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The following is a summary of the article ”Statistical Paradises and Paradoxes in Big Data (I):
Law of Large Populations, Big Data Paradoxes, and the 2016 US Presidential Election” by Xiao-Li
Meng published in the Annals of Applied Statistics 2018 vol. 12a. The article contains many aspects
of the Paradises and Paradoxes in Big Data, but I will only focus on the few points presented in the
introduction.

The article presents a way to access both data quality
and quantity and problem difficulty of a given (probabilistic
or not) sampled data set. Furthermore it presents the
seemingly statistical paradise of Big Data (as much data as
you need, available any time you want it), as a pitfall to be
wary of, or as Meng puts it ”The bigger the data, the surer
we fool ourselves”.

An interesting question. A question which has
put focus on the data quality-quantity trade-off is the
following: ”Which one should I trust more: a 1% survey
with 60 % response rate or a non-probabilistic dataset
covering 80 % of the population?”. To be able to even try
to answer this question we first need to find an identity
which can link data quality, data quantity and problem
difficulty. Meng presents the identity Ḡn − ḠN - the
error on the sample mean of an estimator from the actual
population mean. It is found that this error can be defined
as

Ḡn − ḠN =
corrJ [RJ , GJ ] · σRJ

· σG
f

(1)

Here RJ is the so called recording mechanisms, where Rj =
1 for j ∈ In(In is a size n subset of 1, . . . , N , our population)
and Rj = 0 otherwise. f is the relative sample size, f = n

N .
σG is the standard deviation of the estimator and σRJ

=√
V arJ(RJ) =

√
f(1− f).

This all results in the final identity:

Ḡn − ḠN = ρR,G ·

√
1− f
f
· σG (2)

Let us start from the last term: the term σG represents
the problem difficulty, which is the variation over G in the
sample. If GJ is a constant, then σ2

G = 0, whereas the more
variation G has, the larger the problem difficulty.

The middle term,
√

1−f
f , represents the data quantity, and

also reflects the relative size of the sample compared to the
population, f. When the whole population is contained in
the sample, this term renders zero error since f = 1. On
the other hand it renders infinite error, when no data is
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recorded. And then we have the first term, ρR,G. This is
the most critical part of the product, as it captures data
quality. This term is the data defect correlation and is
the correlation, corrJ [RJ , GJ ], between the variablr Xj

and the response/recording indicator Rj . This indicator is
present to indicate how the data was sampled. Rj = 1 for
j ∈ sample and 0 otherwise. The data defect correlation
captures data quality since it measures both the sign and
degree of selection bias caised by the R-mechanism(method
of sampling e.g. probabilistic or non-probabilistic). If
larger values of G have a tendency to be either more or less
recorded then the value Ḡn either over- or underestimates
the tru value ḠN . The degree of bias is captured by the
size of ρR,G and the over-/underestimate is captured by the
sign.
Statistically, we can use this model, if the recorded values
of G are trustworthy. This means that if a respondent
answers with a certain response (ex.: ”Vote for Clinton”),
then it means only that the respondent is sufficiently
inclined to vote for Clinton at the time of the response and
nothing else. Otherwise we will be dealing with response
bias which would complicate our problem even further!

MSE of Ḡn. Now we can express the root mean-
squared error (MSE) of Ḡn(under any R-mechanism) to
find out how to reduce it.

MSER(Ḡn) = ER[Ḡn − ḠN ]2

= ER[ρ2R,G] · 1− f
f
· σ2

G

≡ DI ·DO ·DU

(3)

This subsequently gives us three ways of reducing the
MSE:

• Increase data quality by reducing DI = ER[ρ2R,G]

the Data Defect Index (d.d.i.).

• Increase the data quantity by reducing the
Dropout Odds, DO = 1−f

f .

• Reduce the difficulty of the problem by reducing
the Degree of Uncertainty, DU = σ2

G. Typically only
possible by adding additional information to the prob-
lem.

The article further shows that the most effective way to
reduce the MSE is by increasing the data quality - which
might be contrary to our standard belief of the more the
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(a) Clinton poll[3]. (b) Trump poll[3].

data, the better the statistics. Thus it seems obvious to look
at the data defect index (d.d.i.).

Data Defect Index. Some questions raised about
the d.d.i. that need to be answered are the following:
(1) ”What are the likely magnitudes of DI when we have
probabilistic samples?” and (2) ”How do we calculate or
estimate DI for non-probabilistic data?”.
To answer (1) first: For any Simple Random Sampling
(SRS) we have that Ḡn is unbiased for ḠN and its MSE is
the same as its variance,

VSRS(Ḡn) =
1− f
n

S2
G, S

2
G =

N

N − 1
σ2
G, (4)

which leads to the d.d.i. for any SRS to be given by

DI ≡ ESRS [ρ2R,G] =
1

N − 1
, (5)

It shows that for any probabilistic sampling DI ∝ N−1

holds in general and will thus deisappear for large N - as
we are used to.
Answering (2) is a little less mathematical and more
applied statistical. The d.d.i. is something that needs to
be evaluated individually for each problem. One issue with
the d.d.i. is that it is not possible to estimate DI from the
sample itself without any assumption or knowledge about
the R-mechanisms(recordings). Alas this is often the case,
and thus DI is unknown. But what can be done, proposed
by Meng, is to ascertain an actual error and ρR,G after an
event and use this information on further likewise events.
This will make it possible to construct a reasonable prior
for ρR,G or DI from historical or neighbouring studies. For
the 2020 US presidential election it will thus be possible
to construct a plausible prior distribution of ρR,G from
histograms of prior ρR,G, see Figure ?? for illustration
of data defect correlation from 2016 US presidential election.

A Law of Large Populations. When sampling
probabilistically a central driving force for stochastic
behaviors of the sample mean(and many other variables) is
the sample size n. We recognize this from the Law of Large
Numbers and from the Central Limit Theorem. Meng
shows that when the sampling is no longer probabilistic n
is no longer the driving force, but the population size N is.
This can be seen by looking at the z-score, which is still
just the error but expressed in terms of a (probabilistic)

FIG. 2: Illustration of neff compared to the relative size.a

a Figure from Mehrhoof (2016)[2]

sample variance.

Zn,N ≡
Ḡn − ḠN√

VSRS

=
ρR,G

√
1−f
f σG√

1−f
n

N
N−1σ

2
G

=
√
N − 1ρR,G

(6)

This is of course not entirely correct as the actual MSE can
be very different from VSRS(Ḡn) but it is good enough for
an estimator. This all leads to Law of Large Populations
(LLP) which states that Among studies sharing the same
(fixed) average data defect correlation ER[ρR,G] 6= 0, the
stochastic error of Ḡn, relative to its benchmark under
SRS, grows with population size N at the rate of

√
N . This

shows us that we are under a curse of large populations as
the error will grow with the population size.

The Return of the Monster N. To show how
much damage a seemingly small data defect correlation can
inflict, Meng has computed the effective sample size neff of
a Big Data set by equating MSE(Ḡn) to the mean-squared
error of the SRS estimator with the sample size neff . This
leads to an expression for the effective sample size as

neff ≤
f

1− f
· 1

DI
. (7)

An illustration of the effective sample size compared to the
relative size, f = n

N , can be seen in Figure 2.

Real world application. This theory can help under-
standing and predicting the outcome of non-probabilistic
sampling, such as elections. In the article, Meng has used
data from the 2016 US Presidential Election to demonstrate
the effectiveness of this theory. It helps guide us to an
understanding of why some polls predict a much different
outcome than what is actually seen under elections.
All in all this article presents the seeming statistical par-
adise of Big Data as a paradox more than a paradise and
to tread carefully when venturing into the great unknowns
of Big Data and non-probabilistic sampling.
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