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Figure 1: Artist’s impression of Kepler-11, which is a Sun-like star which
has six planets in orbit. At times, multiple planets pass in front of the star at
once. This image is based on observations by NASA’s Kepler spacecraft on
August 26, 2010. Credits: NASA/Tim Pyle.
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1. Introduction

The science of exoplanets investigates planets that
are orbiting other stars than our own, and tries to
describe their properties. In order to obtain the com-
positions of these planets, which can be inferred from
their densities, a relationship between mass and ra-
dius is needed. There are two common methods to
observe exoplanets; the first one is the radial veloc-
ity method, which measures small changes in veloc-
ity and position of the star that are caused by the
gravitational influence of the orbiting planet. This
method provides a measure of the planet mass. The
second approach is measuring the star’s decrease
in brightness when a planet transits in front of it,
thereby blocking some of its radiation. Figure 1
demonstrates this effect. Since the size of the planet
determines the amount of starlight that is blocked
from view, the transit method measures the planet’s
radius. Combining these two methods has proven
to be difficult, because both are only suitable for
planetary systems found in very specific, and often
different, circumstances.
Fortunately, there is another approach that can be
used to determine planet masses, for multiplanetary
systems. The Transit Timing Variation (TTV) tech-
nique measures small deviations in transit times,
which are caused by the planets’ gravitational influ-
ence on each other. Astronomers have created dy-
namical models that can predict the transient times
when planetary properties are known. However, in-
verting these models to obtain planetary properties
from a measured TTV is not trivial. For a known
TTV there exists degeneracy between the parame-
ters of the model as well as multimodality in their
posterior distributions. This is where Markov Chain
Monte Carlo (MCMC) can step in to estimate the
parameters that describe the planets.

2. Samplers

This paper investigates two different models to com-
pute the TTVs from planetary properties, which will
be discussed in the next section. Both of these mod-
els require 10+ parameters, therefore the task of run-
ning the MCMC is not an easy one, and it matters
in which way the parameters are sampled from the
distribution. One of the most basic forms of MCMC
is the the Random Walk Metropolis-Hastings algo-
rithm, which selects the next step randomly from a
distribution centered around the current point. It
could greatly improve the efficiency of the sampler if
the next proposed step was chosen with some more
knowledge of the target distribution, so this step
would be more likely to be accepted. In the paper
the authors investigate the efficiency of 6 different
samplers that are applied to TTV data of exoplanets.

• MALA (Metropolis-adjusted Langevin algo-
rithm). This sampler chooses a step based on the
gradient of the posterior distribution, in order to

reach the maximum faster.

• HMC (Hamiltonian Monte Carlo). The problem
with using only the gradient of the distribution is
that its direction will never be aligned with the de-
sired trajectory around the maximum, but rather it
will always point towards it. A nice physical analogy
for this, one which is quite fitting to this paper, is
a planet orbiting a star. The planet will also feel a
gravitational gradient that is only directed towards
the centre of its orbit, and is not aligned with its
trajectory. A planet with zero velocity would there-
fore crash into its star. In the physical system this is
prevented and a stable orbit is maintained because
of exactly the right amount of momentum. HMC
applies this idea to MCMC algorithms, by introduc-
ing an auxiliary variable called momentum to the
system. Similarly to classical mechanics, the Hamil-
tonian of this system can be defined as the sum of
potential and kinetic energy, and Hamilton’s equa-
tions can be solved to propose a new position.

• DEMCMC (Differential Evolution MCMC) and
AIMCMC (Affine-Invariant ensemble MCMC).
Both of these sampling techniques employ multiple
walkers that exchange information with each other,
that determines the size and direction of the next
step.

• SMMALA (Simplified Manifold Metropolis-
adjusted Langevin algorithm). This method uses
not only the gradient, and therefore the first deriva-
tives, of the target distribution, but also their second
derivatives in the form of the Hessian. A disadvan-
tage of this method is that computing the Hessian
can be quite time-consuming. This issue is resolved
in the newly developed method by the authors of this
paper, GAMC (Geometric adaptive Monte Carlo),
which only uses the Hessian frequently in the begin-
ning and gradually reduces its usage over time.

3. TTV models

Multiple models have been developed to model the
TTV from planetary properties. In this paper, the
two models that are used to investigate the efficiency
of the samplers are the Simple Sinusoidal model and
the TTVFaster model.

Simple Sinusoidal Model
This is one of the earlier, more basic methods to
model exoplanet TTVs. It uses an analytical ex-
pression that combines sines and cosines to create a
sinusoidal waveform:

τm(Nm, p) = tlin,m+

Am sin(fTTV tlin,m) +Bm cos(fTTV tlin,m)+

Cm sin(2fTTV tlin,m) +Dm cos(2fTTV tlin,m). (1)

As can be seen from the formula, there are six pa-
rameters for each planet. For a two planet system
this results in 12 free variables. In the equation,
tlin,m is the linear ephemerus for planet m, fTTV is
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the frequency, equal to fTTV 2π/PTTV (with PTTV

the superperiod of TTV signals).
Using this model, a synthetic data set was generated
with true parameters that correspond to the well-
known double planetary system Kepler-307, which
can be seen in figure 2. To make the simulated data
more realistic, 5 minutes of Gaussian white noise
was added to each data point.

TTVFaster Model
TTVFaster is a semi-analytic model that approx-
imates TTVs using a series expansion, which can
be thought of as a sum of multiple sinusoids. The
parameters this model uses are the planet-star mass
ratio µ, orbital period P , initial transit time ti and
eccentricity vector components k and h, which de-
scribe how much the orbit deviates form a circle and
what its inclination is. With the TTVFaster model,
three synthetic data sets were generated. One of the
same Kepler-307 planetary system, and two more
challenging ones of the Kepler-49 and Kepler-57 sys-
tems. The second system is more complex because
it has a total of 4 planets, so the orbits of the inner
planets are also slightly perturbed by the outer plan-
ets. The last system was chosen because previous
studies had found some bimodality in the posteriors
for the eccentricity components h and k.

For both models, the ln-likelihood is of the form:

lnLm = −1

2

∑
i∈Nm

((
τm,i − Tm,i

σm,i

)2

+ ln(2πσm,i)

)
,

(2)

where m = 1, 2 denotes the inner and outer plan-
ets respectively, τm,i gives the transit time calcu-
lated from the TTV model and Tm,i corresponds to
the measured transit times, with σm,i the measure-
ment uncertainties. The total ln-likelihood is then
obtained by summing lnLm for both planets.

4. Methods

The samplers were evaluated on their sampling per-
formance near the posterior maxima, so a burn-in
period was ran first to put the starting points close
to their optimal values. One of the problems with
sampling from the posteriors of these models is that
there are orders of magnitude differences between
the values of the parameters. This makes it very dif-
ficult to choose a proper step size for the samplers.
Also, there is quite a high correlation between some
of the parameters, which leads to a slow sampling of
the full parameter space. These issues were solved
by applying a linear coordinate transformation, in
order to rotate and scale the parameter space.
The efficiency of the six different samplers was com-
pared by running 10,000 iterations on the four gener-
ated data sets, after burn-in. Two factors were taken
into account when determining the efficiency: how
well the posterior distribution was sampled from,

and how long it took the samplers to complete the
10,000 iterations. The first point was investigated
by looking at the Effective Sample Size (ESS) of the
MCMC chains, which gives the number of effectively
independent draws from the posterior distribution.
A high ESS means that the chain has mixed well
and therefore has a good estimate of the posterior
distribution. For each sampler, two measures were
computed: the mean ESS over the total elapsed time,
and the minimum ESS over this time. For a high ef-
ficiency, these measures should give a high outcome.
The sampler that was found to perform best was also
used in a longer run to compute the posterior distri-
butions of the parameters, so they could be com-
pared to the true values of the models.

5. Conclusions

For the first data set, which was generated using
the Simple Sinusoidal model, the HMC sampler is a
clear winner, generating by far the highest ESS/time
values. This sampler works really well if the poste-
rior distributions are Gaussian. For the first data
set made with the TVVFaster model (the Kepler-
307 one), both the HMC and the MALA samplers
score high. Figure 3 shows a corner plot of the pos-
terior distributions of all the parameters. It can be
seen that most of the parameters are uncorrelated,
except for the eccentricity components h and k, and
more weakly the planet mass ratios. The Kepler-
49 system required a smaller stepsize and this led
to another winner: the GAMC sampler performed
the best for this data set. Finally, for the Kepler-
57 system both GAMC and DEMCMC had the
best efficiency. Altogether, this research shows that
different samplers are suited for different scenarios.
Choosing the right sampler can make a significant
difference in computing time: the best performing
samplers only took hours to converge, as opposed
to weeks for the worst performing ones. Some sam-
plers, such as GAMC and DEMCMC performed con-
sistently alright for all the data sets, so these would
be a safe choice. In future studies, the authors would
like to investigate the effects of the sampler choice
on the burn-in period and on more complex N-body
TTV models.

Figure 2: Figure from the paper that displays the simu-
lated data set from the simple sinusoidal model, with 5 min
of Gaussian white noise. The red line shows the model’s true
parameters.

3



Figure 3: Corner plot from the paper of the posterior distribution of the parameters from the TTVFaster model of
the Kepler-307 planetary system. The HMC sampler was ran for 2 million iterations with a 500,000 burn-in period.
The blue squares correspond to the true values of the parameters.
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