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Brief recap
- slides adapted from R. Barlow



Confidence intervals
• Important part of the statistical reporting of results 

• Especially relevant for results which are basically null 
results. 

• E.g. upper limits on the branching ratio (BR) of a particle 
decaying in a certain way, testing for new physics: 
                  BR < 10-20 @ 90% CL 

• Where we have a trade-off between statistical power and 
size of the interval, e.g.  
                      BR < 10-19 @ 95% CL  
                      BR < 10-20 @ 90% CL



What is “@ 90% CL”?
• It is not stating “the probability that the result is 

true” 

• Confidence levels are not probabilities for results 

• However, they are strongly linked to probabilities, 
so let us take a slight detour  
 
 



Probability
• The probability of an event to occur is equal to the fraction of 

experiments where the event occurs compared to all 
experiments (ensemble), in the limit of a large number of 
experiments 

  

• Examples 

• Coin toss: P(tail) = 50% 

• Tau decay: P(τ- to μ-νμντ) = 17.4%

event

ensemble



Depends on ensemble
• The probability is dependent on the event AND the ensemble 

• Example: ‘Nordic study shows that men above 50 with a well-payed job have a 
1% risk of getting skin cancer’ 

• So a 50-year old danish male has a 99% chance of reaching 51 without getting 
cancer? No 

• It all depends on the ensemble you choose 
• Danish males in the study, 
• Danish males 
• Nordic males 
• Male sunbather champions 
• etc… 

• Each give a different probability. All values will be valid (if done correctly!)



Probabilities are dependable 
quantities.. right?

• The probability of the tau lepton decaying to a muon (τ- to μ-νμντ) is =17.4%. 
(I looked that up in the Particle Data Group (PDG) booklet, so it must be 
true…) 

• Though in a given analysis that select muons, the fraction of tau leptons that 
decay to muons might be >17.4% 

• If a given analysis is trying to reject muons, the probability might be < 17.4% 

• It depends on the ensemble! So does the result in the PDG!

P⌧!µ⌫µ⌫⌧ = 17.4%
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Caveat: When there is no 
ensemble

• Consider the statement:  
 
                  “It is likely to be cloudy tomorrow”  
 
 or even 
               “There is a 90% probability for cloudy   
                             weather tomorrow”



Caveat: When there is no 
ensemble

• There is only one tomorrow. There is no ensemble! 

• So P(clouds) is either 0/1=0 or 1/1=1 

• Strict frequentists will not be able to arrive at such a 
statement (could be done with a Bayesian 
approach)



Getting around the caveat
• Frequentist can instead compile an ensemble of 

statements, and determine that some of them are true: 

The statement ‘It will be cloudy tomorrow’ has a 90% 
probability of being true 

• Translates to defining  
   P(clouds) = P(’It will be cloudy tomorrow’ is true)  

• Where in this case 
   P(clouds) = 90%



Still, ensembles matter

• P(cloudy) = 90% can be true at the same time as 
P(cloudy) = 50% is true 

• P(cloudy) = 90% can be true at the same time as  
P(sun) = 90% is true 

• Depending on the ensembles used in the individual 
studies used to claim those probabilities!



mτ = 1776.86 +/- 0.12 MeV  
(at 68% CL) 

• 68% of all tau particles have a mass between 
1776.74 and 1776.98 MeV? 

• The probability of tau-mass being in the range 
1776.74-1776.98 MeV is 68%? 

• The tau-mass has be measured to be 1776.82 MeV 
using a technique which gives a 68% probability of 
the true value within 0.12 MeV of the measurement?

WRONG

WRONG

CORRECT



mτ = 1776.86 +/- 0.12 MeV  
(at 68% CL) 

• Said differently:  

The statement “the true tau-mass is in the range 
[1776.74,1776.98] MeV” has a 68% probability of 

being true. 

• We add the information about the confidence limit 
to illustrate this: mτ = 1776.86 +/- 0.12 MeV at 68% 
confidence level (CL)



Confidence intervals
• If the experiment is repeated many times, we would get 

different intervals (ensemble of statements). 

• They would be true 68% of the cases, as they would 
bracket the true value in 68% of the cases. 

 
 
 
 
 
 

Confidence intervals

θ

θtrue



Confidence/significance
• Confidence level, CL = 1-α 

• Significance α, is used when talking the language of hypothesis testing 

• A 95% CL result might be stated inversely, e.g. 

• ’The medicine was effectively reducing the risk at the 5% level’  
= If the medicine does nothing, the probability of getting an 
improvement this size (or better) is 5% (or less) 

• Hypothesis testing: Given an observation/measurement the 
corresponding probability is called the p-value, and the null hypothesis 
is rejected if p-value < α   

• We use this exact approach to construct the intervals



Construction of classic 
frequentist intervals

- also known as the Neyman construction



Confidence interval 
- known true value 

• The frequentist approach can give a statement about the 
probability of observing a specific value of a parameter given 
the probability density function (PDF).  

• Use the expression for the PDF to calculate the probability of 
getting n within the interval [a,b] for a parameter value of θ: 



Intervals, intervals, intervals
• You decide which intervals you want to do, though a 

connected two- or one-sided interval is normally used 

• All shaded intervals below hold 68% of all possible outcomes 
of a Gaussian PDF, with mean, θ = 150 and variance = 150 



Determine the underlying 
parameter

• When you know the parameters of a process you can 
predict the distribution of outcomes  
 

• However, we are often in the situation where we want to 
infer an estimate of a parameter from the outcome  
 

• That is the real power of confidence intervals (both for 
frequentist or Bayesian approaches)

Hypothesis (θ) -> Data (n)             (Experiment)

Data (n) -> Hypothesis (θ)            (Statistics)



Hypothesis rejection
• An observation (experiment  of a parameter value that lies 

outside the 90% confidence interval given a hypothesis on θ 
(guess of the true value) will be rejected at a 90% CL 

• However, most often we do not  
know the true value of the parameter 

• It could have a different value than  
what we assumed in our hypothesis 

• Hence we should look at other  
hypotheses (for the value of θ). 
 

Observation θobs



Hypothesis rejection
• Each hypothesis (of true value of θ) will have an interval within 

which an observation will confirm (or ’accept’) the hypothesis  

• For multiple possible true values 
of the parameter θ, these  
‘acceptance intervals’ can be  
determined 

• Example figure: 90% central  
interval for a few different  
hypothesis for the true value  
 



Acceptance belt
• This produce a band (‘acceptance belt’) of hypotheses (guess on 

true value for θ), that can be connected to the observed value of 
the parameter (through the correct frequentist interpretation) 

• For a given observation, the  
interval on the true value of the 
parameter θ can be determined at  
a given CL 

• By construction, this method gives 
confidence intervals which contain 
the true value of θ with an exact  
known probability (coverage). 
(90% in the example shown)

Observation θobs

90%  
central limit



Acceptance belt
• Similarly can we produce the acceptance belt for a 

90% upper limit 
 
 
 
 
 
 
 

Observation θobs

90% upper 
CL limit



Exercise 1
• Assume that measurements of θ are drawn from a 

Gaussian with a mean at the true value θtrue and variance 
equal to one. Do the following: 

1. Plot the 68% central limit acceptance belt for values of 
θtrue between zero and ten (calculate it numerically) 

2. From the plot, determine the 68% central limit on θtrue 
resulting from an observation of θobs = 8. 

3. Extra: Repeat the exercise with a 68% upper and lower 
limit. Repeat at a 90% CL and 95% CL and compare the 
value of θobs required to set a lower limit above 0



Exercise 1
• Resulting limits on n  

(rounded to 2 significant figures) 

nobs=8 lower upper central

68 % 7.5 8.4 7.0-9.0

90 % 6.7 9.3 6.3-9.7

95 % 6.3 9.6 6.0-10



Complications for classic 
frequentist intervals



Complication A:  
Discrete observations

• We might use a Poisson PDF, where the mean value θ is 
continous, but the observations can only take discrete values 

• To make a 68% lower limit for θ = 4.3: 

• Include 0,1,2,3,4 to get 57.0% 

• Include 0,1,2,3,4,5 to get 73.6% 

• So the probability of getting something above  
5 is less than the 32% (intended with 68% CL) 

• Solution: Be conservative and include 5, even  
though it corresponds to ’too much’ probability

n P(n | 4.3)
0 1.4 %
1 5.8 %
2 12.5 %
3 18.0 %
4 19.3 %
5 16.6 %
6 11.9 %



Complication A: 
Discrete observations

• The same 5 values of n needs to be included in the 
68% lower limit, e.g. for both θ = 4.3 and θ = 4.5 

• This will be the case over a range 
of values of θ, so the confidence  
belt will change in steps 

• Multiple true values will cover the 
same range of observed values 

Observation θobs

??



Complication A: 
Discrete observations

• Use most central true values of θ (i.e. the smallest 
values of the upper limit and largest true value for lower) 

report the  
center-most 

points

other points  
will overcover



Coverage
• A frequentist test may have a coverage greater than the 

confidence level = over-coverage (that is OK) 

• Though it should never undercover (by construction) 

• If it undercovers, the analyser did something wrong!

90% coverage

75%
82%77%

69%



Exercise 2
• Same as exercise 1, produce a 90% central limit 

acceptance band assuming a poisson PDF, 
between true values of 0 and 15 in steps of 0.1 or 
less. 

• Assume you measure n = 8 events, which 
confidence interval do you report? 

• Extra: Determine the coverage across numerous 
values of θ



Exercise 2
• Resulting limits on n  

(rounded to 3 significant figures)  
 
 
 
 
 
 
 

nobs=8 lower upper central

68 % 7.36 9.04 6.06-10.8

90 % 5.43 11.8 4.69-13.2

95 % 4.69 13.2 4.11-14.4



Upper limits
• Consider the case of observing nobs events 

• We assume poisson uncertainty on the number of 
observed events given a true number of events n 

• Assume that the number of events are expected to 
be small, so after our observation we will be 
reporting a 90% upper limit on n. 

• Example, if zero events are observed (nobs =0), a 
90% upper limit of 2.3 can be set.



The hunt for discoveries
• If we the signal is expected to be weak (small 

value), it would be sensational if the number of 
observed events is significantly above 0 

• In that case we could be inclined to calculate a 
central limit instead, to illustrate a discovery 

• So depending on the number of observed events 
we will quote either an upper limit or a central limit



Complication B: 
Choosing strategy later

• Assume gaussian PDF with σ = 1, with the strategy of 
changing from 90% upper limits to 90% central limit if the 
observation is 3σ away from 0 (flip-flop) 

Change strategy



Complication B: 
Choosing strategy later

Change strategy

• Assume gaussian PDF with σ = 1, with the strategy of 
changing from 90% upper limits to 90% central limit if the 
observation is 3σ away from 0 (flip-flop) 



Complication B: 
Choosing strategy later

• Problem: Part of the range only has 85% coverage, 
not the 90% that we designed the method for 

Only 85%!



Complication B: 
Choosing strategy later? No!
• In order for the coverage to be meaningful, the type 

of limit must be decided ahead of time 

• Only way to get around the issue: Stick to the ideal 
approach: 

1. Choose strategy (upper/lower or central limit) 

2. Examine data 

3. Quote result



Signal+background
• Consider the case of measuring a number of events  

n = ns+nb 

• With ns and nb corresponding to the number of signal 
and background events, respectively 

• Both signal and background are given by gaussian 
distributions with mean s and b, and variance equal to 
one 

• The signal is expected to be small, so after our 
observation we will be reporting a 90% upper limit on s.



Complication C: 
Constrained parameters

• Since we are counting events, the number cannot be 
negative 

• Assume the background mean is known, b = 7 

• For nobs = 4 we can determine that N = s+b ~5.3 (at 
90% CL) 

• Hence we can conclude that s < -1.7 (at 90% CL)  

• Or can we? The number of events should be zero or 
above



Complication C: 
Constrained parameters

• Do we claim s < -1.7 (at 90% CL)? 

• Answer: The interval will only cover the right result 
90% of the time, this is one of those 10%-cases 

• Answer: We should publish this result to avoid 
biasing the reported numbers 

• Answer: This is clearly unphysical, we can not 
publish a result based on a broken approach, we 
should use a statistical method that fixes this



Feldman-Cousins 
Method

- also known as the “Unified Approach” (mainly by G. 
Feldman and R. Cousins)

See paper: G J Feldman and R D Cousins, Unified approach to the classical 
statistical analysis of small signals, Phys Rev D, 1998 vol. 57 (7) pp. 3873-3889.

http://link.aps.org/doi/10.1103/PhysRevD.57.3873


Approach
• Introduce ranking principle based on the following likelihood ratio, 

or rank: 

• With the likelihood value of observing n given a true value θ, or the 
best fit value of the parameter θbest given the dataset and any 
constraints on θ 

• Completely rethink the construction of acceptance intervals for the 
acceptance belt: For a given true value θ, include values of n to the 
interval from highest rank R(n) to lower, until the desired confidence 
is reached



Approach
• Determine the PDF for your hypothesis, which will provide the 

likelihood used 

• For each true value θ: 

1.  Determine for all possible outcomes n: 

A. The value θbest  that maximises the likelihood L 

B. Calculate the rank R(n) 

2.  Construct the acceptance interval by including the values 
of n, that has the highest rank R(n) to lower until the 
desired confidence is reached



Approach - Example

• Assume a Poisson measurement, so L(n|θ) = 
Poisson(n|θ) 

• For a Poisson the ML estimator is θbest = n 

1. We determine the acceptance interval for one true 
value (e.g. θ = 1) 

2. Repeat 1. for multiple values of θ



• Assume a Poisson measurement with true value θ = 1 

• ‘rank’ indicates in which order the values of n are included for a 
90% interval 

Approach - Example

n P(n|θ=1) θbest P(n|θbest) R(n) rank

0 0.368 0 1 0.368 3

1 0.368 1 0.368 1 1

2 0.184 2 0.271 0.680 2

3 0.061 3 0.224 0.274

4 0.015 4  0.195 0.079

5 0.003 5 0.175 0.017



Example: Constrained 
Gaussian

• Consider again the case of measuring a number of 
events  
n = ns+nb 

• Where again both the signal and background are given 
by Gaussian distributions with mean s and b, and 
variance equal to one 

• Assume the background mean is known, b = 3 

• So if we observe n = 1, which effectively corresponds to  
ns = n - b = -2



Example: Constrained 
Gaussian

• However, when determining the 90% confidence interval on s, we 
have to require that, s > 0 

• So we incorporate this in the definition of sbest: 

• And use that when we calculate R(s) 

• For each signal true value the acceptance interval [α,β] is 
determined such that 

and



Example:  
Constrained Gaussian

• Shown is the 90% confidence belt when applying the FC for a known 
background of b = 3 

• It automatically transitions between  
an upper limit and a central limit 

• Decides for you whether an upper  
limit or central limit is appropriate  
to quote based on the observation 

• If we observe n = ns+nb = 2 the  
measured number of signal events  
is effectively ns =-1  

• The corresponding 90% interval 
is then s < 0.81 (at 90% CL)



Argument against (0)

• Argument: It is more cumbersome to implement! 

• Yes. But, if your problem does not offer any other 
way around you will have to use it 

• Just because it is right, does not mean that it is 
easy



Argument against (1)

• Argument: Takes power away from analysers! 

• Yes. But that is exactly why this method should be 
used. Such that your results are statistically sound 
(if applied correctly!)  

• You are welcome to choose the CL, but once 
chosen, this method invalidates the conventional 
approach of having to make a choice



• Experiment 1 (spent time/money removing backgrounds):  
• b = 0, nobs = 1 
• Feldman-Cousins limit: s < 2.44 (at 90% CL) 

• Experiment 2 (less optimised):  
• b = 10, nobs = 1 
• Feldman-Cousins limit: s < 0.75 (at 90% CL) 

• Argument: This is unfair to the hardworking group! 

• But experiment 2 needs to get extremely lucky to get zero 
events, and lucky experiments will always quote better limits 
(though averaging out luck, experiment 1 will be better off)

Argument against (2)



Exercise 3
• For a measurement of n which is distributed by a 

Poisson distribution from the true value ns. 

1. Determine Feldman-Cousins 90 % acceptance belt 

2. Suppose you observe n = 10 events what is the 
90% confidence interval on ns, what if you observe 
n = 1? 

3. Compare to the central limit using the Neyman 
method



Exercise 3 - extra
• Similarly to the previous exercise, now assume there is a known background 

component. So we have a Poisson measurement of  

n = ns + nb, with a known background of nb = 4 

• Include the constraint: nbest = 0 for nobs < 0 

1. Determine Feldman-Cousins 90 % acceptance belt 

2. Suppose you observe n = 10 events what is the 90% confidence interval on ns, 
what if you observe n = 1? 

3. Compare to the central limit using the Neyman method 

4. Extra: Determine the coverage across the considered values of n 

5. Extra Extra: Do the calculations for 68% and 95% and various values of nobs .  



Exercise 3


