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• In today’s lecture: 

• Maximum Likelihood 

• Extended Maximum Likelihood 

• Maximum Likelihood with binned (classified) data 

• This was partially covered in Troels’s course, but in the context of using an inline 
minimization technique from TGraph → TF1 → RooFit, and (I think) then 
RooMinuit. Now, we explore the detail.

Likelihoods and General Likelihood 

2

Material partially from D. Grant derived from lectures by A. Bellerive, G. Cowan, and D. Karlen 



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Given n observations one would like to describe the underlying (parent) 
distribution.  The form of the parent distribution might be known, but there may 
be a number of unknown parameters.    

• The n observations may be used to determine the parameters as accurately as 
possible.   

• Define: 

• estimator - a function, t, of the observations used to determine the unknown 
parameter, θ. 

• estimate - the resulting value of the estimator,    or   . 

• A good estimator: 

• should not deviate from the true parameter value in the limit of large n. 

• the accuracy should improve as n increase.

Estimating Parameters
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• A good estimator cont.: 

• should be centered 
around the true 
parameter value for all n. 

• should exhaust all the 
information in the 
measured data. 

• should have a minimum 
variance (the best 
possible accuracy) 

• should be robust so as 
not to be sensitive to 
background or outliers.

Estimating Parameters (Obvious)
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• Hypothesis Tests 

• The goal of the statistical test is to provide a statement of how well observed 
data/samples agree with a predicted probability/hypothesis. 

• A null hypothesis is the traditional hypothesis for a PDF f(x) of a random 
variable x. 

• If a hypothesis determines a PDF uniquely it is said to be simple.

Estimating Parameters
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• Test Statistics 

• A statement about the validity of the null hypothesis often involves 
comparison to alternative hypotheses.  Each hypothesis specifies a test 
statistic.   

• The test statistic can be a function of one or more random variables that are 
not dependent on any unknown parameters.   

• Likelihood 

• For a random variable, x, distributed according to the PDF f(x;λ), the 
functional form is known but at least one parameter is unknown:   

• The likelihood of observations in x for a specific λ is given by 

Estimating Parameters
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~� = (�1, ...,�m)

L(x1, x2, ..., xn;�) =
nY
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f(xi;�)
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• The likelihood is the product of the individual probability (or 
probabilities for multiple parameters) of parameters (θ) which 
produce the observed outcomes (𝓍i) 

• The likelihood (𝓛 or L) given the observed data (𝓍) for the 
parameters (θ) is equal to the probability (𝓟) given the 
parameters (θ) of getting the observed data (𝓍)

Likelihoods
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L(✓|x) = P (x|✓)

L(✓) =
NY

i=0

f(xi; ✓)

f() is commonly the  
probability distribution function

*changed from “λ”  and “i=1” just 
to mess with everyone
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• Often “log” means “natural log” or better yet “ln”.  

• Similar to using SI and non-SI units, explicitly use “ln” or 
“log10” to mean what you mean for the written form. Don’t 
be the person that crashes a probe into Mars, or forces a 
plane to land on a highway. Don’t be that person. 

• Why move from 𝓛 to ln(𝓛)? 

• If you maximize/minimize ln(𝓛) you also maximize/minimize in 𝓛 

• Products (∏) are converted to sums (∑) 

• Exponentials and derivatives are easier to deal with in natural log 
space than straight likelihood space 

• It is common to use “LLH” to mean the “log-likelihood”

log-Likelihoods

8



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• A very powerful and general method of parameter estimation when the 
functional form of the parent distribution is known. 

• For large samples the estimators are normally distributed and hence the 
variances of the estimates are simple to determine. 

• Even for small samples the estimators possess most of the expected “good” 
properties. 

• Define: The estimate,    , is the value that maximizes the likelihood function.   

• Since the likelihood function and the natural logarithm (ln) of the function 
have the same point for maximum values one will typically use the ln(L) since 
sums are easier to handle than products:

Maximum Likelihood Method
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• Example of estimators 

• If the estimator is close to the true value then an expected high 
probability of obtaining data that matches exists.

Maximum Likelihood Method
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• Example: Parameter of exponential PDF 

• Given an exponential PDF: 

• one can write a likelihood function for 
independent data, t: 

• The value where τ maximize the 
likelihood function also gives the 
maximum value for the log-likelihood 
function: 

• Maximum will be:

Maximum Likelihood Method
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• Once again making use of a gaussian PDF and the random 
number generator to calculate the LLH and the estimators 
• Gaussian same as example: μ=0.2, σ=0.1, and 50 throws 

• You can establish the maximum likelihood estimators     and     
analytically for such an easy example, but as a first option scan, i.e. 
1D Raster scan. Note that technically an MLE has an analytic 
representation which is not always the same as what will be found by 
a scan. But, most of the time the true and ML estimate of the value 
will be indistinguishably close to each other. 

• Compare the LLH for scanned MLE to the true value for multiple 
iterations 
• The analytic or scanned MLE, for an appropriate precision in the scanning, should 

always have a better LLH than the true value

Exercise 1
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• Multi-parameter likelihood 

• Given a theoretical prediction with two independent 
parameters (𝝰, 𝝱) which is: 

• For 𝝰=0.5 and 𝝱=0.5, generate 2000 Monte Carlo data points using 
the above function transformed into a PDF over the range -1 ≤ x ≤ 1 

• Write your own likelihood function to ‘fit’ the estimators     and    
using the generated MC sample and a numerical minimizer/
maximizer routine on either the -LLH or LLH to produce the 
estimator and if possible the parameter error

Exercise 2

13

f(x;↵,�) = 1 + ↵x+ �x

2

↵̂ �̂

---------------------------------------------------------------------------------------------- 
|      | Name  |  Value   | Para Err |   Err-   |   Err+   |  Limit-  |  Limit+  |          | 
---------------------------------------------------------------------------------------------- 
|    0 | alpha =  0.4657  |  0.07151 |          |          |          |          |          | 
|    1 |  beta =  0.5227  |  0.1465  |          |          |          |          |          | 
----------------------------------------------------------------------------------------------
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• Write your own likelihood function to ‘fit’ the estimators     and 

• Fit using a numerical minimizer/maximizer routine on either the -LLH 
or LLH to produce the estimator and if possible the parameter error 

• Using the new values 𝝰=0.1 and 𝝱=0.5, repeat the fitting procedure 
and plot the true distribution for the PDF and at least 1 of the 
samples w/ 2000 MC data points, and check that the returned values 
are good

Exercise 2 cont.
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• For those who want more… 

• There are lots of different minimizers, so… 
• Figure out which minimizer you are using and benchmark the fitting 

time (or CPU resources) 

• Compare to a different minimizer. This can be either by name 
(MIGRAD versus BFGS) or by type ( no-, first-, or second-derivative 
based algorithm) 

• Because the actual PDF is nicely analytic, smooth, and multi-
parameter but not multi-dimensional, the derivative methods should 
be relatively quick

Exercise 2 cont.
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• The vast majority of numerical minimizers are dependent 
on initial settings and conditions to provide good fits in a 
reasonable time for real world PDFs 
• The higher the number of parameters, dimensionality, and the more 

complicated the LLH landscape the more important the initial 
settings and conditions 

• In the last example the LLH landscape is smooth, so the initial 
conditions shouldn’t actually matter that much 
• You could speed it up by setting the starting point of the minimization closer to the 

true value, but that requires some initial guess of the true value 

• You can change the bounds on x, 𝝰, or 𝝱, which contains problems of the fitting 
routine wandering away and keeps the fit in an appropriate range 

• You can do a coarse raster scan and start the minimizer in the cell/voxel with the 
best likelihood 

• You can set the distance to the ‘minima’ criteria at which to stop 

Numerical Minimization Notes
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• This is a semi-coarse sampling of the LLH space. Establish 
which values of 𝝰 and 𝝱 have the best LLH and start your 
fit there, or at multiple points near the best LLH.

Raster Scan
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• Numerical minimizers require some criteria which 
terminates the minimization. Two common methods are: 
• Number of steps. This keeps the minimizer from ‘running away’, i.e. 

minimizing over infinite iterations. 

• Estimated distance to minima (EDM) or equivalent term for your 
minimizer. At some point near the true minima (at least at the 
precision of your data and minimizer) every infinitesimally small 
nearby point will have the same likelihood value. You can set the 
ΔLLH or ΔLH value criteria whereby when the minimizer encounters 
multiple steps below this threshold the minimization stops, and the 
MLE at the best LLH is considered the best-fit.

Numerical Minimization Ends
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• Likelihood landscapes are important to visualize and 
understand… super important. Plot them whenever possible 
to understand the topology that your minimizer encounters 

• For values of 𝝰=0.6 and 𝝱=0.5 for the previous formula/PDF 
make a 2D plot of the likelihood or LLH landscape

Exercise 3
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• Likelihood landscapes are important to visualize and 
understand… super important. Plot them whenever possible 
to understand the topology that your minimizer encounters 

• For values of 𝝰=0.6 and 𝝱=0.5 for the previous formula/PDF 
make a 2D plot of the likelihood or LLH landscape

Exercise 3 cont.

20

α
0.2− 0 0.2 0.4 0.6 0.8 1

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1280

1285

1290

1295

1300

1305

1310
Zoomed in



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• For values of 𝝰=0.6 and 𝝱=0.5 for the previous formula/PDF 
make a 2D plot of the likelihood or LLH landscape and now 
plot the path of your minimizer as it ‘steps’ through the 
landscape
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Exercise 3 cont.
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• For those whom want more… 

• Increase the number of Monte Carlo data points to 20000 

• Before you run the test, do you expect the value of the LLH at the 
MLE best-fit point to change versus 2000 points? 

• After you run the test, did the LLH change in a statistical meaningful 
way? Show empirically that it does or does not. 

• The 2D confidence interval can be assumed to be along iso-contour 
lines (contours) of constant ΔLLH from the best-fit. For the contour 
related to a ΔLLH=4, does it change between the sample with 2000 
and 20000 MC data points? 

• Many statistical tests require that the ΔLLH be calculated versus the 
best-fit point. If your hypothesis test includes a fixed ‘known’ value, 
i.e. 𝝰=0.6 and 𝝱=0.5, how much does the contour ΔLLH=4 change 
when calculated against the fixed values versus best-fit? We’ll revisit 
this situation when dealing with Feldman-Cousins checks.

Exercise 3 cont.
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• For those whom still want more… 

• Produce a ΔLLH landscape in reference to the best-fit point 

• Produce  Δ(ΔLLH) landscape for comparisons between using the 
best-fit as a LLH reference point and the ‘true’ values as the LLH 
reference point. This goal is a comparison of two hypothesis tests to 
see if it matters much at all if the you use the best-fit or true 
parameters. Commonly the ‘true’ would is placed by the H0 (null 
hypothesis), but here you can use the ‘true’ for testing.

Exercise 3 cont.
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• General idea  

• Given an assumed functional dependence f(x;θ) between the observable, x, 
and unknown parameter, θ, there are n events or observations.  The 
likelihood function may be written as: 

• Sometimes n is not fixed but may instead be regarded as a Poisson random 
variable, with mean ν, which is the expected number of events.  Written as a 
function of the parameters, θ, the information ν=ν(θ) may be used by 
generalizing the likelihood function:

Extended (General) Maximum 
Likelihood

24

L = L(~x; ✓) =
nY

i=1

f(xi; ✓)

L(n, ~x; ✓) = L(⌫, ✓) =
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• General idea  

• The log-likelihood becomes: 

• The expression describes the joint probability for observing just n events and 
that those events provide the observations x1,...,xn when the number of 
observed events is assumed to be a Poisson variable with mean value ν.   

• The advantage of introducing the extended likelihood is the number of 
observed events, n, adds an additional constraint in determining the 
parameter(s), θ.   

• In problems where the shape of the function, f, is of primary interest we 
gain little by using the extended likelihood over the standard likelihood.     

• The extended likelihood should be applied in cases where the expected 
number of events can be calculated with considerable accuracy.  

25

lnL(~✓) = �⌫(~✓) +
nX

i=1

ln(⌫(~✓)f(xi; ~✓)) + C

Extended (General) Maximum 
Likelihood
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• Example 

• Consider two types of events, signal and background, each of which predicts 
a given pdf for the variable x:  fs(x) and fb(x).   Observed is a mixture of the 
two event types.  The signal fraction is given by θ, the expected total 
number ν, and observed total number n. 

• Let μs = θν,  μb = (1-θ)ν.   The goal is to estimate μs and μb .

26

f(x;µs, µb) =
µs

µs + µb
fs(x) +

µb

µs + µb
fb(x)

P (n;µs, µb) =
(µs + µb)n

n!
e�(µs+µb)

lnL(µs, µb) = �(µs + µb) +
nX

i=1

ln[(µs + µb)f(xi;µs, µb)]

Extended (General) Maximum 
Likelihood
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• Example 

• A Monte Carlo where we have 
combined an exponential and a 
Gaussian: 

• The log-likelihood is maximized in 
terms of μs and μb : 

• In this case the errors reflect the 
total Poisson fluctuation as well as 
that in proportion to signal/
background.
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µs = 6; µb = 60

µ̂b = 54.3± 8.8

µ̂s = 8.7± 5.5

Extended (General) Maximum 
Likelihood
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• Example 

• What if we now consider an 
unphysical estimate, e.g. a 
downward fluctuation of data in the 
peak region which can lead to 
fewer events that what would 
otherwise be obtained from 
background alone. 

• The estimate for μs is now pushed 
negative into an unphysical regime. 

• This is OK as long as the total PDF 
remains positive everywhere.

28

Extended (General) Maximum 
Likelihood
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• Example 

• The unphysical estimator is 
unbiased and should ultimately 
be reported since the average 
of a large number of unbiased 
estimates will converge to the 
trial value. 

• If you repeat the entire Monte 
Carlo many times then one may 
allow unphysical estimates. 

• In order to provide unbiased 
confidence limits and coverage

29

Extended (General) Maximum 
Likelihood
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• In the case where the number of observations is very large, numerical 
evaluation of the likelihood function may become intensive, in 
particular if the PDF has a complex form. 

• In such cases it is possible to reduce the amount of computation by 
grouping the data into subsets or classes and write the likelihood 
function as a product of a smaller number of averaged PDFs. 

• In doing this there is clearly some loss of information.  This loss will be 
modest if the variation of the distribution is small over each interval. 

• Let the total number of events, n, be grouped into N classes for 
different intervals of the variable x.  The joint probability to have n1 
events in class 1, n2 events in class 2, etc is given by a multinomial 
distribution. 

Maximum Likelihood with Binned 
(Classified) Data

30
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• Data will often be placed into a histogram: 

• The hypothesis is that: 

• If the data is modeled as a multinomial, then 

• and the log-likelihood function becomes:

31

~n = (n1, ..., nN

), n
tot

=
NX

i=1

n
i

~⌫ = (⌫1, ..., ⌫N

), ⌫
tot

=
NX

i=1

⌫
i

⌫

i

(~✓) = ⌫

tot

Z

i

f(x; ~✓)dx

f(~n;~⌫) =
n

tot

!
n1!...nN

!
(

⌫1

n
tot

)n1 ...(
⌫

N

n
tot

)nN

lnL(~✓) =
NX

i=1

ni ln ⌫i(~✓) + C

Maximum Likelihood with Binned 
(Classified) Data



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Take our historical example using the 
exponential, placing that data into a 
histogram. 

• In the limit of zero bin width then one 
achieves the usual unbinned maximum 
likelihood.   

• If each n is treated as a Poisson random 
variable, then we obtain the extended 
log-likelihood:
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• In the above problem it is equivalent to treat the number of events in each bin as 
an independent Poisson random variable, ni, with mean value νi . 

• The relationship that considers the dependence between this νtot  and the other 
parameters, θ, is such that if there is no functional relation between  νtot  and the θ 
then one obtains                  and  the estimate for the parameters,    , are the same 
as when the Poisson term is not included.   

• If  νtot is given as a function of θ, then the variance of the estimated parameters 
are in general reduced by including the Poisson term information. 

• NOTE:  the determination of parameters from histograms by quadratic sum 
minimization (chi-square) gives less precise results than those obtained by 
likelihood maximization.  This is due to the assumption of the normal distribution 
for the values  ni requires large bin widths and therefore loss of information.
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Maximum Likelihood with Binned 
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Additional Material 
(will not be covered in lecture)

34
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• Linear Test Statistic 

• Try:   

• We choose the parameters, a, 
such that the PDFs will have 
maximum separation.   

• Construct the Fisher variable, 
which we maximize:

Multivariate methods for test statistics
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• Coefficients of maximum separation 

• We have 

• In terms of mean and variance for the test statistic, t, then:

Multivariate methods for test statistics
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• Coefficients of maximum separation 

• The numerator of J(a) is: 

• the denominator is: 

• Therefore we maximize:

Multivariate methods for test statistics
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• Fisher discriminant 

• Setting the first derivative 
of J equal to zero: 

• gives us Fisher’s linear 
discriminant function:

Multivariate methods for test statistics
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• Fisher discriminant with Gaussian data 

• What if your PDF is a multivariate Gaussian with mean values given by: 

• In this case the covariance matrices are V0=V1=V for both.  The Fisher 
discriminant, with an offset, can be written as: 

• The likelihood ratio then becomes:

Multivariate methods for test statistics

39

E0[~x] = ~µ0 for H0 E1[~x] = ~µ1 for H1

t(~x) = a0 + (~µ0 � ~µ1)T
V

�1
~x

r =
f(~x|H0)
f(~x|H1)

= exp[�1

2

(~x� ~µ)

T
0 V

�1
(~x� ~µ0) +

1

2

(~x� ~µ)

T
1 V

�1
(~x� ~µ1)]

/ et



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Fisher discriminant with Gaussian data 

• Therefore, for this case 

• The Fisher discriminant is equivalent to the likelihood ratio and therefore 
gives maximum purity for a given efficiency. 

• When data is non-Gaussian this no longer holds, but the linear discriminant 
function may still be the simplest practical solution. 

• One often tries to transform data so that it better approximates a Gaussian 
before constructing the Fisher discriminant.  

Multivariate methods for test statistics
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t / ln r + C
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• Fisher discriminant with Gaussian 
data 

• eg. non-linear transformation of 
inputs 

• We have transformed the 
“feature space” variables so 
they can be better separated by 
a linear boundary.

Multivariate methods for test statistics

41

x1, ..., xn ! �1(~x), ...,�m(~x)

�1 = tan�1(x2/x1)

�2 =
q

x

2
1 + x

2
2


