DNP 2014

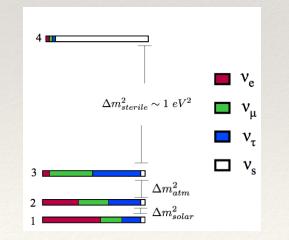
Status update on 3+n sterile neutrino fits.

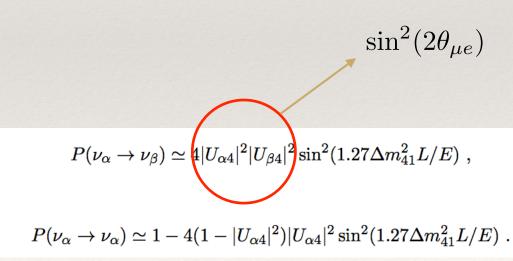
Gabriel Collin (MIT) Janet Conrad (MIT) Mike Shaevitz (Columbia)

Outline

Introduction to sterile neutrino fits

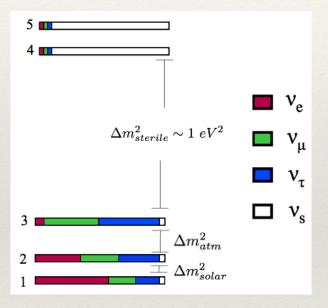
* Recent issues related to reactor flux


* How reliable is the PG test?

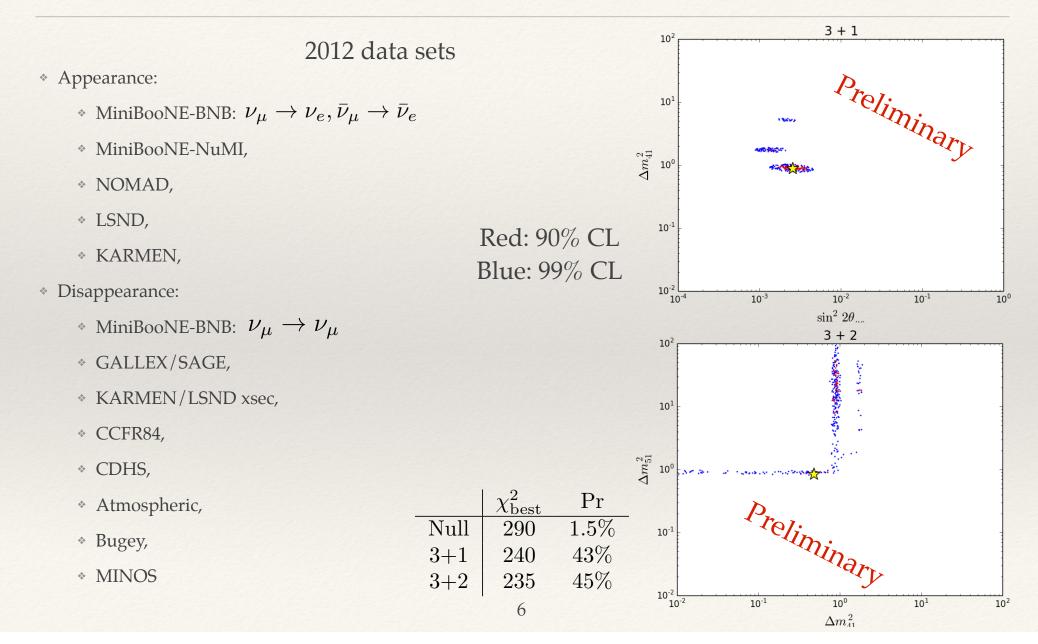

Motivation

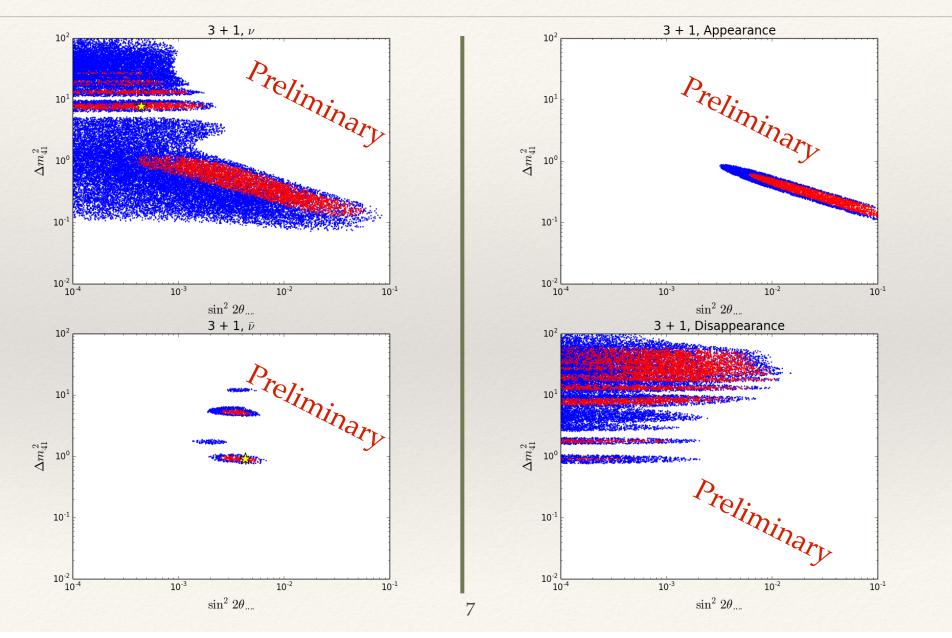
- Neutrino detectors have to be designed for a limited range of L/E.
- * How do we decide how to design the next generation of neutrino experiments?
- * Phenomenology provides a guide.

Sterile neutrino models


- * We can test many different models.
 - 3 + n: 3 degenerate active neutrinos + n heavier sterile neutrinos.
- * 3+1: Has parameters $\Delta m_{41}^2, |U_{e4}|, |U_{\mu4}|$

Sterile neutrino models

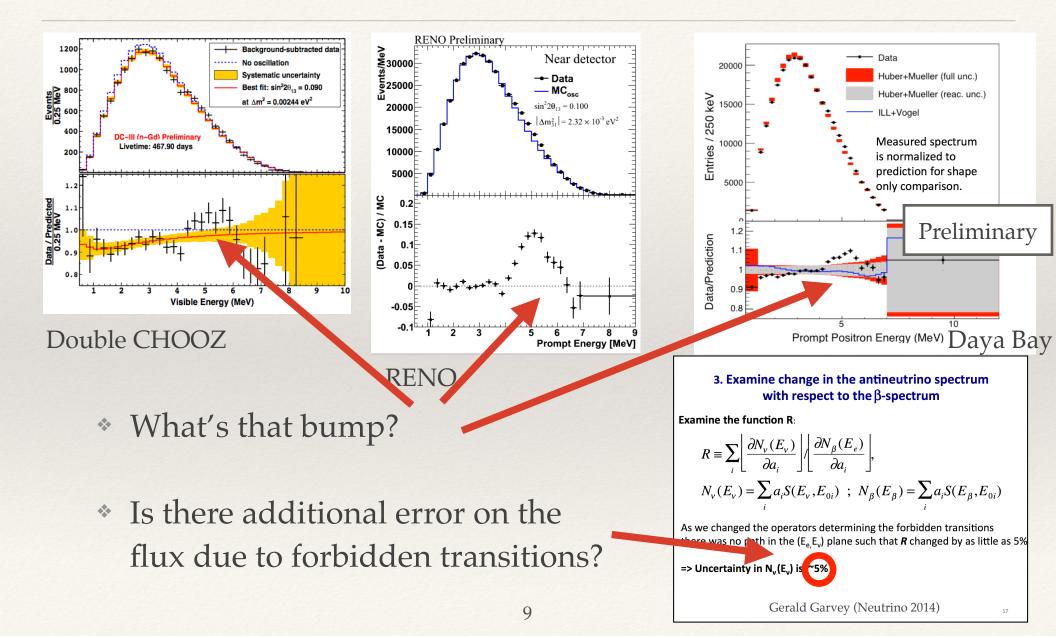

* 3+2: Has parameters $\Delta m_{41}^2, \Delta m_{51}^2, |U_{e4}|, |U_{\mu4}|, |U_{e5}|, |U_{\mu5}|, \Phi_{45}$


CP violation: $\nu \neq \bar{\nu}$

* 3+3: 12 parameters, even more complex.

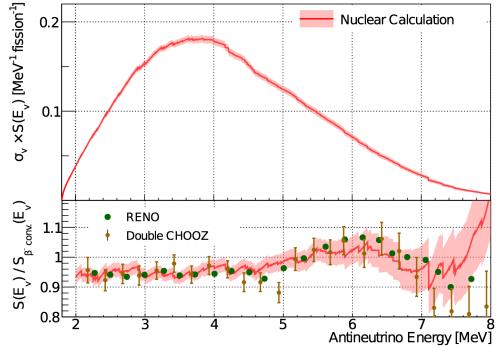
Testing these models

Compare Allowed Regions for Nu/Nubar and Appearance/Disappearance

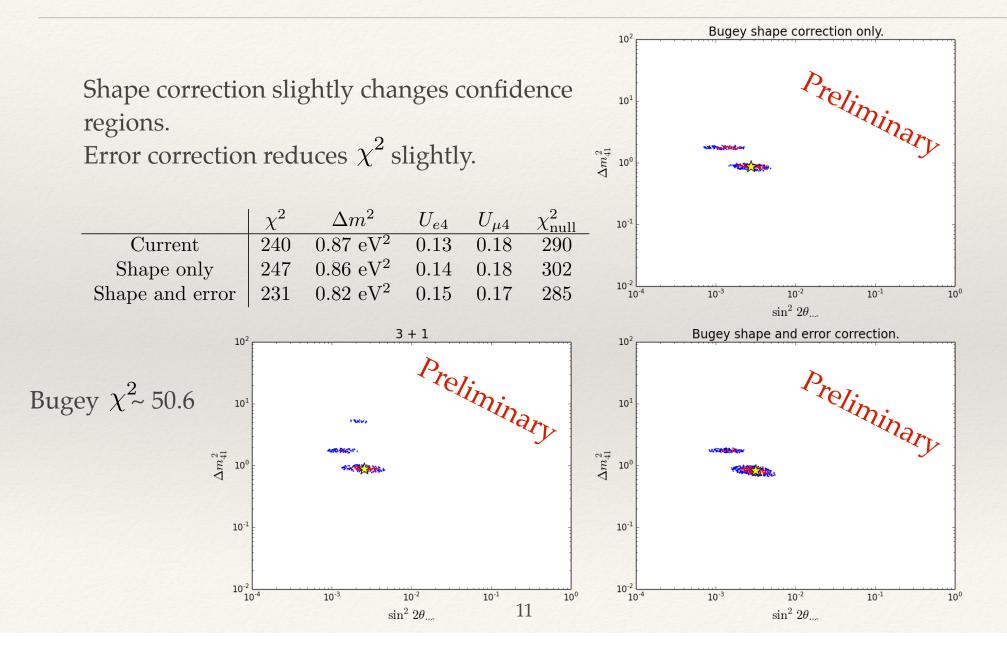

Outline

Introduction to sterile neutrino fits

Recent issues related to reactor flux


* How reliable is the PG test?

Reactor results from summer conferences


Try some corrections

 Dwyer and Langford (arXiv:1407.1281) suggest a correction to the predicted flux for reactor experiments.

 Gerald Garvey (Neutrino 2014) suggests an addition of 5% to the normalization error.

Reactor spectrum correction

Take-away on reactors

 The Dwyer/Langford changes to the flux shape and the Garvey change to normalization error do not seem to have a large effect on our global fits.

Outline

Introduction to sterile neutrino fits

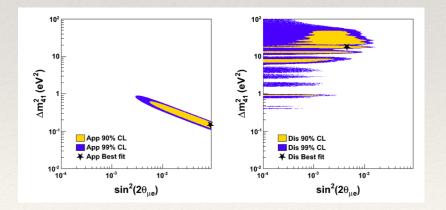
Recent issues related to reactor flux

* How reliable is the PG test?

Motivation for the parameter goodness-of-fit test

arXiv.org > hep-ph > arXiv:hep-ph/0304176

High Energy Physics – Phenomenology


Testing the statistical compatibility of independent data sets M. Maltoni, T. Schwetz

- Created to address the insensitive bins issue.
- Is interpreted as a test of the compatibility of two data-sets tot he predictions of a neutrino oscillation model.

Based on PG, tensions have been observed.

		χ^2_{PG} (dof)	PG(%)
3+1	ν vs. $\overline{\nu}$	15.6 (3)	0.14%
	App vs. Dis	17.8 (2)	0.013%
3+2	ν vs. $\overline{\nu}$	13.9 (7)	5.3%
	App vs. Dis	23.9 (4)	0.0082%
3+3	ν vs. $\overline{\nu}$	10.9 (12)	53%
	App vs. Dis	27.1 (6)	0.014%

arXiv:1207.4765

Parameter goodness-of-fit (PG)

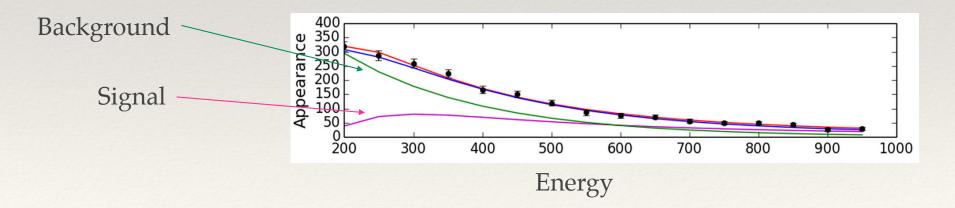
$$\chi_{PG}^2 = \chi_{glob}^2 - (\chi_{app}^2 + \chi_{dis}^2)$$
$$N_{PG} = (N_{app} + N_{dis}) - N_{glob}$$
$$= 2 \qquad (\text{for } 3+1)$$

- No. of degrees of freedom is set by the model being tested.
- * What is the effect of nuisance parameters on the PG test?

Parameters:

$$P(\nu_{\mu} \to \nu_{e}) \simeq 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

$$P(\nu_{e} \to \nu_{e}) \simeq 1 - 4(1 - |U_{e4}|^{2})|U_{e4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$


$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4(1 - |U_{\mu4}|^{2})|U_{\mu4}|^{2} \sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

$$3$$

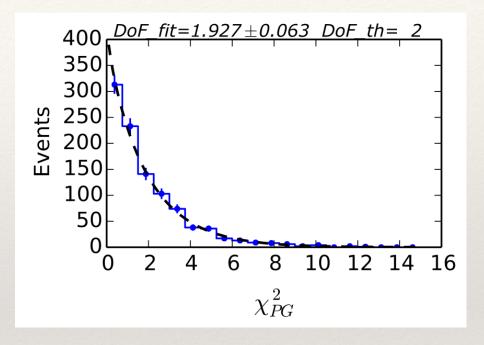
2

Study nuisance parameter in a toy model

- * 3+1 toy model is composed of:
 - * Disappearance,
 - * Appearance
 - * With and without an unexpected background.

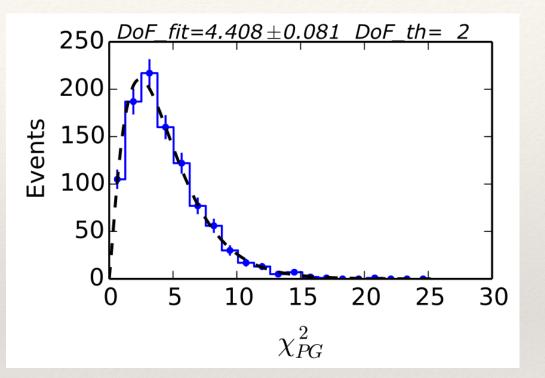
Toy model

- * Throw many experiments
 - * Data points are selected based on random distributions
 - * Background is added to data points.
 - * Chi^2 fit is performed for Appearance, Disappearance, and Global, with pull parameter (A) for background normalization.
 - * For the case of background, $A_{\text{true}} = 0.4$, $A_{\text{expected}} = 0.0 \pm 0.15 \rightarrow \text{find } A_{\text{fit}}$
- Calculate the PG
 \$\chi_2^2 PG\$ for many throws is histogrammed


$$\begin{split} \chi^{2}_{\nu_{e}app} &= \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}app} - \left(osc_{i}^{\nu_{e}app} + b_{i}^{\nu_{e}app}\left(A_{fit}\right)\right)\right)^{2}}{\left(\sigma_{i}^{\nu_{e}app}\right)^{2}} + \frac{\left(A_{fit} - A_{exp}\right)^{2}}{\sigma_{A_{exp}}^{2}} \\ \chi^{2}_{disapp} &= \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ \chi^{2}_{global} &= \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}app} - \left(osc_{i}^{\nu_{e}app} + b_{i}^{\nu_{e}app}\left(A_{fit}\right)\right)\right)^{2}}{\left(\sigma_{i}^{\nu_{e}app}\right)^{2}} + \frac{\left(A_{fit} - A_{exp}\right)^{2}}{\sigma_{A_{exp}}^{2}} \\ &+ \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \sum_{i=1}^{16} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \frac{16}{18} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \frac{16}{18} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{\mu}disapp}\right)^{2}} + \frac{16}{18} \frac{\left(d_{i}^{\nu_{e}disapp} - osc_{i}^{\nu_{e}disapp}\right)^{2}}{\left(\sigma_{i}^{\nu_{e}disapp}\right)^{2}} \\ &+ \frac{16}{18} \frac{\left(d_{i}^{\nu_{\mu}disapp} - osc_{i}^{\nu_{\mu}disapp}\right$$

Toy model, no background

* Background normalization (A_{true}) is set to zero.


- * χ^2 PG distribution comes out with expected No. of degrees of freedom.
 - * For 3+1, we expected 2.

PG test works in this case

Toy model, with background

- * Now,
 - * $A_{\rm true} = 0.4$
 - $A_{\text{expected}} = 0.0 \pm 0.15$
- * χ^2 PG distribution now has an incorrect No. of degrees of freedom.

PG test fails in this case

Summary of PG test

* Changing the scaling of the background model changes the d.o.f of the underlying χ^2_{PG} distribution.

 Some experiments (eg: MiniBooNE) have backgrounds that can look like a signal.

Conclusion

- Introduction to sterile neutrino fits
 - * We are in the process of updating our 3+n fits.
- Recent issues related to reactor flux
 - * Seem to make little difference to global fits.
- * How reliable is the PG test?
 - * Under certain circumstance there is a problem.
 - * We welcome ideas on how to solve this.