More on confidence intervals
 - because that is what we do!

Morten Medici (mmedici@nbi.ku.dk)
Methods of advanced statistics, March 2019

Brief recap

- slides adapted from R. Barlow

Confidence intervals

- Important part of the statistical reporting of results
- Especially relevant for results which are basically null results.
- E.g. upper limits on the branching ratio (BR) of a particle decaying in a certain way, testing for new physics:

$$
B R<10^{-20} @ 90 \% C L
$$

- Where we have a trade-off between statistical power and size of the interval, e.g.

$$
\begin{aligned}
& \mathrm{BR}<10^{-19} @ 95 \% \mathrm{CL} \\
& \mathrm{BR}<10^{-20} @ 90 \% \mathrm{CL}
\end{aligned}
$$

What is "@ 90\% CL"?

- It is not stating "the probability that the result is true"
- Confidence levels are not probabilities for results
- However, they are strongly linked to probabilities, so let us take a slight detour

Probability

- The probability of an event to occur is equal to the fraction of experiments where the event occurs compared to all experiments (ensemble), in the limit of a large number of experiments

$$
P(\text { event })=\lim _{N \rightarrow \inf } \frac{N_{\text {event }}}{N}
$$

- Examples
- Coin toss: $\mathrm{P}($ tail $)=50 \%$
- Tau decay: $P\left(\tau^{-}\right.$to $\left.\mu^{-} \mathrm{V}_{\mu} \mathrm{V}_{\mathrm{T}}\right)=17.4 \%$

Depends on ensemble

- The probability is dependent on the event AND the ensemble
- Example: 'Nordic study shows that men above 50 with a well-payed job have a 1\% risk of getting skin cancer'
- So a 50-year old danish male has a 99% chance of reaching 51 without getting cancer? No
- It all depends on the ensemble you choose
- Danish males in the study,
- Danish males
- Nordic males
- Male sunbather champions
- etc...
- Each give a different probability. All values will be valid (if done correctly!)

Probabilities are dependable quantities.. right?

$$
P_{\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}}=17.4 \%
$$

- The probability of the tau lepton decaying to a muon (τ^{-}to $\left.\mu^{-} v_{\mu} v_{T}\right)$ is $\mathbf{= 1 7 . 4 \%}$. (I looked that up in the Particle Data Group (PDG) booklet, so it must be true...)
- Though in a given analysis that select muons, the fraction of tau leptons that decay to muons might be $\mathbf{> 1 7 . 4 \%}$
- If a given analysis is trying to reject muons, the probability might be $\boldsymbol{<} \mathbf{1 7 . 4 \%}$
- It depends on the ensemble! So does the result in the PDG!

Caveat: When there is no ensemble

- Consider the statement:
"It is likely to be cloudy tomorrow"
or even
"There is a 90% probability for cloudy weather tomorrow"

Caveat: When there is no ensemble

- There is only one tomorrow. There is no ensemble!
- So P (clouds) is either $0 / 1=0$ or $1 / 1=1$
- Strict frequentists will not be able to arrive at such a statement (could be done with a Bayesian approach)

Getting around the caveat

- Frequentist can instead compile an ensemble of statements, and determine that some of them are true:

The statement 'It will be cloudy tomorrow' has a 90\% probability of being true

- Translates to defining P (clouds) $=\mathrm{P}$ ('lt will be cloudy tomorrow' is true)
- Where in this case

P(clouds) $=90 \%$

Still, ensembles matter

- $P($ cloudy $)=90 \%$ can be true at the same time as $P($ cloudy $)=50 \%$ is true
- P (cloudy) $=90 \%$ can be true at the same time as $P($ sun $)=90 \%$ is true
- Depending on the ensembles used in the individual studies used to claim those probabilities!

$m_{T}=1776.86+/-0.12 \mathrm{MeV}$ (at 68\% CL)

- 68% of all tau particles have a mass between 1776.74 and 1776.98 MeV ? WRONG
- The probability of tau-mass being in the range $1776.74-1776.98 \mathrm{MeV}$ is 68% ? WRONG
- The tau-mass has be measured to be 1776.82 MeV using a technique which gives a 68% probability of the true value within 0.12 MeV of the measurement?

CORRECT

$m_{T}=1776.86+/-0.12 \mathrm{MeV}$ (at 68\% CL)

- Said differently:

The statement "the true tau-mass is in the range [1776.74, 1776.98] MeV' has a 68% probability of being true.

- We add the information about the confidence limit to illustrate this: $m_{T}=1776.86+/-0.12 \mathrm{MeV}$ at 68% confidence level (CL)

Confidence intervals

- If the experiment is repeated many times, we would get different intervals (ensemble of statements).
- They would be true 68% of the cases, as they would bracket the true value in 68% of the cases.

Confidence/significance

- Confidence level, CL = 1-a
- Significance a, is used when talking the language of hypothesis testing
- A 95\% CL result might be stated inversely, e.g.
- 'The medicine was effectively reducing the risk at the 5% level' = If the medicine does nothing, the probability of getting an improvement this size (or better) is 5\% (or less)
- Hypothesis testing: Given an observation/measurement the corresponding probability is called the p -value, and the null hypothesis is rejected if p-value $<a$
- We use this exact approach to construct the intervals

Construction of classic frequentist intervals
 - also known as the Neyman construction

Confidence interval - known true value

- The frequentist approach can give a statement about the probability of observing a specific value of a parameter given the probability density function (PDF).
- Use the expression for the PDF to calculate the probability of getting n within the interval $[a, b]$ for a parameter value of θ :

$$
P(n \in[a, b] \mid \theta)=\int_{a}^{b} P(n \mid \theta)
$$

Intervals, intervals, intervals

- You decide which intervals you want to do, though a connected two- or one-sided interval is normally used
- All shaded intervals below hold 68\% of all possible outcomes of a Gaussian PDF, with mean, $\theta=150$ and variance $=150$

Determine the underlying parameter

- When you know the parameters of a process you can predict the distribution of outcomes Hypothesis (θ) -> Data (n)
(Experiment)
- However, we are often in the situation where we want to infer an estimate of a parameter from the outcome

$$
\text { Data (n) -> Hypothesis }(\theta) \quad \text { (Statistics) }
$$

- That is the real power of confidence intervals (both for frequentist or Bayesian approaches)

Hypothesis rejection

- An observation (experiment of a parameter value that lies outside the 90% confidence interval given a hypothesis on θ (guess of the true value) will be rejected at a $90 \% \mathrm{CL}$
- However, most often we do not know the true value of the parameter
- It could have a different value than what we assumed in our hypothesis
- Hence we should look at other hypotheses (for the value of θ).

Hypothesis rejection

- Each hypothesis (of true value of θ) will have an interval within which an observation will confirm (or 'accept') the hypothesis
- For multiple possible true values of the parameter θ, these 'acceptance intervals' can be determined
- Example figure: 90\% central interval for a few different hypothesis for the true value

Acceptance belt

- This produce a band ('acceptance belt') of hypotheses (guess on true value for θ), that can be connected to the observed value of the parameter (through the correct frequentist interpretation)
- For a given observation, the interval on the true value of the parameter θ can be determined at a given CL
- By construction, this method gives confidence intervals which contain the true value of θ with an exact known probability (coverage). (90% in the example shown)

Acceptance belt

- Similarly can we produce the acceptance belt for a 90\% upper limit

Exercise 1

- Assume that measurements of θ are drawn from a Gaussian with a mean at the true value $\theta_{\text {true }}$ and variance equal to one. Do the following:

1. Plot the 68% central limit acceptance belt for values of $\theta_{\text {true }}$ between zero and ten (calculate it numerically)
2. From the plot, determine the 68% central limit on $\theta_{\text {true }}$ resulting from an observation of $\theta_{\text {obs }}=8$.
3. Extra: Repeat the exercise with a 68\% upper and lower limit. Repeat at a 90% CL and 95% CL and compare the value of $\theta_{\text {obs }}$ required to set a lower limit above 0

Exercise 1

- Resulting limits on n (rounded to 2 significant figures)

$\mathrm{n}_{\text {obs }}=8$	lower	upper	central
$\mathbf{6 8 \%}$	7.5	8.4	$7.0-9.0$
90%	6.7	9.3	$6.3-9.7$
95%	6.3	9.6	$6.0-10$

Complications for classic frequentist intervals

Complication A:

 Discrete observations- We might use a Poisson PDF, where the mean value θ is continous, but the observations can only take discrete values
- To make a 68% lower limit for $\theta=4.3: \quad P(n \mid \theta)=e^{-\theta} \frac{\theta^{n}}{n!}$
- Include 0,1,2,3,4 to get 57.0\%
- Include 0, 1,2,3,4,5 to get 73.6\%
- So the probability of getting something above 5 is less than the 32% (intended with $68 \% \mathrm{CL}$)
- Solution: Be conservative and include 5, even though it corresponds to 'too much' probability

\mathbf{n}	$\mathbf{P (n \| 4 . 3})$
0	1.4%
1	5.8%
2	12.5%
3	18.0%
4	19.3%
5	16.6%
6	11.9%

Complication A: Discrete observations

- The same 5 values of n needs to be included in the 68% lower limit, e.g. for both $\theta=4.3$ and $\theta=4.5$
- This will be the case over a range of values of θ, so the confidence belt will change in steps
- Multiple true values will cover the same range of observed values

Complication A:

 Discrete observations- Use most central true values of θ (i.e. the smallest values of the upper limit and largest true value for lower)

Coverage

- A frequentist test may have a coverage greater than the confidence level = over-coverage (that is OK)
- Though it should never undercover (by construction)
- If it undercovers, the analyser did something wrong!

Exercise 2

- Same as exercise 1, produce a 90\% central limit acceptance band assuming a poisson PDF, between true values of 0 and 15 in steps of 0.1 or less.
- Assume you measure $\mathrm{n}=8$ events, which confidence interval do you report?
- Extra: Determine the coverage across numerous values of θ

Exercise 2

- Resulting limits on n (rounded to 3 significant figures)

nobs=8	lower	upper	central
68%	7.36	9.04	$6.06-10.8$
90%	5.43	11.8	$4.69-13.2$
95%	4.69	13.2	$4.11-14.4$

Upper limits

- Consider the case of observing nobs events
- We assume poisson uncertainty on the number of observed events given a true number of events n
- Assume that the number of events are expected to be small, so after our observation we will be reporting a 90\% upper limit on n.
- Example, if zero events are observed ($n_{\text {obs }}=0$), a 90\% upper limit of 2.3 can be set.

The hunt for discoveries

- If we the signal is expected to be weak (small value), it would be sensational if the number of observed events is significantly above 0
- In that case we could be inclined to calculate a central limit instead, to illustrate a discovery
- So depending on the number of observed events we will quote either an upper limit or a central limit

Complication B: Choosing strategy later

- Assume gaussian PDF with $\sigma=1$, with the strategy of changing from 90% upper limits to 90% central limit if the observation is 3σ away from 0 (flip-flop)

Complication B: Choosing strategy later

- Assume gaussian PDF with $\sigma=1$, with the strategy of changing from 90% upper limits to 90% central limit if the observation is 3σ away from 0 (flip-flop)

Complication B: Choosing strategy later

- Problem: Part of the range only has 85% coverage, not the 90% that we designed the method for

Complication B:

Choosing strategy later? No!

- In order for the coverage to be meaningful, the type of limit must be decided ahead of time
- Only way to get around the issue: Stick to the ideal approach:

1. Choose strategy (upper/lower or central limit)
2. Examine data
3. Quote result

Signal+background

- Consider the case of measuring a number of events $\mathrm{n}=\mathrm{n}_{\mathrm{s}}+\mathrm{n}_{\mathrm{b}}$
- With n_{s} and n_{b} corresponding to the number of signal and background events, respectively
- Both signal and background are given by gaussian distributions with mean s and b, and variance equal to one
- The signal is expected to be small, so after our observation we will be reporting a 90% upper limit on s.

Complication C:

Constrained parameters

- Since we are counting events, the number cannot be negative
- Assume the background mean is known, $\mathrm{b}=7$
- For $n_{\text {obs }}=4$ we can determine that $\mathrm{N}=\mathrm{s}+\mathrm{b} \sim 5.3$ (at 90\% CL)
- Hence we can conclude that $\mathrm{s}<-1.7$ (at $90 \% \mathrm{CL}$)
- Or can we? The number of events should be zero or above

Complication C: Constrained parameters

- Do we claim s <-1.7 (at 90\% CL)?
- Answer: The interval will only cover the right result 90% of the time, this is one of those 10%-cases
- Answer: We should publish this result to avoid biasing the reported numbers
- Answer: This is clearly unphysical, we can not publish a result based on a broken approach, we should use a statistical method that fixes this

Feldman-Cousins Method

- also known as the "Unified Approach" (mainly by G. Feldman and R. Cousins)

Approach

- Introduce ranking principle based on the following likelihood ratio, or rank:

$$
R(n)=\frac{L(n \mid \theta)}{L\left(n \mid \theta_{\mathrm{best}}\right)}
$$

- With the likelihood value of observing n given a true value θ, or the best fit value of the parameter $\theta_{\text {best }}$ given the dataset and any constraints on θ
- Completely rethink the construction of acceptance intervals for the acceptance belt: For a given true value θ, include values of n to the interval from highest rank $R(n)$ to lower, until the desired confidence is reached

Approach

- Determine the PDF for your hypothesis, which will provide the likelihood used
- For each true value θ :

1. Determine for all possible outcomes n :
A. The value $\theta_{\text {best }}$ that maximises the likelihood L
B. Calculate the rank $R(n)$
2. Construct the acceptance interval by including the values of n, that has the highest rank $R(n)$ to lower until the desired confidence is reached

Approach - Example

- Assume a Poisson measurement, so $\mathrm{L}(\mathrm{n} \mid \theta)=$ Poisson(n| θ)
- For a Poisson the ML estimator is $\theta_{\text {best }}=\mathrm{n}$

1. We determine the acceptance interval for one true value (e.g. $\theta=1$)
2. Repeat 1. for multiple values of θ

Approach - Example

- Assume a Poisson measurement with true value $\theta=1$
- 'rank' indicates in which order the values of n are included for a 90\% interval

\mathbf{n}	$\mathbf{P}(\mathbf{n} \mid \boldsymbol{0}=\mathbf{1})$	$\boldsymbol{\theta}_{\text {best }}$	$\mathbf{P}\left(\mathbf{n} \mid \boldsymbol{\theta}_{\text {best }}\right)$	$\mathbf{R (n)}$	rank
0	0.368	0	1	0.368	3
1	0.368	1	0.368	1	1
2	0.184	2	0.271	0.680	2
3	0.061	3	0.224	0.274	
4	0.015	4	0.195	0.079	
5	0.003	5	0.175	0.017	

Example: Constrained Gaussian

- Consider again the case of measuring a number of events
$n=n_{s}+n_{b}$
- Where again both the signal and background are given by Gaussian distributions with mean s and b, and variance equal to one
- Assume the background mean is known, $b=3$
- So if we observe $\mathrm{n}=1$, which effectively corresponds to $\mathrm{n}_{\mathrm{s}}=\mathrm{n}-\mathrm{b}=-2$

Example: Constrained Gaussian

- However, when determining the 90% confidence interval on s, we have to require that, s > 0
- So we incorporate this in the definition of $s_{\text {best }}$:

$$
s_{\text {best }}= \begin{cases}n-b & \text { if } n>b \\ 0 & \text { otherwise }\end{cases}
$$

- And use that when we calculate $\mathrm{R}(\mathrm{s})$
- For each signal true value the acceptance interval $[a, \beta]$ is determined such that

$$
90 \%=\int_{\alpha}^{\beta} P(n \mid s) \quad \text { and } \quad R(\alpha)=R(\beta)
$$

Example: Constrained Gaussian

- Shown is the 90% confidence belt when applying the FC for a known background of $b=3$
- It automatically transitions between an upper limit and a central limit
- Decides for you whether an upper limit or central limit is appropriate to quote based on the observation
- If we observe $n=n_{s}+n_{b}=2$ the measured number of signal events is effectively $\mathrm{n}_{\mathrm{s}}=-1$
- The corresponding 90\% interval is then $\mathrm{s}<0.81$ (at 90\% CL)

Argument against (0)

- Argument: It is more cumbersome to implement!
- Yes. But, if your problem does not offer any other way around you will have to use it
- Just because it is right, does not mean that it is easy

Argument against (1)

- Argument: Takes power away from analysers!
- Yes. But that is exactly why this method should be used. Such that your results are statistically sound (if applied correctly!)
- You are welcome to choose the CL, but once chosen, this method invalidates the conventional approach of having to make a choice

- Experiment 1 (spent time/money removing backgrounds):
- $b=0, n_{\text {obs }}=1$
- Feldman-Cousins limit: s < 2.44 (at 90\% CL)
- Experiment 2 (less optimised):
- $b=10, n_{\text {obs }}=1$
- Feldman-Cousins limit: s < 0.75 (at $90 \% \mathrm{CL}$)
- Argument: This is unfair to the hardworking group!
- But experiment 2 needs to get extremely lucky to get zero events, and lucky experiments will always quote better limits (though averaging out luck, experiment 1 will be better off)

Exercise 3

- For a measurement of n which is distributed by a Poisson distribution from the true value n_{s}.

1. Determine Feldman-Cousins 90% acceptance belt
2. Suppose you observe $\mathrm{n}=10$ events what is the 90% confidence interval on n_{s}, what if you observe $\mathrm{n}=1$?
3. Compare to the central limit using the Neyman method

एxernaise

- Similarly to the previous exercise, now assume there is a known background component. So we have a Poisson measurement of

$$
n=n_{s}+n_{b} \text {, with a known background of } n_{b}=4
$$

- Include the constraint: $n_{\text {best }}=0$ for $n_{\text {obs }}<0$

1. Determine Feldman-Cousins 90% acceptance belt
2. Suppose you observe $n=10$ events what is the 90% confidence interval on n_{s}, what if you observe $\mathrm{n}=1$?
3. Compare to the central limit using the Neyman method
4. Extra: Determine the coverage across the considered values of n
5. Extra Extra: Do the calculations for 68% and 95% and various values of $n_{o b s}$.

Exercise 3

