz )

n;!
i=1 v

Sut introduce a new term for signal and
background counts

ly =S - Py(z) + B - Py(x)
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Binned Maximum Likelihood

iy =S - Py(z) + B - Py(x)

S and B are the hypothetical number of
signal and background events in bin x

produce t
backgro

Ne best estl

und, which

The likelihood can now be minimized to

mate of signal and

IS used to set the

imit
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| et’'s | ook at Data

e Thisis CDMS data taken when | was a
postdoc with them

* \We have the single and multiple rates tor
one detector

e se these to define backgrounds and
signa
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Don’'t have DM Data... as

such

| have calibration data
Split into “singles” and “multiples”

Neutron events will happen in the
“singles”

Let’s define “singles” as calibration,
“multiples™ as data
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lonization Energy (keVee)

lonization Energy (keVee)

10

CDMS Data

Multiples
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lonization Energy (keVee)

lonization Energy (keVee)

CDMS Data

Multiples
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Singles

Electrons

600g Germanium crystal, 1 day exposure
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Cle
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