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Looking for Rare Events
• First of all, what is considered rare? 
• Certainly anything that happens once in 

the span of a lifetime.  Maybe once in a 
year? 

• “You’ll know one when you see one … if 
you see one” 

• More formal: 
binary dependent variables with dozens to thousands of 
times fewer ones (events, such as wars, vetoes, cases of 
political activism, or epidemiological infections) than zeros 
(“nonevents") - Logistic Regression in Rare Events Data
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Dealing with Rare Events

• So what can we do?  Seem to be three 
solutions: 

• Wait 
• Predict from other information 
• Interpret the results we have
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Rare Events

• Let’s assume that anything that happens 
< 1 time per month is rare 

• Could be many things… meteor strikes, 
government upheavals, floods, 
birthdays… 

• Can we do anything predictive with this 
class of events?
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Answer: Maybe?

• Discrete physical phenomena tend to 
follow a power law distribution 

• Can be used with earthquake magnitude 
• Gutenberg-Richter law
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N = 10a�bM

N - number of earthquakes 
M - magnitude of the earthquake 
a,b - constants



Earthquake Data

• Data on recent earthquakes is available 
here:  http://earthquake.usgs.gov/
earthquakes/feed/v1.0/csv.php 

• Can you predict the number of 
occurrences of magnitude 5?  6? 

• How accurate are the predictions?
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Dark Matter Introduction
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A Popular Field…

8

Snowmass 2013



Dark Matter

What do we know? 
1.Long lived (survived until current day) 
2.Non-baryonic (Hydrogen:Deuterium Ratio) 
3.No EM interactions (haven’t seen it) 
4.80% of all matter (rotation curves, CMB) 
5.Non-relativistic (galactic structure 

formation, rotation curves)
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Dark Matter Detection

Two primary types: direct and indirect
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Dark Matter Math
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Direct Detection Methods
• All experiments search for small energy 

deposits  
• Make some assumptions to find 

MAXIMUM energy deposited 
• Mx = 100 GeV = 1.8x10-25 kg 

• v = 220 km/s = 2.2x105m/s 

• Equivalent to a mosquito flying at 
0.00015 kph
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Background Removal

• Because of this small energy deposit, 
DM experiments are all about dealing 
with backgrounds 

• Done in two ways 
1.Don’t have interactions you don’t want 
2.Tell the “bad” interactions from the 

“good”

13



Background Removal
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Background Removal
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Kenneth Clark

PICASSO + COUPP = PICO
• PICO is a novel detector using superheated 

liquid to amplify the energy deposit 
• Small deposit of energy triggers the 

formation of large bubbles, detectable using 
acoustic or visual methods
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Seitz Model
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• The currently used model says that the 
energy for the formation of the bubble 
must come from the interaction, not the 
surrounding fluid 

• This requires a threshold energy deposit in 
a critical radius
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Backgrounds Method 1
• Gammas and betas are effectively not 

detected by the detector as they do not 
meet the Ethreshold in rc requirement.
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Backgrounds Method 2

• Distinguish the 
bubbles formed by 
backgrounds from 
those formed by 
recoil events 

• In this case, 
alphas vs neutrons
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The Ultimate Goal (?)

• Goal should be discovery…
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Calculation of Limit

• Calculation based on 4 parameters 
• Background rate B 
• Background misidentification β 
• Signal acceptance α 
• exposure MT (mass x time)
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Calculation of Limit
• With NO discrimination (β=1) all 

interactions are potentially DM 
• If there are no events, the 90% CL
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Calculation of Limit
• With NO discrimination (β=1) all 

interactions are potentially DM 
• If there are no events, the 90% CL 

• Obviously scales with the exposure time

24

S90 =
2.3

↵MT



Calculation of Limit
• With far more events than expected 

signal, assume all events are background 

• This can be expressed as
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Calculation of Limit
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A Better Way?
• Let’s study a bit more complex example
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Scintillation and Ionization

• Example used here is 
LUX 

• Xenon used in both liquid 
and gas state within an 
electric field to amplify 
small deposit 

• Two different scintillations 
detected, the ratio of 
which discriminates 
signal from background
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Scintillation and Ionization

• Example used here is 
LUX 

• Xenon used in both liquid 
and gas state within an 
electric field to amplify 
small deposit 

• Two different scintillations 
detected, the ratio of 
which discriminates 
signal from background



Phonons and Ionization

• CDMS similarly uses 
two channels to 
distinguish 
background from 
signal 

• Collecting both 
ionization and 
phonons allows for 
discrimination
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Risks

• The main (and obvious) risk to removing 
backgrounds is to the livetime of the 
experiment 

• Aggressive cleaning puts you back into 
the region discussed previously

31



Setting a Limit

• Need to know the number of counts and 
the distribution of the probability function 

• Also need to know the expected number 
of counts seen
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Expected Counts

• The simplest expectation is: 

• ER is the recoil energy 
• R0 is the total event rate 
• E0 is the most probable dark matter 

energy
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Trick is in the R0

• Define the R0 so that it can be calculated 
• It’s the event rate per unit mass for the 

earth velocity is 0 and the escape 
velocity is infinite

34

R0 =
2

⇡1/2

N0

A

⇢D
MD

�0v0



Defining The Bounds
• Really need to define the bounds on the 

observed number of events 
• This has to take into account the 

backgrounds and the uncertainty 
associated with those backgrounds 

• Three methods here: 
1. Feldman Cousins 
2. Yellin 
3. Binned Likelihood
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Feldman Cousins
• Want to know the confidence region for 

the number of signal events given the 
number of observed and background
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P (n|µ) = (µ+ b)ne�(µ+b)

n!

• Then maximize the probability, changing 
μbest and the ratio is the parameter used 
to define 90% 

R =
P (n|µ)

P (n|µbest)



Feldman Cousins
• Plot this and read the results for your 

experiment!
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But… I’m not sure about my 
Backgrounds

• All DM experiments are in a new region 
of detector physics 

• The backgrounds are not completely 
understood 

• The best measurement of the 
backgrounds is the dark matter data 
itself…
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Yellin to the Rescue!

• The events don’t match the expectation 
well 

• Use the “maximum gap” and find the 
cross-section at which 90% of the trials 
have a gap smaller than this
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More Yellin
• This can only set an upper limit, and can 

never be used for discovery 
• Also generates one-sided (upper) limits 
• No information about the background 

goes into this (it may be unknown)
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Binned Maximum Likelihood
• We want to use all the information 
• Assume we have one discriminator 
• Bin the number of counts in that 

parameter
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Binned Maximum Likelihood
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Binned Maximum Likelihood
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S and B are the hypothetical number of 
signal and background events in bin x

µ

x

= S · P
s

(x) +B · P
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The likelihood can now be minimized to 
produce the best estimate of signal and 
background, which is used to set the 

limit



Let’s Look at Data

• This is CDMS data taken when I was a 
postdoc with them 

• We have the single and multiple rates for 
one detector 

• Use these to define backgrounds and 
signal
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Don’t have DM Data… as 
such

• I have calibration data 
• Split into “singles” and “multiples” 
• Neutron events will happen in the 

“singles” 
• Let’s define “singles” as calibration, 

“multiples” as data
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CDMS Data
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CDMS Data
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Go!
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