Week 0: Data Handling and Software Fluency

D. Jason Koskinen
koskinen@nbiku.dk

Advanced Methods in Applied Statistics
Feb - Apr 2018

Me

- I go by "Jason"
- My scientific focus is on experimental neutrino oscillation, where I work on the IceCube neutrino observatory situated at the South Pole

Software Packages

- Some of the methods we will use in the course will require software packages that include:
- Minimizers: for example BFGS, MIGRAD, SIMPLEX, etc.
- Markov Chain Monte Carlo
- Spline routines for interpolation, including basis splines (b-splines)
- Multi-Variate Machine Learning: boosted decision trees, neural networks, support vector machines, etc. (we will for sure cover boosted decision trees)
- Other more specialized uses I will let you know about in advance of the lecture
- MultiNest nested sampling algorithm

More Specifically

- Below I will list the needed packages and some python options
- Plotting
- I use ROOT from CERN, but it's only common for 'old' people
- Matplotlib is what the 'cool' kids seem to use
- For Python users, I'm a big fan of "Jupyter" notebooks
- Combination of both text fields, inline figures/plots display, and executable code
- Great way to keep things organized
- Minimizer Routines
- I normally use MINUIT2 (via iminuit)
- SciPy has a minimize function with a bunch of algorithms and is more common nowadays

More Specifically

- Markov Chain Monte Carlo
- I have used PyMC, but other packages such as MCMC, emcee, or Nestle look like better tools
- Multi-Variate Analysis (MVA)
- I used the ROOT software from CERN (TMVA)
- Splines
- SciPy has an interpolate function and other spline options
- Bayesian Inference Sampling - MultiNest
- pymultinest
- Even if you're using python, you don't need any of the above mentioned specific packages, e.g. iminuit.

Software and Data Handling

- As a precursor to doing computer aided statistics, the first problem set will focus on data handling, parsing text, writing code, and simple presentation
- Exercises will focus on USA college basketball statistics from the 2014 Ken Pomeroy Basketball page at http://kenpom.com/ index.php? $\mathrm{y}=2014$
- The content is largely irrelevant and was chosen due to some fairly evil... I mean interesting features
- This will be potentially time-consuming
- It took me ~ 4 hours to originally produce all the results
- Had I stored/handled the data in a different format it would have gone much quicker
- Could take as little as 15 min .

First Assignment

- Conceptually this is a simple assignment
- No advanced or even difficult statistical methods or analyses
- The goal of the first assignment is to assess how well people can load, analyze, and plot data
- Essentially a plotting and data throughput exercise
- But, there are some interesting data features
- Words of advice for the following problem set
- Don't be overly reliant on spreadsheets
- Don't assume that the input data (or format) is stable between years for exercises 2 and 3
- There are some known (at least by me) ambiguities in the exercises. If you come across what you perceive is an ambiguity, detail it in your write-up.

Problem Set Submission

- The submission is:
- A write-up as a PDF document, which includes any plots, diagrams, tables, pictures, and explanations
- In a separate "file", submit all code used to derive the results
- Tarball, zipped directory, lots of individual files w/ self-explanatory titles, etc.
- Include data files
- Material is marked on a 10-point scale
- 9+ is very good
- 8-9 is pretty good
- 7-8 is okay
- 6-7 is acceptable
- 5-6 subpar
- 4-5 inadequate
- <4 reflects serious omissions and/or deficiencies

Assignment

Exercise 1

- Take the 2014 Ken Pomeroy data related to NCAA College Basketball analytics from http://kenpom.com/index.php? $y=2014$
- On a single plot draw histograms of:
- The Adjusted Defense "AdjD" for all the teams in the 5 conferences (ACC, SEC, B10, BSky, and A10)
- Different colors for each conference and add a legend
- Save as a PDF

Exercise 2

- Take the 2014 and 2009 Ken Pomeroy data related to NCAA College Basketball analytics
- Calculate the difference in "AdjO" for all the teams in the 5 conferences from Exercise 1:
- 2014 minus 2009 as a function of the 2009 AdjO value
- Plot the data as a graph with a data point for each team entry being the same conference color as for the previous histogram in Exercise 1
- Calculate the difference in "AdjO" for all the teams with data in both 2009 and 2014
- Median and mean for each of the 5 conferences
- Median and mean for teams that were not in the 5 conferences

Exercise 2 cont.

- Calculate the difference in "AdjO" for the teams in each of the 5 conferences from Exercise 1:
- Between 2009 and 2014 as a function of the 2009 AdjO value
- Plot the data as a graph with a data point for each team entry being the same conference color as for the previous histograms

*Be mindful that this plot is an example and is not guaranteed to be accurate

Exercise 2 cont.

- Calculate the difference in "AdjO" for all the teams with data in both 2009 and 2014
- Median and mean for each of the 5 conferences
- Median and mean for teams that were not in the 5 conferences

\square
The mean is 3.
Note: there is no guarantee that the first significant digit on this screen is correct.

Exercise 3

- Take the 2014 and 2009 Ken Pomeroy data related to NCAA College Basketball analytics
- Redo Exercises 1 and 2, while now adding the "BE" conference to the previous list of 5 conferences
- For those who have written robust code, this should be trivial
- It is likely to be much harder for those whom...
- Parse some data in by hand
- Only wrote code that requires the exact data format specific to the team names, conferences, AdjO/AdjD position, etc.

Problem Set Submission

- Due by Wednesday Feb. 14 at 08:30 CET
- In a single email to me (koskinen@nbi.ku.dk):
- Submit the results, plots, numbers, text, etc. by email in a single PDF document
- The submitted PDF document should not contain any code
- In a separate file include the code, however terrible, broken, crashing, unpretty, or uncommented in the same email
- Unless you parse directly from the internet HTML, also include the data files you actually used. Sometimes files can change, so please supply the one you are actually using.

Exercise 4 (Extra 1pt.)

- One of the most important observations in astronomy was recently made with the coincident observation of gravitational waves in addition to photons across a wide range of wavelengths from a binary neutron star merger
- There is an author list at http://www.nbi.dk/~koskinen/ Teaching/AdvancedMethodsInAppliedStatistics2018/data/ authors-acknowledgements-v5.pdf
- How many unique authors are there in that list?
- If there was one single author list in alphabetical order (instead of being grouped by experimental collaboration), what author is the mid-point
- Who is at the location (total authors)/2. Potentially there are two authors depending on whether the total number of authors is an odd or even number.

