Rasmus Skytte Eriksen Rikke Dag Randløv

Likelihood free methods.

Likelihood free methods.

Can be used when the likelihood function is

- not on closed form (= intractable)
- too computationally expensive to calculate

Likelihood free methods.

Can be used when the likelihood function is

- not on closed form (= intractable)
- too computationally expensive to calculate

MUST be able to simulate from likelihood function. Also requires a known prior.

Algorithm 1

Algorithm 1 Likelihood-free rejection sampler 1

for i = 1 to N do

repeat

Generate θ' from the prior distribution $\pi(\cdot)$ Generate \mathbf{z} from the likelihood $f(\cdot|\theta')$ **until** $\mathbf{z} = \mathbf{y}$ set $\theta_i = \theta'$, end for

Algorithm 1

Algorithm 1 Likelihood-free rejection sampler 1

for i = 1 to N do

repeat

Generate θ' from the prior distribution $\pi(\cdot)$ Generate \mathbf{z} from the likelihood $f(\cdot|\theta')$ **until** $\mathbf{z} = \mathbf{y}$ set $\theta_i = \theta'$,

end for

This NEVER happens!

Algorithm 2

Algorithm 2 Likelihood-free rejection sampler 2

for i = 1 to N do

repeat

Generate θ' from the prior distribution $\pi(\cdot)$ Generate **z** from the likelihood $f(\cdot|\theta')$ **until** $\rho\{\eta(\mathbf{z}), \eta(\mathbf{y})\} \le \varepsilon$ set $\theta_i = \theta'$, end for

Moving average model (order q):

$$y_k = u_k + \sum_{i=1}^q \theta_i u_{k-1} \tag{1}$$

With

$$u_k \sim \mathcal{N}(0, 1)$$

For q = 2, prior is uniform in the triangle:

$$-2<\theta_1<2,\quad \theta_1+\theta_2>-1,\quad \theta_1-\theta_2<1$$

- Prior
- True values (0.6, 0.2)
- Contour of true distr.
- Sampled points

Different metrics and tolerances - 1

Different metrics and tolerances - 2

• $\varepsilon = 1\%$

•
$$arepsilon=0.1\%$$

•
$$arepsilon=0.01\%$$

- Contour of true distr.

Algorithm 3 MCMC-ABC

Algorithm 3 Likelihood-free MCMC sampler

Use Algorithm 2 to get a realisation $(\theta^{(0)}, \mathbf{z}^{(0)})$ from the ABC target distribution $\pi_{\varepsilon}(\boldsymbol{\theta}, \mathbf{z}|\mathbf{y})$ for t = 1 to N do Generate θ' from the Markov kernel $q(\cdot|\theta^{(t-1)})$. Generate \mathbf{z}' from the likelihood $f(\cdot|\boldsymbol{\theta}')$, Generate *u* from $\mathcal{U}_{[0,1]}$, if $u \leq \frac{\pi(\theta')q(\theta^{(t-1)}|\theta')}{\pi(\theta^{(t-1)})\sigma(\theta'|\theta^{(t-1)})}$ and $\rho\{\eta(\mathbf{z}'), \eta(\mathbf{y})\} \leq \varepsilon$ then set $(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}) = (\boldsymbol{\theta}', \mathbf{z}')$ else $(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}) = (\boldsymbol{\theta}^{(t-1)}, \mathbf{z}^{(t-1)}),$ end if end for

