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Bias of Kolmogorov g.o.f. test

Draw a sample X1, . . . , Xn with unknown d.f. F . Based on
these, we want to test the hypothesis

H0 : F = F0,

where F0 is a fixed d.f.
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A test is unbiased if the probability of rejecting the null
hypothesis

(a) is greater than (or equal to) the significance level when
the alternative is true

and

(b) is less than (or equal to) the significance level when the
null hypothesis is true.

The test is biased for the alternative hypothesis, if (a) is not
true while (b) is still true.
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Now consider a test, which has the following properties:

1 Reject the null hypothesis if d(Gn, F0) > δα.

• Gn is the sample d.f. of the sample X1, . . . , Xn,

• d(Gn, F0) is the ’distance’ in the space of d.f.’s.

• δα is a ’distance’ associated with the significance level α.

2 The test is distribution free. Essentially, no assumptions
are made about the underlying distribution of the
sample.

3 Such a test is called a "distance-based test."
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Now, let’s get technical. For some distribution function F ;

• take all the d.f.’s with distance d from F (so all Fi
where d(Fi, F ) = d),

• put them in a metric space (somehow),

• then make a ’ball’ in this space with radius δ > 0 and
centre at F .

• Label this ball B(F, δ).
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Now we take a d.f. F0, and then suppose that (for some
α > 0) there exists a d.f. Fa, such that

• the ball B(Fa, δα) is strictly inside the ball B(F0, δα),

and

• there is a non-zero probability of the sample d.f. being
in B(F0, δα), but not in B(Fa, δα), given that Fa is the
true d.f.

Then the distance-based test is biased for the alternative
hypothesis Fa.
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Proof

The proof is fairly simple. Start by taking a sample
X1, . . . , Xn from Fa. This sample has sample d.f. Gn. Then

• PFa{Gn ∈ B(Fa, δα)} ≥ 1− α.

But since the ball B(Fa, δα) is strictly inside the ball
B(F0, δα), then

• PFa{Gn ∈ B(F0, δα)} > 1− α,

which is the same as

• PFa{d(Gn, F0) > δα} < α.
But this is strictly against the demand (a) for an unbiased
test! And so the distance-based test is biased for the
alternative Fa.
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Bias of the KS two-sample test for different
sample sizes

Take two samples X1, . . . , Xm from F and Y1, . . . , Yn from
G. The null hypothesis is then H0 : F = G.

We can then easily choose or assume F and G to satisfy the
conditions above. The article proves, that for equal sample
size n = m, the KS two-sample test is unbiased.

However, for sufficiently large nm, the KS test is biased for
the alternative F = Fa 6= G, since in the limit for m→∞
we obtain the Kolmogorov g.o.f. test.
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Thank you!
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