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• Submission is both: 
• A nicely written and composed PDF file devoid of code 

• You can create a latex/Word/OpenOffice/etc. template right now and save yourself 
time 

• The code you used to generate your results 

• If you have problems email me. Worst scenario is you get a 
reply “I am sorry, but I cannot help you with XXXXXX”. 

• Especially for Ph.D. students, if you don’t get an exam link 
via email, I will post the exam on the course webpage 
within a few minutes of start time CET and you can email 
your exam submission(s): code and PDF write-up.

Exam Notes
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• I will not be reviewing everything in the course today 
• Some text-heavy slides are included online, but won’t be covered in 

class. 

• An omitted topic in today’s review may appear on the 
exam

Announcements
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• The likelihood is the product of the individual probability (or 
probabilities for multiple parameters) of parameters (θ) which 
produce the observed outcomes (𝓍i) 

• The likelihood (𝓛 or L) given the observed data (𝓍i) for the 
parameters (θ) is equal to the probability (𝓟) given the 
parameters (θ) of getting the observed data (𝓍i)

Likelihoods
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L(✓|x) = P (x|✓)

L(✓) =
NY

i=0

f(xi; ✓)

f() is commonly the  
probability distribution function
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• This is a semi-coarse sampling of the LLH space. Establish 
which region(s) of the scanned  parameter values have the 
best LLH and start your fit there, or at multiple points near 
the best LLH.

Raster Scan
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Exercise 3 cont.
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• Likelihood landscapes are important to visualize and 
understand… super important. Plot them whenever possible 
to understand the topology that your minimizer encounters 

• For values of 𝝰=0.6 and 𝝱=0.5 for the previous formula/PDF 
make a 2D plot of the likelihood or LLH landscape



D. Jason Koskinen - Advanced Methods in Applied Statistics

• A change of 1 standard deviation (σ) in the maximum 
likelihood estimator (MLE) of the parameter θ leads to a 
decrease in the in the ln(likelihood) of 1/2 for a gaussian 
distributed estimator 

• Even for a non-gaussian MLE, the 1σ region defined as LLH-1/2 is a 
good approximation 

• Because the regions defined with ΔLLH=1/2 are consistent with 
common 𝜒2  distributions multiplied by 1/2, we often calculate the 
likelihoods as 2*LLH 

• Translates to >1 parameters too, with the appropriate 
change in 2*LLH confidence values 
• 1 parameter,  Δ(2LLH)=1 for 68.3% C.L. 
• 2 parameter,  Δ(2LLH)=2.3 for 68.3% C.L.

ln(Likelihood) and 2*LLH 
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• The LLH (or -2*LLH) landscape provides the necessary 
information to construct 2+ dimensional confidence 
intervals, if the respective MLEs are gaussian or well-
approximated as gaussian 

• Some minimization programs will return the uncertainty on 
the parameter(s) after finding the best-fit values 
• The .migrad() call in iminuit 

• It is possible to write your own code to do this as well

Variance/Uncertainty - Using LLH 
Values
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Contours on Top of the LLH Space
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• Often we want to know if our model fits the data, or vice 
versa, where we find ourselves in the realm of wanting to 
test one hypothesis against another 
• Is my event signal or background? 

• In comparison to model H1 can an alternate model H0 be excluded 
as incompatible with the data?

Beyond Parameter Estimation
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• An very common test-statistic for the likelihood ratio is: 

• Difference between the null hypothesis in the numerator and the 
alternative hypothesis in the denominator is that the null hypothesis 
has a fixed value of one (or more) of the θ parameters whereas the 
alternative hypothesis fits/maximizes the parameter. 

• For a normal distributed, i.e. gaussian, variable the ratio 
follows the 𝜒2 distribution, 
• NDOF = difference in dimensionality between the models 

• Also requires that Wilk’s Theorem is satisfied

Maximum Likelihood Ratio
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⇤(✓, xobs) = �2 ln
L(✓0|xobs)

L(✓̂|xobs)
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• As the number of data points approaches infinity, the LLH 
ratio converges to a 𝜒2 distribution if H0 is true 

• But there are regions where the gaussian, and therefore 
Wilk’s and our use of 𝜒2, breaks down: 
• Low number of events where the probability switches from gaussian 

to poisson 

• Bounds on the model parameters, e.g. as n→infinity the parameter 
does not smoothly vary, but has some truncation or discrete behavior 

• Parameters that have a near-infinite variance 

• The null and alternate models are nested

Wilk’s Theorem… Kinda
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⇤(✓, xobs) = �2 ln
L(✓0|xobs)

L(✓̂|xobs)
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Bayesian
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• The maximum likelihood approach is both effective and 
powerful, but does not necessarily take into account any 
preferences or prior information that may produce a more 
informed or accurate result 

• Thankfully, we have Bayes theorem and Bayesian statistics 
which make explicit use of prior information 

• Bayesian probabilities and statistics can encode an amount 
of belief in (data, model, systematics, hypothesis, 
parameters, etc.)

Transition to Bayes
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• We have Bayes’ theorem 

• or sometimes 

• Let B be the observed data and A be the model/theory 
parameters, then we often want the P(A|B); the posterior 
probability distribution conditional on having observed B.

Bayes’ Theorem
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P (A|B) =
P (B|A)P (A)

P (B)

P (A|B) =
P (B|A)P (A)P
i P (B|Ai)P (Ai)

P (B|A)P (A)R
P (B|A)P (A)dA

(Continuous)(Discrete)
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• We apply prior information not just for discrete 
probabilities, but for probability distributions as well 

• Remember that for Bayesian analyses we include all 
possible values of the parameter, i.e. θ 
• This means for the PDF, it will not be calculated at a single value of 
θ, but over a suitable range

Bayes for Parameter Estimation
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P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• Coin flipping bias with n throws/flips, but now in Bayesian 
style where we want the prob. of coming up heads (θ)

Exercise #1 plot (from MCMC 
Lecture)
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• With 10x more statistics, an obvious feature pops up, i.e. that 
as n⇾infinity the maximum a posterior (MAP) approaches the 
maximum likelihood estimator (MLE)

Exercise #1 (cont.)
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• The previous example had only 1 parameter (θ) and 1 
prior. When dealing with more parameters, the 
computational load approx. increases exponentially with 
the number of parameters. 
• For summation, or integration via Monte Carlo sampling, the number 

of points (n) grows as           if n points are used to cover each 
parameter (d) 

• It’s possible to tune the number of scan or Monte Carlo points, but 
then the number of points necessary for calculation is the product of 
the number of points: 

Numerical Limitations
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O(nd)

dY

i=1

ni
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• So how does a Markov chain help with establishing Bayesian 
posterior distributions? 

• Markov chains will asymptotically approach a stable 
distribution, and we can give the Markov chain a distribution 
that is representative of the posterior. Remember that, 

• So using Markov Chain Monte Carlo, the chain can start at 
points that are not typical of the actual posterior (which we 
may not know well), but after enough Monte Carlo iterations it 
should converge to the posterior 

• Markov Chain Monte Carlo is the solution

Markov Chains for Bayes’ Stuff
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posterior / prior⇥ likelihood
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• After maybe 5-10 iterations from the starting point the 
chains look to converge to some stationary behavior 

Exercise #2 (plots) (from MCMC 
Lecture)
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Markov Chain Iteration
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The samples before 
convergence are commonly 
known as ‘burn-in samples’ 
and are not often included 

when estimating the 
posterior distribution. 
They’re generally just 

discarded and understood as 
the cost of using Markov 

Chain Monte Carlos.
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• For 2000 iterations plot Markov Chain Monte Carlo 
samples as a function of iteration, as well as a histogram of 
the samples, i.e. the posterior distribution.

Exercise #3 (cont.) (from MCMC 
lecture)
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• The posterior distribution in the Bayesian framework provides not only the most 
likely value of our parameter of interest, i.e. the maximum a posterior value, 
but also the uncertainty. The width of the posterior gives the parameter 
uncertainty.  

• For the example below, if 68.3% of the posterior MCMC iterations occur from 
0.5 to 0.59, then that is the 1σ uncertainty range.

Why the Posterior?
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• Unlike the maximum likelihood approach, where we 
normally just have to know the -2*LLH value which can be 
converted to a probability, the Bayesian approach can be 
more resource intensive 

• In order to get a 5σ confidence limit, we need approx. 
1.7M stable posterior points/iterations

Bayesian Complication

!24
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Smoothing, 
Interpolating, and 
Estimation  
- 
Splines and Kernel 
Density Estimation

!25
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• Where do we want to use 
splines? 

• Computer aided drawing 
and graphics 

• Creating continuous 
functions from discrete 
data 

• Creating smooth 
functions from jagged or 
irregular data

Spline/Interpolation Use

!26
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• Linear splines are continuous across the data points, but 
do not match the 1st or 2nd derivative at the knots 

• Quadratic splines (not shown) match the 1st derivative but 
not necessarily the 2nd 

• Cubic splines are continuous and match the 1st and 2nd 
derivative at the knots

Common Spline Types
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*Scipy interpolate

• Hermite splines - 
Continuous cubic splines 
matching the 1st 
derivative but not 
necessarily the 2nd   
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• A problem referred to as ‘ringing’ is pronounced in 
polynomial interpolations.

Polynomial Interpolation
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Data Driven Density Estimation
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• The generic KDE expression can be expressed as:  

• A gaussian kernel is: 

• The kernel at each data point contributes a non-zero 
probability from [-∞,+∞] smoothly with decreasing weight 
as a function of distance 
• Each data point and corresponding kernel integrate to 1 over the 

whole parameter space

Kernel Density Estimator
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K(~x,�) =
1

(
p
2⇡�)D

e�
||~x�~xn||2

2�2

PKDE(~x) =
1

N

NX

n=1

K(~x)
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• The 1/N normalizes the KDE for the number of events 

• No normalization terms in this kernel choice depend on 
values of x 

• The kernel is always normalized to 1

Comment on KDE Normalizations
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K(~x,�) =
1

(
p
2⇡�)D

e�
||~x�~xn||2

2�2PKDE(~x) =
1

N

NX

n=1

K(~x)
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• Every KDE  is, unfortunately, strongly influenced by the 
kernel bandwidth, which is a user defined free parameter

Kernel Bandwidth
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Multivariate Method 
and Boosted Decision 
Tree

!33
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• Using likelihoods to separate background from signal is not 
always feasible 
• Likelihood may be too complicated for analytic or Monte Carlo evaluation 
• High dimensionality makes Monte Carlo computationally expensive 

• Data sets which are linearly separable in variables, e.g. between 
signal and background, have useful tools for doing such a 
separation (Fisher Discriminant) 

• For linear and non-linear classification scenarios and/or where the 
available separators are weak, there is a class of multivariate tools 
• k-Nearest Neighbor 
• Random Forest 
• Artificial Neural Networks 
• Support Vector Machine (can be a linear regression classifier too) 
• (Boosted) Decision Trees 
• etc.

“Simple” Problems

!34
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• Machine Learning algorithms can be overly optimized 
wherein statistical fluctuations from the training data are 
wrongly characterized as true features of the distributions 
• Deficit of training data statistics versus number of variables or 

complexity 

• Model flexibility, e.g. many free parameters

Overtraining

!35
*H. Voss (MPIK)
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AdaBoost Boosted Decision Trees

!36

• Past the first one, each iterative boosted decision tree (classifier) is trained on 
the ‘same’ events. But now, the events have weights according to whether 
they were previously wrongly classified. Also, the regions have weights (W1, 
W2, W3 in the example below) corresponding to the classification error.
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• The combined classifier is the weighted average from all 
trees for the different regions 

• Works very well “out-of-the-box”

Boosted Decision Trees

!37
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• After training, and hopefully testing, the BDT can generate 
a score when run over new data that allows signal/
background separation 
• More negative values are background 

• Place a cut at some score to get desired purity and efficiency

Boosted Decision Tree Classifier
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BDT Score
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We are using the BDT as a 
classifier and want a decision 

about whether a new data event 
is more similar to class-A or 

class-B, e.g. signal or 
background. We use a “BDT 
Score” which is here the BDT 

decision score.
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Uniform Confidence 
Intervals 
- 
Feldman-Cousins
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• Important method for correct coverage when reporting 
analysis results 

• It is — in my opinion — extremely useful for research when 
being correct is important 
• Hopefully ‘being correct’ is always important 

• Can be time-consuming for problems with multiple fit parameters 

• Because simple cases are the only ones easy to do quickly, 
there will not be a Feldman-Cousins question on the exam

Unified Approach to Confidence 
Interval

!40
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Auto-Correlation and 
Statistical Tests
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Example: Arrival Direction of Cosmic Rays

Equatorial

Auger 2014 E � 57 EeV (⇥) / TA 2014 E � 57 EeV (+)

Anisotropies in the arrival directions of ultra-high energy cosmic rays
(data from the observatories Telescope Array (TA) and Auger).

Markus Ahlers (NBI, Copenhagen) Lecture 9 March 6, 2017 slide 27
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Auto-Correlation

• So far, we have only looked into local excesses in individual bins.

• This method was not sensitive to the correlation between events, e.g.
in neighbouring bins or in small clusters.

• Consider Ntot events distributed on a sphere with position ni (unit
vector).

• For two events with label i and j (i 6= j) we can define an angular
distance:

cos jij = ni · nj

• The cumulative two-point auto-correlation function is defined as

C({ni}, j) =
2

Ntot(Ntot � 1)

Ntot

Â
i=1

i�1

Â
j=1

Q(cos jij � cos j) (2)

with step function Q(x) = 1 for x � 0 and Q(x) = 0 for x < 0.
‹ This expression counts the pairs of events within angular distance j.

Markus Ahlers (NBI, Copenhagen) Statistical Hypothesis Tests March 14, 2019 slide 29
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Kolmogorov-Smirnov (KS) Test

• We want to define a quantity that is
a statistical measure for the di↵erence
between the empirical distribution
and background distribution.

• Area between two curves?
Z

d cos j|C({ni}, j) � Ciso(j)|

• Or, more general (Lp norm)?

Z
d cos j |C({ni}, j) � Ciso(j)) |

p
� 1

p

• Kolmogrov-Smirnov: p ! •.
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Markus Ahlers (NBI, Copenhagen) Statistical Hypothesis Tests March 14, 2019 slide 34
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Kolmogorov-Smirnov (KS) Test
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simulation (104 samples)

isotropic / Ntot = 100
dipole / Ntot = 100

for python code see : KS produce.py & KS show.py

Markus Ahlers (NBI, Copenhagen) Statistical Hypothesis Tests March 14, 2019 slide 37



D. Jason Koskinen - Advanced Methods in Applied Statistics

Nested Sampling
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• Nested sampling for Bayesian inference is a more recent 
development and can handle very complicated posterior/
likelihood landscapes 

• Covered just last week, so no review here…

Pure Mystic Beauty
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Any sufficiently advanced technology is 
indistinguishable from magic.
- Arthur C. Clarke



D. Jason Koskinen - Advanced Methods in Applied Statistics

• Using the following likelihood for the two cylinders plot the 
underlying likelihood and posterior distribution:  

• c1=( 2.5, 3.1) and c2=( 2.7, 2.7) and r1=2 and r2=1

Exercise Nested Nested Cylinder
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Fin
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