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1 Common binning
In histograms, it is common to use uniform bins. This is often not optimal as the amount of data and the
variation in the data is often not constant. This means that uniform binning will often result in too many
bins in regions with little, non-varying data and too few bins in well-described regions where the mean changes
rapidly.
Aside from this, it is common to choose the number of bins arbitrarily, which increases the sensitivity to bias
and does not guarantee reasonable results. Arbitrary, uniform binning may also mean that the placement of
the bins splits a signal and thereby decreases the signal strength.
All this means that fits performed on data that is binned arbitrarily and uniformly may suffer greatly in both
visual and statistical quality.

2 Bayesian Blocks
The idea of Bayesian blocks is to approximate the data as part-wise constant and to find the optimal amount of
constant segments (called blocks) and the placement of these. This bears obvious resemblance to what is done
in a histogram and so the method is often applied to optimize histograms.
Bayesian blocks are non-uniform, so when applied to histograms the binwidth varies. Each block, or bin for
histograms, is separated by change points at the edges. They start at the first data point and end at the last one
with no gaps, although bins may be empty. One could alternatively adjust the bin widths manually to achieve
some of the same advantages, but bayesian blocks introduces an objective way of achieving optimal binning in
multiple respects.
In Bayesian blocks a fitness function that depends on the location and number of change points is optimized to
find the correct number and placement of them. The total fitness function is the sum of the fitness function of
each block. The choice of fitness function will depend on the type of data and could for unbinned event data
be the log-likelihood of a Poisson distribution1. This fitness function has the form:

f(Bi) = ln(Li(λ)) = Niln(λ)− λTi (1)

where f(Bi) is the fitness function of block i, Li(λ) is the likelihood of block i for a given value of λ, λ is the
constant value of the block (it doesn’t have a subscript since it’s the variable), Ni is the number of events in
the block and Ti is the width of the block. Inserting the value of λ that maximizes this fitness function gives:

f(Bi) = Ni(ln(Ni)− ln(Ti)) (2)

The fitness function can then be maximized by varying the number of events in each block and the width of each
block. The total fitness Ftotal =

∑K
i=0 f(Bi) (for K blocks) is calculated n − 1 times for each of n iterations,

where the number of iterations is equal to the number of blocks (n), so the computation time is O(N2) rather
than O(2N ).
For a histogram to show a useful nonparametric estimate of the pdf of the data, the number of events in each
bin should be high, which means that Nbins � N . To obtain this one could include a prior that favors fewer
bins. A choice for such a prior could be the geometric function:

P (Nb) = P0γ
Nbins (3)

where P0 is a normalization constant and γ is a constant. Alternatively to setting the value of γ, the prior can be
determined by choosing a false positive rate for change points and simulating data. Through these simulations
the correct gamma for the given false positive rate can be achieved. Too few change points will mean that
important changes will be overlooked. Too many will mean that we will see more changes that are just based
on fluctuations.
An advantage of Bayesian Blocks, it that the algorithm can center the peak of a signal in a bin, so that it will

1The derivation of this can be found in [2] and is applied to Bayesian Blocks in [3], p. 31.

1



be as clear as possible compared to the background.
Bayesian blocks are better if you are interested in peaks than tails, as tails have few entries and therefore do
not change much and have few change points.
For the same reason, Bayesian blocks work better the more data you have, as the changes can be too small to
make change points in small data sets.

3 Applications
An example of an application of the Bayesian blocks is given in [1] and shown here in figure 1. The advantage
of the Bayesian Blocks is clear: The peak, which contains lots of rapidly changing data, has many bins so that
it does not unnecessarily lose resolution. The tails of the distribution that has little, near-constant data have
much broader bins, which means that the average value of these regions becomes much more certain than in
the case of the uniform bins. The bottom of the figure shows the residuals from a comparison between data and
a simulation where the calibration of a measured quantity was shifted. This produces a characteristic S-shape
which becomes much clearer and easy to detect with the Bayesian blocks, because of the superior resolution of
the peak.
Another example is in figure 2, where a hybrid binning method is used to isolate a signal into few bins. It works
by calculating the change points first of the background and then of the signal, and then combining the two,
such that the change points from the signal dominates in the region where the signal is present.

Figure 1: Comparison of Bayesian blocks (right) and uniform bins (left) for simulated Drell-Yan distributions.
Figure borrowed from [1].

Figure 2: Hybrid binning applied to isolate the events of a signal in almost only one bin. On the x-axis is some
measured quantity and on the y-axis, events divided by bin width. Figure borrowed from [1].
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