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• Inherently, data and Monte Carlo simulation provide 
discrete units of information. Often what analyzers want is 
a continuous description which can be achieved using 
interpolation and extrapolation techniques 
• Interpolation - Describing data in-between known data points, where 

‘known data’ also includes finite Monte Carlo. Can smooth out 
artifacts of the simulation process or discrete data taking  

• Extrapolation - Estimating beyond the range of known data. A 
dodgy practice when the behavior beyond the data range is 
relatively unknown. Without a specific physics scenario there is no 
great method for extrapolation

Continuous Data/Description
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• Numerically/Mathematically provide information about the 
data between known points 

• Has numerous advantages when you have data that is 
unlikely to, or just cannot, be reasonably modeled or fit 
with any combination of analytic functions 

• A simple interpolator is a line (linear) between each data 
point

Interpolation
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• A simple interpolator is a line (linear) between each data 
point 

• Dust logger data taken from sample in Antarctica. Glacial 
dust across millennia has an incredible array of features

Interpolation
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*http://dx.doi.org/10.3189/2013JoG13J068

**Full disclosure, I do not fully know what 
the “Dust Logger Values” are, besides 

‘optical intensity’

http://dx.doi.org/10.3189/2013JoG13J068
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• Each data point included in the spline creation is known as 
a ‘knot’ 

Interpolation
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*http://dx.doi.org/10.3189/2013JoG13J068

knots

http://dx.doi.org/10.3189/2013JoG13J068
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• The actual data has ~1.28M entries (left plot), while the 
linear spline only uses every 10,000th entry, i.e. 128 knots

Interpolation
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Image is ‘grainy’ because PDF images 

don’t like being 1+ million points without


crashing viewers
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• Zoomed in we see that the 128-knot spline gets most of the features right, 
but since it’s not created using all of data there are some missing features. 

• Depending on the knot sample method, the spline results can change. 
Normally not an issue because every data point is included as a knot.

Close Look
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• There exist very real features at the centimeter scale in 
depth for over 2 km of measurements

Really Close Look
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• Where do we want to use splines? 

• Computer aided drawing and 
graphics 

• Creating continuous functions 
from discrete data 

• Creating smooth functions from 
jagged or irregular data

Spline/Interpolation Use
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• Now let’s imagine that the optical instrument is only sensitive to values 
of O(10) meters, e.g. 220, 230, and 240 meters instead of 220.213, 
232.66, and 244.391 meters. But, we know that there are features.

Modified Scenario
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• Or even worse, being sensitive at O(100) instead of O(10) 

• Now we have a lot of duplicates, and effectively discrete jumps in Dust 
Logger Values over very, very, short changes in depth

Modified Scenario
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Actual Data
Linear Spline & Knots  
for O(100) sensitivity

Separated by mm in depth, yet 
logger would produce drastically 
different values. If we ‘know’ that 

there are smoothly varying features 
we can proceed to smooth the data
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• If we know that the data smoothly changes, it is a 
possibility to use a cubic spline which ‘smoothes’ the 
interpolation

Cubic Splines
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*Scipy interpolate
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• Linear splines are continuous across the data points, but 
do not match the 1st or 2nd derivative at the knots 

• Quadratic splines (not shown) match the 1st derivative but 
not necessarily the 2nd 

• Cubic splines are continuous and match the 1st and 2nd 
derivative at the knots

Common Spline Types
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*Scipy interpolate
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• For n data points, an approx. n-order polynomial will go 
through all the data points smoothly 

• Often though, the interpolation behavior near the edges is 
problematic 
• Imagine fitting a 1.28M order polynomial

Polynomial Interpolation
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• A problem referred to as ‘ringing’ is also pronounced in 
polynomial interpolations. In transitions to flat data, the 
polynomial will carry some influence from the 1st and/or 2nd 
derivative from the previous knot to the next knot, where 
both should be zero

Polynomial Interpolation
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• While it is nice to have smooth interpolations, cubic splines have some drawbacks, 
especially in ranges where the knots go from increasing in value to decreasing, and 
vice versa. The more substantial the change, i.e. magnitude of the 2nd derivative, 
the more likely the cubic spline will be problematic and over/under shoot.

Cubic Spline Comments
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• The following linear and cubic splines can not 
match the data of the underlying histogram, i.e. 
the summation/integral over the same depth 
produces different values 

• At the right there are three regions (A, B, C) each 
representing a certain region in depth. Compared 
to the data (black histogram): 

• In region A, the linear spline integral ‘over 
predicts’ the data, whereas the cubic spline 
integral mostly matches the value from data 
(~146) 

• In region B, both the linear and cubic ‘under 
predict’ the data (~159) 

• In region C, both the linear and cubic spline 
look to match the value from data (~140)

Spline Under/Over Shoot
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• There are some nice tools for doing 2D interpolation and 
spline fits (scipy.interpolate.interp2d, 
scipy.interpolate.griddata) 
• In a pinch, you can create many 1D splines to map out the multi-

dimensional space 

• We will be sticking with 1D splines and interpolation

1D versus Multi-Dimensional
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• There is a optical/dust logger file 
• http://www.nbi.dk/~koskinen/Teaching/

AdvancedMethodsInAppliedStatistics2016/data/
DustLog_forClass.dat 

• Construct a 1D interpolation for the data: 
• Linear spline 

• Cubic spline 
• Use default options if possible. Don’t worry about other options, namely 

‘smoothness’ or ‘weights’ 

• Plot the splines and the data on the same graph

Spline Exercise #1
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http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/DustLog_forClass.dat
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• Basis splines (b-splines) are probably what you used to 
create the cubic splines. They are piecewise polynomials of 
order k (k=3 for cubic), where the interpolated value and 
most often the derivative and 2nd derivative match the 
adjacent piece-wise polynomials at the knots. 

• There is a parameter ‘smoothness’ which can regulate the 
behavior of the spline 
• Large smoothness means a cubic spline is more smooth (less bumpy) 

, but also not constrained to go through the knots 

• Small smoothness means the splines are constrained to be close to 
the knots.

b-splines and Smoothing
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• General metric is that if you want to smooth an odd-order 
spline with n data points use

b-splines and Smoothing
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p
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• I have sampled from an ‘uknown’ function in one-
dimension at regular intervals from 1x10-5 to 1 which is 
going to be used as a PDF over the same range 
• The x and y values are on the class webpage at SplineCubic.txt 

• There is some small ‘noise’ contamination introduced too 

• For a linear, quadratic, and cubic spline to the same data, 
make a comparison between the integral from 1x10-5 to 
0.01 between the three splines 
• Is there any reason to use a ‘smoothed’ spline? 

• Do the same comparison between 0.03 and 0.1

Exercise #2
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• Neutrino oscillation is a physical phenomena whereby a 
neutrino changes flavor during it’s travel. A simplified 
expression for the probability of oscillation, i.e. flavor 
change, 

• On the class webpage there is a file SplineOsc1.txt, which 
has nominal values of the oscillation probability 
• The parameters θ23 and Δm2

32 are set by global experiments and 
here L is a neutrino travel distance of 13000 km 

• Column 1 is the energy (E) and 2 is the oscillation probability (P)

Exercise #3
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P (⌫µ ! ⌫⌧ ) / sin2(2✓23) sin
2
⇣1.27�m2

32

4E

⌘
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• At very small values of energy, the oscillation goes into 
‘rapid oscillation’, where experimentally the probability is 
best approximated by 0.5 
• If you spline the data in the file, at what energy is the sampling rate of the 

data too sparse to accurately reflect the true oscillation probability?

Exercise #3
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• Can you use the 

‘smoothness’ spline feature 
to produce a spline function 
which matches the osc. 
prob. where the sampling is 
okay, and then averages to 
0.5 when the sampling rate 
stops being sinusoidal at 
lower energy?
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• For the very brave, there is a file uploaded to http://
www.nbi.dk/~koskinen/Teaching/
AdvancedMethodsInAppliedStatistics2016/data/
honda2012_spl_solmin.d, which is the atmospheric 
neutrino flux in binned groupings of energy, zenith angle, 
azimuth angle, and neutrino flavor type 
• See if you can parse the data to make a 1D spline in energy of the 

flux value for a single azimuth bin, a single zenith angle bin, and a 
single neutrino flavor 

• Can you do the spline in 2D now, including the zenith angle? 

• The energy bins have integrals which are important to be preserved 
even after the spline creation. How different is the integral of the 2D 
spline function compared to the binned integral over the same 
range(s)?

Exercise Extra
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http://www.nbi.dk/~koskinen/Teaching/AdvancedMethodsInAppliedStatistics2016/data/honda2012_spl_solmin.d

