Lecture 1:

Chi-Squared \& Some Basics

D. Jason Koskinen
koskinen@nbi.ku.dk

Variance

- Because it's something we all should know

$$
\sigma^{2} \equiv\left\langle(X-\mu)^{2}\right\rangle
$$

$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

σ^{2} is the variance
μ is the mean, which can sometimes also be the expected value
N is the number of data points
x_{i} is the individual observed data points

Unbiased Variance

- Just because it's something we all should know

$$
S_{N-1} \equiv \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

S_{N-1} is the 'unbiased' estimator of the variance
\bar{x} is the mean calculated from the data itself
N is the number of data points
x_{i} is the individual observed data points

For further information on $1 /(\mathrm{N}-1)$ see Bessel's correction wikipedia

Probability Distribution Function

- Probability Distribution Functions (PDF), where sometimes the " D " is density, is the probability of an outcome or value given a certain variable range

- The PDF does not have be nicely described by a single continuous equation

Probability Distribution Function

- The PDF does not have be nicely described w/ equations, and sometimes cannot be

PDFs

- They can be discrete, $f(x)$ continuous, or a combination
- They often have an implied conditionality

X

- "What is the energy of an outgoing electron from nuclear beta-decay?" implies beta-decay
- PDF should be normalized to 'one'

PDF Possibility

- Let's imagine an experiment which has two identical electron traps (A \& B) separated by a finite barrier. An electron w/ energy below the barrier threshold is deposited in trap A. Sketch out the PDF of the x position after a very short time.

x-position
time $\approx \frac{1}{\infty}$
*rough sketch, don't take it too literal

PDF Possibility

- Sketch out the PDF of the x position after a very short time.

- My trap has a potential which keeps it mostly in the middle of the trap, and it's mostly in trap A because it hasn't had time to tunnel.

time $\approx \frac{1}{\infty}$
*rough sketch, don't take it too literal

PDF Possibility

- Sketch out the PDF of the x position after a near infinitely long time.
time $\approx \infty$

PDF Possibility

- Sketch out the PDF of the x position after a near infinitely long time.
- Same distribution shape as before, but now the probability of being in trap A and $\operatorname{trap} B$ are equal.
- Had to renormalize the PDF

PDF Possibility

- Notice that there are discontinuities in the PDF, which is not uncommon in experimental PDFs due to boundary conditions. How many discontinuities as a function of x ?
time $\approx \infty$

Some PDF Remarks

- Previous examples are univariate PDFs, i.e. probability only as a function of a single variable (x), but the PDF comes from a multivariate situation
- Multivariate, because the PDF doesn't just depend on x, but also the time of the measurement, energy of the electron, barrier height, etc.
- We'll stick with univariate (or at least 1-dimensional unchanging PDFs) initially, before moving onto more complex situations later in the course
- Probability distribution functions can be used to not only derive the most likely outcome, but having recorded the outcome figure out the mostly likely situation. For example, if we record a single electron at a position in trap B, it is more likely that the data was taken at $t=\infty$ versus $t=1 / \infty$

Cumulative Distribution Function

- The Cumulative Distribution Function (CDF) is related to the PDF and gives the probability that a variable (x) is less than some value x_{0}
- Basically, the integral or sum from -infinity to x_{0}

$$
C D F=F(x)=\int_{-\infty}^{x_{0}} f(x) d x
$$

where $f(x)$ is the PDF

Cumulative Distribution Function

- The Cumulative Distribution Function (CDF) is related to the PDF and gives the probability that a variable (x) is less than some value x_{0}

PDF

CDF

Empirical Distribution Function

- The Empirical Distribution Function (EDF) is similar to the CDF, but constructed from data
- Used in methods we'll cover later, e.g. the Kolmogrov-Smirnov test
- Much less common than the CDF or PDF

Gaussian PDF

- Gaussian Probability Distribution Function (PDF) only relies on the mean (μ) and the standard deviation (σ) of a sample

$$
f\left(X ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Gaussian PDF

- Gaussian is one of the single most common PDFs, in part because of the Central Limit Theorem (CLT)

$$
f\left(X ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Central Limit Theorem

- Because the central aim is the practical application of analyses techniques, we will not be overly concerned with theorems, math proofs, and theoretical derivations. This is an applied methods course.
- In loose terms, the CLT says that for a large number of measurements of a continuous variable X done in batches*, the distribution of the batch means \bar{X} will be approximately gaussian.
- Even if the underlying PDF (or joint PDFs) of X are not themselves gaussian
*As a rule of thumb, the batch size should be ≥ 30

Statistical Tests

- Chi-squared test

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{(\text { Expected Uncertainty })^{2}}
$$

- Often, the χ^{2} is shown assuming N observations across some range of values (i)

$$
\chi^{2}=\sum_{i} \frac{\left(N_{i, o b s}-N_{i, e x p}\right)^{2}}{\sigma_{i, \exp }^{2}}
$$

- If the uncertainties are only statistical, and N is large enough that $\sigma_{i, \exp }=\sqrt{ } N_{i, \exp }$, then we get the conventional

$$
\chi^{2}=\sum_{i} \frac{\left(N_{i, o b s}-N_{i, e x p}\right)^{2}}{N_{i, \exp }}
$$

Chi-Squared

- The Chi-squared lets us know how far away our observed data is from our expectation(s)
- The denominator is the uncertainty ${ }^{\wedge} 2$, so the entire χ^{2} is always calculated relative to the total uncertainty
- The total uncertainty is a combination of the statistical uncertainty AND any systematic uncertainty

Basic Reduced Chi-Square

$$
\chi_{\text {reduced }}^{2}=\chi^{2} / D . O . F .
$$

$\chi_{\text {reduced }}^{2} \ll 1$
$\chi_{\text {reduced }}^{2} \approx 1$
$\chi_{\text {reduced }}^{2} \gg 1$

Basic Reduced Chi-Square

- Each data point has an associated approximate difference to the expectation of: $1.1 \sigma, 0.25 \sigma$, and 0.1σ. So the total is 1.35 and with 3 data points, we get an approximate reduced chi-square of $\sim 0.4-0.5$.

Chi-By-Eye

Gaussian/Poisson Uncertainty is

Evervwhere

- Thanks to basic statistics, and Siméon Poisson, an estimate of the uncertainty on data points is generically sqrt(number of events). It works because almost all data is at some level a collection of discrete events.
- Does not include the impact of systematic uncertainties
- Does not include the impact of any biases either
- Works better for larger number of events than smaller
- When in doubt, take the square root of something

Exercise 1

- Read in data from "FranksNumbers.txt"
- There is some non-numeric text in the file, so data parsing is important
- Use any methods and/or combinations of coding languages which work(s) for you
- Parse data in python, analyze in MatLab
- Parse data and analyze in R
- Parse data in C, analyze in Fortran (not recommended, but possible)
- Copy/paste using spreadsheets (Excel, OpenOffice, etc.) is discouraged because the data is already in .txt files, and reading in .txt files is a very important skill
- Note that a future data set has 1.28 M entries, which will kill a spreadsheet
- Calculate the mean and variance for each data set in the file
- There should be 5 unique data sets

Exercise 1 pt. 2

- Using the eq. $y=x^{*} 0.48+3.02$, calculate the Pearson's χ^{2} for each data set
- Write your own method
- Bonus: use a class or external package to get value
- Using the same eq. calculate a χ^{2} where the uncertainty on each data point is ± 1.22
- From the two χ^{2}, what is a better reflection of the uncertainty?
- ± 1.22 or sqrt(events)?

Some chi-squared Remarks

- A chi-squared distribution is based on gaussian 'errors', so beware when errors/uncertainties are not gaussian
- Low statistics
- Biases in the data can also produce non-gaussianity
- The concept that a reduced chi-squared near 1 is 'good' depends strongly on the degrees of freedom (DoF) and/or data
- A reduced chi-squared of $1.2 \mathrm{w} / 20$ DoF is not a cause for concern
- 1.2 w/ 1000 DoF is very, very bad and incredibly unlikely

Conclusion

- Know your distribution functions (probability, cumulative, and empirical)
- Central Limit Theorem says that means of most variables will produce a gaussian distribution of the mean value for a large numbers of measurements
- Chi-square(d) calculation is a frequent metric for goodness-of-fit and quantitative data/hypothesis matching
- Very light load this week, so try and get your software working
- If you have problems 'ask' classmates who have similar computer setups
- If you have solutions help your classmates
- First problem set should be available now in Absalon
- Read "Not Normal: the uncertainties of scientific measurements", there will be a discussion next class

Extra

Distribution Functions

- Many nice illustrations for different functions at https:// commons.wikimedia.org/wiki/Probability distribution
- Many of the plots used in the lecture notes come from wikipedia (because it's a great resource)

