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• I include these slides to be reviewed at your leisure. They 
are straightforward and will not explicitly be on the exam, 
but they may be useful in your research or as part of exam 
solutions 
• By explicit, I mean that these non-parametric tests will not be directly 

part of a question, e.g. “Use a Mann-Whitney test to compare 
distributions A and B.” will not be on the exam 

• Even so, the Kolmogorov-Smirnov test is something we covered 
briefly and can be used as a goodness-of-fit test statistic

Comments
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• For smooth and parametric scenarios, i.e. those with an 
explicit form including parameters, there is an underlying 
cumulative distribution function (CDF) 

• Jason: Do an example here of a Gaussian curve and the 
underlying CDF. Okay.

Cumulative
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• What happens when the underlying CDF is unknown or 
non-parametric? 

• Using the data which all come from a common CDF        
we can produce the empirical distribution function (EDF)

Empirical Distribution Function
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• Jason: Have them use the CDF from earlier and their 
random number generator to create a data set for 
constructing the EDF. Okay. 

• Exercise #0.5 
• Use a random number generator and sample from the underlying 

PDF to generate an empirical distribution function, and compare to 
the CDF function used for the PDF, i.e. compare the EDF constructed 
from the discrete sampling to the CDF which is smooth and analytic.

Examples
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• Unbinned or Histogrammed construction of EDF? 
• Nominally unbinned, because of the loss of information 

• Sometimes data arrives histogrammed and thankfully some tests 
(Kolmogorov-Smirnov, etc.) have forms which can incorporate binned 
data 
• KS-test should be unbinned 

• For KS-test “We can apply a useful rule: As long as the bin width is small compared 
with any significant physical effect (for example the experimental resolution) then 
the binning cannot have an important effect” - Jan Conrad & Fred James

Discussion
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• With a specific model, commonly the null-hypothesis H0 or 
F0, we can test the max divergence with data through the 
EDF with the expectation from the model (or another EDF, 
which we’ll do later) 

• Math bits: The Kolmogorov-Smirnov statistic is the 
supremum of the point-wise EDF (Fn(x)) with the model 
CDF (F(x)) 

• Note that the KS-test is shape-dependent. It is mostly 
insensitive to any normalization differences

Hypothesis Testing for KS-test
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• Model being tested (and parameters) should not be drawn 
from the data set to which the model is being compared 

• If the value of the KS statistic is out in the tails, be wary, 
you are dealing in low-statistics and low-likelihood regimes 
• Thankfully this suggests that the two distributions are similar 

• But, actual differences in tails of distributions are unlikely to be 
identified by the KS-test 

• Only valid for continuous distributions 

• “The distribution of the KS statistic is also not distribution-
free when the dataset has two or more dimensions” -Babu 
& Feigelson 

• Works better without binning

KS-Test features
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• Compare the supremum, i.e. largest difference, for the two 
cumulative distributions  

Graphical KS-test
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*wikipedia
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Note that both data 
sets can be EDFs, 
there is no strict 

requirement that both 
sets cannot be actual 
data, or sampled sets 
(e.g. finite statistics 

Monte Carlo)
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• Using a combination of the number of data points and the 
largest difference between the cumulative distributions, it 
is possible to calculate a p-value, or better yet, use 
computers to do it

Running KS-Test
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• Most often we want to know about the greatest difference 
between the two distributions/samples, regardless of the sign 
(+/-) of the deviation. This is a two-sided or two-tailed test. 

• A one-sided test is where we want to know about deviations in 
only a single direction, i.e. + or - deviations. 

One/Two Sided Test
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• For 1000 random samples from two gaussians w/ a mean 
of 5 for both and widths of 1.2 and 1.6, respectively 
calculate the two-sided p-value for the agreement 
between the two samples. FYI, it should be low. 

• Strangely, using the unbinned ROOT function and  
scipy.stats.ks_2samp(), the answers I get are slightly 
different 
• Both are in the large N regime, i.e. enough data 

• Both (I think) are ‘two-sided’ tests

Exercise #1
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ROOT: 
 Kolmogorov Probability = 9.07999e-05, Max Dist = 0.1 
scipy 2sample: 
Ks_2sampResult(statistic=0.10000000000000009, pvalue=8.1175573157381319e-05) 
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• If you know or hypothesize the expected form of the 
underlying sample (e.g. gamma, exponential, gaussian, 
etc.) the Anderson-Darling test is designed to be more 
sensitive to deviations in the tails of distributions, by 
dividing by the distribution (not a typo) via: 

• The Anderson-Darling statistic (A) is then compared to 
critical values for a desired significance (𝝰) specific to a 
distribution type (gaussian, etc.)

What about the Tails?
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• Start playing with KS-Test and Anderson-Darling 
• Try gaussian distributions, beta, exponential, etc. 

• Try one-sided KS versus two-sided 

• What happens when ‘outliers’ are introduced to the 
samples? 
• Generate some pseudo-random data points from known 

distributions, and add in some additional data in the tails

Exercise #2
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• So with the idea of a robust non-parametric comparison 
between two independent samples there are some nice 
options 

• Mann-Whitney-Wilcoxon a.k.a. Mann-Whitney U test

Two-Sample Tests
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• Instead of making comparisons between set Xa and Xb 
based on the underlying distributions as a function of a 
single variable, look at their ordering and throw some math 
at their ‘ranks’ 

• Ranks: The ordering of a data set

Calculating “Ranks”
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R(Xa
i ) = (1, 2, 3.5, 3.5, 5, 6, 7)

Xa
i = (1, 4, 5, 5, 6, 9, 10)

Xb
j = (1.1, 3, 4, 4, 6, 9, 9.8, 12)

na = 7

nb = 8
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• Also known as the Mann-Whitney-Wilcoxon test we 
calculate the sum of the ranks of Xa in a merged set of Xa 
and Xb 
• Has some resistance to distortion from outliers 

• Ua is then compared to the critical value to get out the hypothesis 
test

Mann-Whitney U test 
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Xa
i = (1, 4, 5, 5, 6, 9, 10)

Xb
j = (1.1, 3, 4, 4, 6, 9, 9.8, 12)

na = 7
nb = 8

Ra is the sum of the ranks of Xa  
in the merged set Xa and Xb

Ua = Ra �
na(na + 1)

2
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• Also known as the Mann-Whitney-Wilcoxon test we 
calculate the sum of the ranks of Xa in a merged set of Xa 
and Xb

Mann-Whitney U test 
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Xa
i = (1, 4, 5, 5, 6, 9, 10)

Xb
j = (1.1, 3, 4, 4, 6, 9, 9.8, 12)

X(a+b) = (1, 1.1, 3, 4, 4, 4, 5, 5, 6, 6, 9, 9, 9.8, 10, 12)

R(X(a+b)) = (1, 2, 3, 5, 5, 5, 7.5, 7.5, 9.5, 9.5, 11.5, 11.5, 13, 14, 15)

Ra(X
(a+b)) = (1, 5, 7.5, ...)

*notation is a bit sloppy/confusing, but should be illustrative
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• For sample sizes >~ 20, we can start to use the ‘normal’ 
approximation, where 

• Which assumes no ties, but can be used to produce values 
related to significance 

• What is the uncertainty for data sets w/ ties?

Mann-Whitney U test 
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mU =
nanb

2

�U =

r
nanb(na + nb + 1)

12

mu is the mean of the U statistic
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• Using the values on slide 17 and 18, calculate the value of 
the Mann-Whitney U statistics and p-values. 

• Using the same sample what happens when you only take  
the first 1/2 of the values and recalculate 
• You can decide what to do with the sample that has 7 events, i.e. 

take 3 or 4. 

•

Exercise #3
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• Statistical Tools for Classifying Galaxy Group Dynamics 
http://arxiv.org/abs/0908.0938

Journal Article Reading
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http://arxiv.org/abs/0908.0938


D. Jason Koskinen - Advanced Methods in Applied Statistics

• Wikipedia 
• https://en.wikipedia.org/wiki/Kolmogorov–Smirnov_test 

• https://en.wikipedia.org/wiki/Empirical_distribution_function 

• https://en.wikipedia.org/wiki/Anderson–Darling_test

Resources
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