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• Bayes Recap 

• Markov Chain 

• Markov Chain Monte Carlo

Outline
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*Material drawn from R. M. Neal, C. Chan, and wikipedia
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• We have Bayes’ theorem 

• or sometimes 

• Let B be the observed data and A be the model/theory 
parameters, then we often want the P(A|B); the posterior 
probability distribution conditional on having observed B.

Bayes Theorem
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P (A|B) =
P (B|A)P (A)

P (B)

P (A|B) =
P (B|A)P (A)P
i P (B|Ai)P (Ai)

P (B|A)P (A)R
P (B|A)P (A)dA

(Continuous)(Discrete)
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• One can solve the respective conditional probability equations for       
P(A and B) and P(B and A), setting them equal to give Bayes’ theorem: 

• In the previous lecture we avoided dealing with the marginal likelihood, 
i.e. the normalizing constant, because it does not depend on the 
parameter(s) A. But it is an important value in order to get an accurate 
posterior distribution which is a useable probability. 

Bayes’ Theorem
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P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• Beta Distribution 

• for a continuous random 
variable (x) given parameters α 
and β: 

• Expectation and Variance: 

• Often used to represent a PDF 
of continuous random 
variables which are non-zero 
only between finite limits

Common PDF (Beta Distribution)
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f(x;↵,�) =
�(↵ + �)
�(↵)�(�)

x↵�1(1� x)��1

E[x] =
↵

↵ + �
V [x] =

↵�

(↵ + �)2(↵ + � + 1)
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• Coin flipping bias with n throws/flips, but now in Bayesian 
where we want the prob. of coming up heads (θ) 

• Likelihood is the standard binomial 

• Prior here is the beta-distribution with 𝝰=5 and 𝝱=17 

• Plot the priors, likelihood, and posteriors for n=100 coin flips with 
heads=66 

• This is the repeat of a previous lecture’s exercise, but now with 
different priors, likelihoods, and posteriors 

• Normalize them to be on the same scale for plotting 

• Does not have to be normalized to 1 

• Normalizations for a binomial likelihood (and posterior distributions 
using a binomial likelihood) are summations instead of integrals

Exercise #1

!6

(continued on next slide)
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• Remember that for Bayesian analyses we include all possible 
values of the parameter, i.e. θ 

• This means for the posterior, it will not be calculated at a single value 
of θ, but over a suitable range of 0-1 

• The likelihood PDF is now technically a ‘probability mass function’ 
because it is discrete 

• Many packages have the binomial PMF (scipy.stats.binom.pmf( k, n, 
p)) 
• I’ll point out again that the above scipy function is a calculation for a single 

probability p, but we want to scan θ over a range from 0-1 

• Don’t worry about the marginal likelihood in the denominator, yet. 

Exercise #1 (cont.)
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• The parameter of interest is θ, which has a range from 0-1 

• Construct the prior and likelihood for small steps in θ from 0-1 

• Iterate from 0-1 in small steps of θ, and then calculate the prior and 
likelihood to construct the posterior distribution

Example #1 Assistance
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fprior(✓) =
�(↵+ �)

�(↵)��
x↵�1(1� x)��1

=
�(5 + 17)

�(5)�(17)
✓5�1(1� ✓)17�1
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flikelihood(k, n, ✓) =

✓
n

k

◆
✓k(1� ✓)n�k =

n!

k!(n� k)!
✓k(1� ✓)n�k

=
100!

66!(100� 66)!
✓66(1� ✓)100�66

<latexit sha1_base64="h8aiv/7oLoQoCVifE/hN3QppCOw="></latexit>
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• Compare to a situation with 10x more data (scale n and ‘heads’ 
by 10)

Exercise #1 plot
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• With 10x more statistics, an obvious feature pops up, i.e. that as 
n⇾infinity the maximum a posterior (MAP) approaches the 
maximum likelihood estimator (MLE), irrespective of the prior

Exercise #1 (cont.)
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• The previous example had only 1 parameter (θ) and 1 prior, so 
it is not computationally intensive to produce the marginal 
likelihood, prior, or likelihood for all relevant values by 
summation/integration. But, when dealing with more 
parameters, the computational load approx. increases 
exponentially with the number of parameters. 

• For summation — or integration via Monte Carlo sampling — the 
number of points (n) grows as           if n points are used to cover 
each parameter (d)

Numerical Limitations
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O(nd)
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• In order to estimate joint likelihood probability functions, e.g. 
likelihoods with multiple parameters, we can use Monte Carlo 
integration and sampling to estimate the distribution 

• In order to estimate Bayesian posterior distributions, it would 
be nice to use the same strategy when confronted by higher 
dimension integrals, e.g. for the marginal likelihood. But, it is 
often difficult — sometimes impossible — to sample from the 
posterior distribution effectively using the same approach as 
what we can do for likelihood distributions 

• Solution is to use Markov chains which converge to the 
posterior distribution

Posterior Distribution Sampling

!12
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• A Markov chain is a stochastic process (random walk) of steps 
or state transitions that is only conditional on the current step/
state. The transition from the current state to the next state is 
often, but not always, governed by a probability  

• More math-like: the conditional transition of Xt+1 only depends 
on Xt and not X1, X2,…, Xt-1 

• In this way Markov chains have no memory or dependence on 
previous transitions

Markov Chain
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P (Xt+1|X1, X2, ...,Xt) = P (Xt+1|Xt)

new state = f(current state, transition probability)
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• For 3 discrete states, there are transition probabilities to move 
to other states, as well as a probability to stay in the same 
state

Markov Chain

!14
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• Transition probabilities can also be shown in matrix notation 

• Visually, it should be clear that the next transition is conditional 
only on the current state

Markov Chain
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Example of Building a Chain

!16

at time n the system is in state 2 = bear, then 3 time 
periods later at time n+3 the distribution is...
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• Nicer visualization at http://setosa.io/ev/markov-chains/ for 
discrete state Markov chains 

• It is not necessary to have discrete ‘states’ in order to use 
Markov chains. It is necessary to be able to have a transition 
probability between the current and potential next state

Markov Chain

!17
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• Let’s make a simulation of a chain w/ two different starting 
points; one chain starting at 100 and another at -27. 

• The step to Xt+1 from Xt is governed by a random number drawn 
from a normalized gaussian PDF (scipy.stats.norm()) that is 
dependent on Xt 

• The PDF is of the form: 

• Plot the values versus the iteration number. The point here is 
to see the Markov chain converge to a stationary distribution

Exercise #2
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1

�
p
2⇡

e�
(x�0.5Xt)

2

2�2
� = 1
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• After maybe 5-10 iterations from the starting point the chains 
look to converge to some stationary behavior 

Exercise #2 (plots)
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Markov Chain Iteration
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• When zoomed in we see that there is some stable distribution 
with some random scatter which the chain converges to 
irrespective of the starting point

Exercise #2 (plots)
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Markov Chain Iteration
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• Assuming that the distribution that this chain converges to is a 
gaussian, use the samples after some number of iterations 
(~10) to estimate the mean and sigma

Exercise #2 (extra)
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Markov Chain Iteration
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• The Markov chains have some very useful properties: 

• Irreducible: Assuming a stationary distribution exists, it is irreducible 
when any of the states can be reached from any other state in a finite 
number of transitions, e.g. all values are reachable no matter where 
you start. Non-zero probability of going from current state to any 
other state. The prob. can be be super-tiny, but just not zero. 

• Aperiodic: The chain does not return to the same state with 
predetermined transitions, i.e. no cycles.  

• Ergodic: Irreducible, aperiodic, and positive recurrent. Roughly 
speaking it should not be stuck or confined to any particular region 
of phase space, and can return to any previous state. 

• Markov chains have a stationary distribution (often noted as 
π(x))

Markov Chain Feature

!22
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• Fails because it can’t get to state D w/o starting in state D 

• Fails because it can’t ever reach E

Irreducibility

!23
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• So how does a Markov chain help with establishing Bayesian 
posterior distributions? 

• Well, Markov chains will asymptotically approach a stable 
distribution, and we can give the Markov chain a distribution 
that is representative of the posterior. Remember that, 

• So using Markov Chain Monte Carlo, the chain can start at 
points that are not typical of the actual posterior (which we 
may not know well), but after enough Monte Carlo iterations it 
should converge to the posterior. 

• Now we need to find transition schemes that cause the chain 
to converge to the stable or invariant posterior distribution.

Markov Chains for Bayes’ Stuff

!24

posterior / prior⇥ likelihood
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• Thankfully, a host of Markov chain methods have already been 
produced, so it is unnecessary to derive our own for most 
problems 

• While there are many types of Markov chains, there are at least 
two that you are likely to encounter 

• Metropolis-Hastings, which is actually a more general case than the 
original Metropolis algorithm 

• Gibbs sampling 

• We will cover Metropolis-Hastings to get a feel for what is 
happening with the chains, but you are encouraged to use 
other Markov chain techniques too

Monte Carlo Markov Chains 
(MCMC)

!25
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• We start with trying to establish what a ‘stationary’ distribution is, 
namely that going from state x to x’ is the same as going from x’ to 
x. 

• Which can be rewritten as  

• The probability of moving from x to x’ can be broken down into 
two sub-steps: picking a random value (x’) based on x according to 
some PDF ( the proposal distribution) and then the accepting the 
move from x to x’ based on an acceptance distribution.

Metropolis-Hastings

!26

P (x)P (x ! x0) = P (x0)P (x0 ! x)

P (x ! x0)

P (x0 ! x)
=

P (x0)

P (x)

P (x ! x0) = g(x ! x0)A(x ! x0)
proposal acceptance
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• Thus, 

• becomes, 

• I could have used xt instead of just x, but x’ is not xt+1. x’ is the 
candidate for transition 

• P(x) is often written as π(x) to reflect that it is the stationary 
distribution

Metropolis-Hastings

!27

P (x ! x0)

P (x0 ! x)
=

P (x0)

P (x)

A(x ! x0)

A(x0 ! x)
=

P (x0)g(x0 ! x)

P (x)g(x ! x0)

=
P (x0)g(x|x0)

P (x)g(x0|x)



D. Jason Koskinen - Advanced Methods in Applied Statistics

• Let’s take a moment to think about the acceptance ratio 

• If r ≥ 1, it means that the move from x to x’ is a transition to a more/
equally likely state and that it should be accepted, i.e. xt+1=x’ 

• If r < 1, there is a non-zero probability that the transition is made, 
i.e. xt+1=x’, but only in proportion to the probability r. Otherwise, 
the transition is rejected and we re-sample at the current point, i.e. 
xt+1=x. 
• This way the Markov chain does not get stuck in a local area because it always has some 

probability of a transition to a less probably state or can make a large (but unlikely) ‘jump’ 
that leads to a more probable state 

• When the Markov chain converges to the stationary distribution it will effectively start to 
sample the posterior distribution, which is exactly what we want

Metropolis-Hastings

!28

r =
A(x ! x0)

A(x0 ! x)
=

P (x0)g(x|x0)

P (x)g(x0|x)
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• Metropolis-Hastings corrects for a bias which could be 
introduced from having an asymmetric proposal PDF, e.g. g(x|x’) 

• We might want an asymmetric proposal PDF because we will 
knowingly start the Markov chain always above/below the maximum a 
posteriori (MAP). Thus, the Markov chain is likely to converge quicker 
if the transitions in either the +/- direction are larger versus the 
opposite direction. 

• But, when the Markov chain does converge, we want it sample the 
posterior distribution properly. So we need to include the probability 
that transitions from proposal function will not be symmetric, i.e. the 
probability of g(x|x’) ≠ g(x’|x).

Quick Note

!29
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• Having a proposal function (PDF) which is narrow can translate 
into many iterations before converging, which is inefficient 

• A proposal PDF which is large can cause the Markov chain to 
‘jump’ over the desired posterior distribution area, and 
converge in some other region 

• Tuning MCMCs is often necessary to balance these two 
competing issues, and rerunning the MCMC multiple times 
helps to establish that you have actually found the posterior 
distribution 

• Just like minimizing for negative likelihoods there are no 
concrete rules for establishing if the MCMC has found the 
invariant global posterior distribution

Proposal Function

!30
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• Depending on r, we have the transition  

• So with r calculated, we can get a random number from a 
uniform random number generator that samples from 0-1 (u) 
and see if the the transition to x’ is accepted or rejected, i.e. if 
r > u the transition to x’ is accepted. 

• Voila, Metropolis-Hastings

Metropolis-Hastings Walkthrough

!31

xt+1 =

8
><

>:

x0, r � 1

x0,with probability r if r < 1

xt,with probability 1� r if r < 1
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• In exercise #1 we scanned across the parameter space (θ) to 
get the posterior distribution and now we’re going use a 
Markov Chain Monte Carlo with the Metropolis-Hastings 
algorithm… by hand (no external packages, yet) 
• MCMC is complete overkill for a problem of this nature, but we’re going to do it 

to understand what is going on 

• Similar to exercise #1 the prior PDF is a beta-distribution with 𝝰=5 and 𝝱=17 

• The likelihood will be the same as before, a binomial PDF w/ n=100 and k=66 
(heads) 

• The proposal function is θp=θ+PDF, where the proposal PDF is a normalized 
gaussian centered at μ=0 with a σ=0.3 (scipy.stats.norm.rvs(0, 0.3)) 

• Because you should already have the likelihood and prior 
coded, now we just have to add the MH algorithm 

Exercise #3

!32

We’re changing notation 
slightly: 
 x’ = θp 

xt = θ
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• It might seem difficult, but break it down into the component 
steps: 

• First step is to us our proposal function to Monte Carlo an x’ 

• Then we calculate the “acceptance ratio” 

• Where P() and g() can be calculated 

Exercise #3 (cont.)
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r =
P (x0)g(x|x0)

P (x)g(x0|x)

P (x0) = posterior(x0) / prior(x0) ⇤ likelihood(x0)

P (x) = posterior(x) / prior(x) ⇤ likelihood(x)
<latexit sha1_base64="I/5fb77+rmETa3f1Wb+pPRNPZmM="></latexit>
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• A useful trait here is that the proposal function PDF (gaussian) 
is symmetric:   

• So for a symmetric proposal function:

Exercise #3 (cont.)
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g(x|x0)

g(x0|x) = 1

g(x|x0) =
1p
2⇡�

e
�(x�x0)2

2�2

<latexit sha1_base64="VlLjVsrR8JaDOsVDrQZsmhVKWPM="></latexit>

g(x0|x) = 1p
2⇡�

e
�(x0�x)2

2�2

<latexit sha1_base64="31ULEI5KU7VmEn4CggBomJV6uHg="></latexit>
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Exercise #3 (cont.)

!35

• For 2000 iterations plot Markov Chain Monte Carlo samples as 
a function of iteration, as well as a histogram of the samples, 
i.e. the posterior distribution.

*This is for a different “k”, i.e. k≠66
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Exercise #4

!36

• Using an external MCMC package, redo exercise 3. 

• You don't have to use Metropolis-Hastings 

• Do you get similar results?
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• Switch to a non-symmetric proposal PDF, and see if your 
personally coded Metropolis-Hastings matches the results from 
the external package MCMC. 

• Go to the lecture on “Parameter Estimation and Confidence 
Intervals” and replace the minimization routine with your 
MCMC, to see if you get the same results

Additional Exercises

!37
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• Exercise 1 is revisiting Bayesian statistics w/ a new prior an 
likelihood 

• Exercise 2 illustrates that by using a Markov chain we can start 
away from our ‘stable’ posterior, but Monte Carlo our way into 
to the stable posterior 

• Exercise 3 is now using the same prior and likelihood from 
Exercise 1, but now instead of scanning we are using the 
MCMC. We can also cross-check our result with the code from 
Exercise 1 because the posterior is the same 

• Can also check that by changing any of ‘k’ or ’n’ that the scan 
method matches the MCMC

Why did we do all this?

!38
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• More information about Bayesian Statistics and Markov Chain 
Monte Carlo techniques: 

• “An Introduction to MCMC for Machine Learning“ https://doi.org/
10.1023/A:1020281327116  

• “Markov Chain Monte Carlo Methods for Bayesian Data Analysis in 
Astronomy” https://doi.org/10.1146/annurev-astro-082214-122339 

Additional Material
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https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1146/annurev-astro-082214-122339
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Backup
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