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Background subtraction and sPlots
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“Statistics is merely a quantisation of common sense”



Background subtraction

In many fields, data contains noise /background that one would like to get rid of.
Instruments are build to do this, but in the quest for ever more sensitivity, we
must deal with this problem. Typically, it is specific to each field of science, but in
the end the requirement is the same... what does “X” look like in pure signal?
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Stating the challenge

Given some variables that only partially distinguishes signal from background,
how do you estimate the distribution of other uncorrelated variables?
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Stating the challenge

Given some variables that only partially distinguishes signal from background,

how do you estimate the distribution of other uncorrelated variables?
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Can you from the above
figure out what signal looks
like in this variable?
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Stating the challenge

Given some variables that only partially distinguishes signal from background,

how do you estimate the distribution of other uncorrelated variables?
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We may try two things:
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e Define a signal and a background region, plot the variable of interest for each

of these, and subtract as much background as you estimate there is.

e Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each

event by this weight.
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G| It requires that you can find a region of pure
hd background, and neither all signal nor all background

Stating the challenge

_ : _ S ) variables?
is used in the estimate, hence it is suboptimal.

It is also technically challenging, especially in higher

] from background,

dimensions and with more backgrounds (species).
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We may try two things:
¢ Define a signal and a background region, plot the variable of interest for each

of these, and subtract as much background as you estimate there is.

e Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each

event by this weight.




Frequency

400

(o)
(4]
o

300

250

200

150

100

50

We may try two things:

Stating the challenge

It requires that you can find a region of pure
G 9 you ¢ . 5 P 1] from background,
background, and neither all signal nor all background : 5
hq ° : . o . variables?
is used in the estimate, hence it is suboptimal.
It is also technically challenging, especially in higher
dimensions and with more backgrounds (species). Entries 100
1195/95 | B %OF : 7124194
0.04514 - 0.9614
4963 = 135.3 300— 4143 + 466.3
0.8015 = 0.0048 - 0.04202 = 0.02399
0.196 = 0.005 250 — 0.3794 = 0.0156
1.002e+04 + 1.603e+02 = 1.086e+04 = 4.746e+02
1.993 + 0.032 200 -0.9402 + 0.0339
E 0.6267 = 0.0158
150 —
1005—
505—
2.2 0.4 0.6 0.8I 1 1.2 1.4 1.6 1.8 2 O—; 2
Mass Shape

This yields a biased estimate (no entries below zero!),

. . for which the uncertainty on each bin can not be
* Define a signal-and a ba

of these;"and subtract ad - ]
e“Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each
event by this weight.

determined. But the idea is on to something...




The “solution”

The answer is of course “yes”, there is a good “solution”, which is called sPlots.

sPlot

a statistical tool to unfold data distributions
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Defining the case
The log-Likelihood is expressed as:

L:;In{gNifi(ye)}—gNi, (1)

where
e NV is the total number of events in the data sample,
e N, is the number of species of events populating the data sample,
e NN; is the number of events expected on the average for the i*" species,
e y is the set of discriminating variables,

e f; is the Probability Density Function (PDF) of the discriminating variables for the
it species,

o f;(y.) denotes the value taken by the PDFs f; for event e, the later being associated
with a set of values y, for the set of discriminating variables,

e r is the set of control variables which, by definition, do not appear in the above
expression of L.



How to calculate an sWeight?

Given an event, the sWeight of it is calculated as follows:

NV,
sPu(ye) = it (ve)

Ekzl Ni 1k (Ye)




How to calculate an sWeight?

Given an event, the sWeight of it is calculated as follows:

o Zeril anfj(ye)
SPn(ye) S Nifi(ve)

It may look complicated, but in fact it is not that far from the simple proposal:
24 p ple prop

. NyiyPDFy;,
"~ NyyPDFy;y + Ny PDFyp,

We simply decided to put the covariance matrix in, which turns out to be the
right choice.

w
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How to calculate an sWeight?
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How to calculate an sWeight?

Given an event, the sWeight of it is calculated as follows:

(n) of a single event “e”,
which has discriminating

observables ye.

N Eq. 14
7) (y ) o Z]:El Vn]fj(ye)
s/ n\dJe) — Ng
21l Nitr(ye)
This is the sWeight for signal Value of PDF for

each species at the

event in question.

Covariance matrix between the signal and

background (species) normalisations.

Number of events

for each species.

Q: How do one get the covariance matrix V?
A: Either from fit or calculated as follows: V! =

Eq. 10

0°(—L) Y fa(ye)f;(ve)
ON,.ON;, 2

(T2 Nifi(we))?



The sPlot recipe

This Section is meant to show that using ,Plot is indeed easy. The different steps to
implement the technique are the following:

1. One is dealing with a data sample in which several species of events are present.

2. A maximum Likelihood fit is performed to obtain the yields /V; of the various species.
The fit relies on a discriminating variable y uncorrelated with a control variable z:
the later is therefore totally absent from the fit.

3. The sWeights ;P are calculated using Eq. (14) where the covariance matrix is ob-
tained by inverting the matrix given by Eq. (10).

4. Histograms of z are filled by weighting the events with the sWeights ;2. The sum
of the entries are equal to the yields /V; provided by the fit.

5. Error bars per bin are given by Eq. (22). The sum of the error bars squared are
equal to the uncertainties squared V;; provided by the fit.

6. The ,Plots reproduce the true distributions of the species in the control variable z,
within the above defined statistical uncertainties.

The sPlot method has been implemented in the ROOT framework under the class TSPlot [2].

[ will in the following go through each of these steps, and so will the following
exercise.
14



The sPlot recipe

This Section is meant to show that using ,Plot is indeed easy. The different steps to
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The sPlot recipe

This Section is meant to show that using ,Plot is indeed easy. The different steps to
implement the technique are the following:

1.
2.

The sPlot method has been implemented in the ROOT framework under the class TSPlot [2].

One is dealing with a data sample in which several species of events are present. J

A maximum Likelihood fit is performed to obtain the yields NN; of the various species.
The fit relies on a discriminating variable y uncorrelated with a control variable xJ
the later is therefore totally absent from the fit.

The sWeights ;P are calculated using Eq. (14) where the covariance matrix is ob-
tained by inverting the matrix given by Eq. (10).

Histograms of x are filled by weighting the events with the sWeights ;2. The sum
of the entries are equal to the yields /V; provided by the fit.

Error bars per bin are given by Eq. (22). The sum of the error bars squared are
equal to the uncertainties squared V;; provided by the fit.

. The ;Plots reproduce the true distributions of the species in the control variable x,

within the above defined statistical uncertainties.

[ will in the following go through each of these steps, and so will the following

exercise.
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What do the sWeights look like?

The signal sWeights distribute themselves in a range beyond [0,1]
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What do the sWeights look like?

The background sWeights distribute themselves in a range beyond [0,1]
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The sPlot recipe

This Section is meant to show that using ,Plot is indeed easy. The different steps to
implement the technique are the following:

1.
2.

The sPlot method has been implemented in the ROOT framework under the class TSPlot [2].

One is dealing with a data sample in which several species of events are present. J

A maximum Likelihood fit is performed to obtain the yields NN; of the various species.
The fit relies on a discriminating variable y uncorrelated with a control variable xJ
the later is therefore totally absent from the fit.

The sWeights ;P are calculated using Eq. (14) where the covariance matrix is otv
tained by inverting the matrix given by Eq. (10).

Histograms of x are filled by weighting the events with the sWeights ;2. The sum
of the entries are equal to the yields /V; provided by the fit.

Error bars per bin are given by Eq. (22). The sum of the error bars squared are
equal to the uncertainties squared V;; provided by the fit.

. The ;Plots reproduce the true distributions of the species in the control variable x,

within the above defined statistical uncertainties.

[ will in the following go through each of these steps, and so will the following

exercise.
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Using the sWeights for an sPlot
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reconstructed distribution matches
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Note that the errors bars are both
realistic and minimal. This is the
optimal background subtraction.
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The sPlot recipe

This Section is meant to show that using ,Plot is indeed easy. The different steps to
implement the technique are the following:

1.
2.

One is dealing with a data sample in which several species of events are present. J

A maximum Likelihood fit is performed to obtain the yields NN; of the various species.
The fit relies on a discriminating variable y uncorrelated with a control variable xJ
the later is therefore totally absent from the fit.

The sWeights ;P are calculated using Eq. (14) where the covariance matrix is olv
tained by inverting the matrix given by Eq. (10).

Histograms of x are filled by weighting the events with the sWeights ;2. The sum
of the entries are equal to the yields /V; provided by the fit. J

Error bars per bin are given by Eq. (22). The sum of the error bars squared are
equal to the uncertainties squared V;; provided by the fit. J

. The sPlots reproduce the true distributions of the species in the control variable .CUJ

within the above defined statistical uncertainties.

The sPlot method has been implemented in the ROOT framework under the class TSPlot [2].

[ will in the following go through each of these steps, and so will the following

exercise.
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Examples of use...
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Examples of use...
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Especially when the distribution in
question is complex (e.g. 2D as here)
the sPlot technique is very useful.
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Comments & Conclusions

The sWeights and sPlots are suitable for problems in several dimensions with
significant backgrounds yet signal that can be fitted.

Each event contributes exactly with unity weight, i.e. the sum of the sWeights for
all contributions (signal(s)+background(s)) is one:

ak Ne e Vit (ve) >y Niti(ye)
sPi(ye) = — : =1
2P = LS N T o N

Note that the variables of interest, x, must not be correlated with the
discriminating variables, y.

The method has become widely used (in particle physics), which is evident from
the number of citations the paper has (506 in total).
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