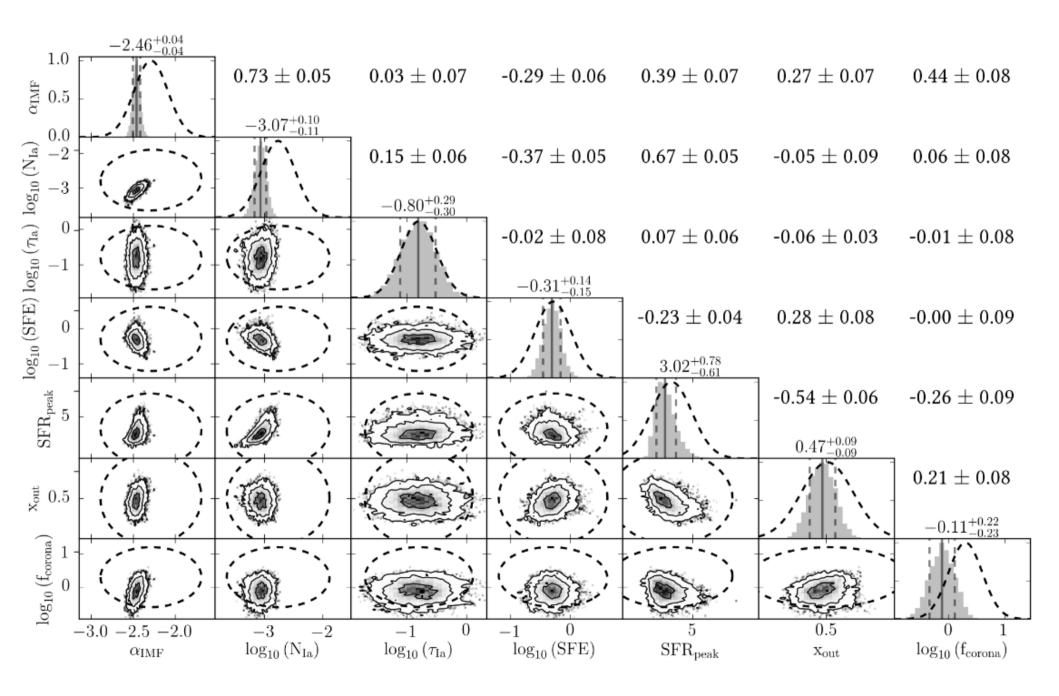

Chempy: A flexible chemical evolution model for abundance fitting

What is Chempy?

 Chempy is a code for modeling galatic chemical evolution. Chempy stands out by being able to calculate the posterior probability distribution in a given parameter space. By incorporating free parameters of chemical evolution, the magnitudes of each feedback channel and the constraints of observational data, provides a powerful tool for insight in stellar nucleosynthesis.



θ	description	$\overline{\theta}_{\text{prior}} \pm \sigma_{\text{prior}}$	limits	approximated prior based on
stellar (SSP) evolution parameters				
$\alpha_{\rm IMF}$	high-mass slope of the Chabrier (2001) IMF (eq. 1)	-2.29 ± 0.2	[-4, -1]	Côté et al. (2016b, tab. 7)
$\log_{10} (N_{Ia})$	number of SN Ia exploding per M _☉ over 15 Gyr	-2.75 ± 0.3	$[-\infty, 0]$	Maoz & Mannucci (2012, tab. 1)
$\log_{10} (\tau_{Ia})$	SN Ia delay time in Gyr for Maoz et al. (2010) distribution	-0.8 ± 0.3	[−∞, 1]	estimate from Maoz et al. (2012)
ISM evolution parameters				
log ₁₀ (SFE)	star formation efficiency governing the infall and ISM gas mass	-0.3 ± 0.3	[-∞,∞]	Bigiel et al. (2008) ^a
SFR _{peak}	peak of SFR in Gyr (scale of γ -distribution with k=2, eq. 2)	3.5 ± 1.5	[0,∞]	inspired by van Dokkum et al. (2013, fig 4b)
Xout	fraction of stellar feedback outflowing to the corona	0.5 ± 0.2	[0, 1]	estimate because uncommon parametrization
$\log_{10}\left(f_{corona} ight)$	corona mass factor times total SFR gives initial corona mass	0.3 ± 0.3	[-∞,∞]	Stern et al. (2016), Werk et al. (2014)

^{*a*} Theoretical work by Côté et al. (2016a) derives values in a range of 2 - 0.03 per Gyr. The work of Chiappini et al. (2001) and Andrews et al. (2016) use 1 per Gyr, both assuming linear Schmidt law $n_{Schmidt} = 1$ (same as this work).

Sun+ model

- Protosolar abundances
- CC-1a ratio in Sbc galaxies
- Corona metalicity

Multi-zone

- Galactic chemical evolution modeling too simplified by using single zone.
- By using multiple stars with different properties as constraints a more complex modeling is achieved.

Results

 There is a discrepancy between the prediction of some elemental abundances and the observed abundances. Might imply unknown nucleosynthesis processes.