
Applied Statistics 
Background subtraction and sPlots

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Background subtraction
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In many fields, data contains noise/background that one would like to get rid of.
Instruments are build to do this, but in the quest for ever more sensitivity, we 
must deal with this problem. Typically, it is specific to each field of science, but in 
the end the requirement is the same… what does “X” look like in pure signal?



Stating the challenge
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Given some variables that only partially distinguishes signal from background, 
how do you estimate the distribution of other uncorrelated variables?
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Can you from the above 
figure out what signal looks 
like in this variable?
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We may try two things:
• Define a signal and a background region, plot the variable of interest for each 

of these, and subtract as much background as you estimate there is.
• Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each 

event by this weight.
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We may try two things:
• Define a signal and a background region, plot the variable of interest for each 

of these, and subtract as much background as you estimate there is.
• Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each 

event by this weight.

It requires that you can find a region of pure 
background, and neither all signal nor all background 
is used in the estimate, hence it is suboptimal.
It is also technically challenging, especially in higher 
dimensions and with more backgrounds (species).
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7

Given some variables that only partially distinguishes signal from background, 
how do you estimate the distribution of other uncorrelated variables?
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We may try two things:
• Define a signal and a background region, plot the variable of interest for each 

of these, and subtract as much background as you estimate there is.
• Calculate a signal weight = PDFsig / (PDFsig + PDFbkg) and weigh each 

event by this weight.

It requires that you can find a region of pure 
background, and neither all signal nor all background 
is used in the estimate, hence it is suboptimal.
It is also technically challenging, especially in higher 
dimensions and with more backgrounds (species).

This yields a biased estimate (no entries below zero!), 
for which the uncertainty on each bin can not be 
determined. But the idea is on to something…



The “solution”
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The answer is of course “yes”, there is a good “solution”, which is called sPlots. 



Defining the case
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For 



How to calculate an sWeight?

10

Given an event, the sWeight of it is calculated as follows:



How to calculate an sWeight?
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Given an event, the sWeight of it is calculated as follows:

w =
NsigPDFsig

NsigPDFsig +NbkgPDFbkg

It may look complicated, but in fact it is not that far from the simple proposal:

We simply decided to put the covariance matrix in, which turns out to be the 
right choice.



How to calculate an sWeight?
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Given an event, the sWeight of it is calculated as follows:

It may look complicated, but in fact it is not that far from the simple proposal:

We simply decided to put the covariance matrix in, which turns out to be the 
right choice.

w =
Vsig,sigNsigPDFsig + Vsig,bkgNbkgPDFbkg

NsigPDFsig +NbkgPDFbkg



How to calculate an sWeight?
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Given an event, the sWeight of it is calculated as follows:

This is the sWeight for signal 
(n) of a single event “e”, 
which has discriminating 
observables ye.

Q: How do one get the covariance matrix V?
A: Either from fit or calculated as follows:

Covariance matrix between the signal and 
background (species) normalisations.

Number of events 
for each species.

Value of PDF for 
each species at the 
event in question.

Eq. 14

Eq. 10



The sPlot recipe
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I will in the following go through each of these steps, and so will the following
exercise.



The sPlot recipe
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I will in the following go through each of these steps, and so will the following
exercise.

✓



OK - we get the fit going…
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The sPlot recipe
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I will in the following go through each of these steps, and so will the following
exercise.

✓
✓



What do the sWeights look like?
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The signal sWeights distribute themselves in a range beyond [0,1]
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The background sWeights distribute themselves in a range beyond [0,1]



The sPlot recipe
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I will in the following go through each of these steps, and so will the following
exercise.

✓
✓
✓



Using the sWeights for an sPlot
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As can be seen from the plot, the 
reconstructed distribution matches 
the original (truth) one well.
Note that the errors bars are both 
realistic and minimal. This is the 
optimal background subtraction.



The sPlot recipe
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I will in the following go through each of these steps, and so will the following
exercise.

✓
✓
✓
✓
✓
✓



Examples of use…
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Situations with 
more than one 
type of signal 
are well fitted 
for sWeights.



Examples of use…
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For 
Especially when the distribution in 
question is complex (e.g. 2D as here)
the sPlot technique is very useful.



Comments & Conclusions
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The sWeights and sPlots are suitable for problems in several dimensions with 
significant backgrounds yet signal that can be fitted.

Each event contributes exactly with unity weight, i.e. the sum of the sWeights for 
all contributions (signal(s)+background(s)) is one:

Note that the variables of interest, x, must not be correlated with the 
discriminating variables, y.

The method has become widely used (in particle physics), which is evident from 
the number of citations the paper has (506 in total).


