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Probabilistic and non-probabilistic sampling

• Sample vs. population

• Probabilistic sampling: Each subject has some given
probability and the sample is drawn given this distribution.
E.g. Simple Random Sampling (SRS)

• Non-probabilistic sampling: based on the subjective
judgment of the researcher rather than random selection.
Not all subjects have probability of being drawn. E.g.
Election polls
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Quality or quantity?

An Interesting Question...

”Which one should I trust more: a 1% survey with 60 %
response rate or a non-probabilistic dataset covering 80 % of
the population?”
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Quality, quantity and problem difficulty

• Data quality

• Data quantity

• Problem difficulty

CAN WE SOMEHOW LINK THESE IDENTITIES?
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Quality, quantity and problem difficulty

• Data quality

• Data quantity

• Problem difficulty

CAN WE SOMEHOW LINK THESE IDENTITIES?
Well, yes, of course...
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Error on the sample mean

Ḡn − ḠN = ρR,G ·

√
1− f
f
· σG (1)

• Data Quantity Measure:
√

1−f
f (f = n

N , relative sample

size)

• Problem Difficulty: σG, the variation over G

• Data Quality Measure: ρR,G, data defect correlation
with RJ = 1 if j ∈ sample: recording/response mechanism
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MSE of Ḡn

MSER(Ḡn) = ER[Ḡn − ḠN ]2

= ER[ρ2R,G] · 1− f
f
· σ2G

≡ DI ·DO ·DU

(2)

• Increase data quality by reducing DI = ER[ρ2R,G] the
Data Defect Index (d.d.i.).

• Increase the data quantity by reducing the Dropout
Odds, DO = 1−f

f .

• Reduce the difficulty of the problem by reducing the
Degree of Uncertainty, DU = σ2G.
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Data Defect Index

(1) ”What are the likely magnitudes of DI when we have
probabilistic samples?”

• VSRS(Ḡn) = 1−f
n

N
N−1σ

2
G

• DI ≡ ESRS [ρ2R,G] = 1
N−1

• DI ∝ N−1 holds in general for any probabilistic sampling
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Data Defect Index

(2) ”How do we calculate or estimate DI for non-probabilistic
data?”

• Not possible to estimate from sample itself

• Construct a reasonable prior distribution of ρR,G from
historical or neighboring studies.

Figure: Trump and Clinton polls (1)
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A Law of Large Populations

PROBABILISTIC: A usual driving force for stochastic behaviors
is the sample size n.

• Central Limit Theorem

• Law of Large Numbers

NON-PROBABILISTIC: The driving force is actually the
population size, N.

Zn,N ≡
Ḡn − ḠN√

VSRS

=
ρR,G

√
1−f
f σG√

1−f
n

N
N−1σ

2
G

=
√
N − 1ρR,G

(3)
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A Law of Large Populations

Among studies sharing the same (fixed) average data defect
correlation ER[ρR,G] 6= 0, the stochastic error of Ḡn, relative
to its benchmark under SRS, grows with population size N at

the rate of
√
N .
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The Return of the Monster N

The effective sample size

neff ≤
f

1− f
· 1

DI
. (4)

Figure: Illustration of neff compared to the relative size.1

1Figure from Mehrhoof (2016)(2)
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Conclusion

• Sometimes quality over quantity

• Beware of your recording/response mechanisms

• The more the data, the surer we fool ourselves.
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