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Abstract:

With optical tweezers, a tracer particle of nano- to micrometer size is caught in the focus of a
laser trap. Within the last years optical tweezers have become an important tool in biophysics
and are nowadays used in many experiments. A recent application of optical tweezers are studies
in viscoelastic media like the cytoplasm of a living cell or a filament solution. So far, in none of
these studies, optical tweezers could be used for quantifying the applied forces. The reason is
that there is no method for measuring forces in viscoelastic media in situ, as ez situ calibrations
cannot be applied. Indeed, there is considerable interest in such force measurements. A force
calibration is in particular important for investigating how forces are generated inside the cell.
In this work, I present a novel force calibration method for optical tweezers inside viscoelastic
media. The method is based on the validity of the fluctuation-dissipation theorem. Knowledge
about the trapped particle or the medium is not required for the application of the method,
except for the medium’s temperature. In this thesis, the complete theoretical framework of the
method is derived. Simulations and experiments are presented, which have been performed in
order to test the method.

Furthermore, within this thesis, two investigations on the viscoelasticity of biological systems on
the subcellular scale are presented, which employ microrheological and simulation techniques.
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1 Introduction

A Dbiological cell is fulfilling various tasks by the interaction of many different molecular species.
Within a living cell, the reactions between these molecular agents have been observed with nu-
merous biochemical and bio-molecular methods. With such methods, the influence of important
physical quantities like time, temperature, dimension, space, concentrations and force is mostly
not assessable. Hence, with non-physical methods, a profound understanding of how cellular
components interact in order to make the whole cell work, can not be established.

Nowadays, biophysicists seek to gain quantitative insight by the application of physical methods
to the investigation of biological systems. Optical tweezers are a relatively young technique
which allows the examination of distances, durations and forces on very small scales. In in
vitro experiments, this technique has already been successfully applied to the exploration of
biomolecules like molecular motors [1]. Furthermore, in a small number of in vivo cell experiments
with optical tweezers, biological processes have been investigated. For example the tweezers have
been used to track the motion of a trapped bead under its incorporation by a macrophage [2].

The next step would be to apply optical tweezers in order to investigate how forces are generated
inside the living cell. These intracellular forces are generated by a complicated interplay of
biomolecules, filaments and organelles like molecular motors, microtubuli and the cell nucleus.
An understanding of how these components are mechanically acting together inside the living cell
would deliver new insight into complex life processes like cell division and nuclear positioning.

So far, it has not been possible to use optical tweezers to measure or to exert forces quantitatively
in the cell. The reason for this is that no method is available for the in situ calibration of the
tweezers inside the cell. The main objective of this thesis is to develop such a method and
to test it (chapters 3-8). Furthermore, within this thesis I have worked on the viscoelasticity
of biological systems on the subcellular scale by microrheological (chapter 9) and simulation
(chapter 10) approaches.

In chapter 2, an introduction to optical tweezers and to viscoelasticity is given. A formal de-
scription of a particle which is trapped with the optical tweezers and which performs Brownian
motion within a viscoelastic medium is introduced in chapter 3. Systems in which the trapped
particle in the viscoelastic medium is additionally exposed to an external perturbation are de-
scribed in chapter 4. In chapter 5, the situation of a trapped particle bound to a biological
structure is discussed. Furthermore, bio-active systems will be discussed in which the medium
is not only viscoelastic, but also contains biological processes that can alter the motion of the
trapped particle. The novel FDT method for the calibration of optical tweezers in viscoelastic
media is presented in chapter 6. The central assumption of the FDT method is the validity
of the fluctuation-dissipation theorem (FDT) which gives the method its name. The method
demonstrates that by performing two simple measurements, basically all linear properties of the
system can be found. This involves that the FDT method includes a novel microrheology ap-
proach to the investigation of viscoelastic properties of the medium. In chapter 7, it is explained
how to perturb the system in the active part of the FDT method. Furthermore, simulations that
allow testing the method are presented. Experiments, which have been performed in water in



6 Chapter 1. Introduction

order to test the FDT method beyond the simulations, are shown in chapter 8. In chapter 9,
an investigation of the frictional force, which is exerted on a trapped bead close to a phagocyte
cell membrane, is presented. The underlying biological question of this microrheological study
is, how the viscoelastic properties of the medium close to the phagocyte membrane are altered
to enable an efficient binding of nearby particles. Finally, in chapter 10, work on the microscopic
origin of viscoelasticity is shown. The non-linear shear strain response of a semiflexible network
has been investigated by simulations of shear cell experiments.



2 Optical tweezers and viscoelastic media

As described in the introduction, this work focuses on calibration of optical tweezers in vis-
coelastic media. In this chapter some requisite basics of both optical tweezers and viscoelasticity
are presented. This is fundamental for the subsequent chapters.

2.1 Optical tweezers

In this section an introduction to the method of optical tweezers is given. Optical tweezers are
a sophisticated technique with many different features. I will only give a basic outline of this
technique here, a more comprehensive description can be found in the review by Neuman and
Block [3].

2.1.1 History, principle and forces of optical tweezers

The concept and the technique of optical tweezers was developed by Arthur Ashkin during the
1970s and 1980s and the first stable laser trap was presented by him and his coworkers in 1986 [4].
Today single beam optical tweezers are a well established and valuable tool in biophysics from
the single molecule level up to the cellular scale. Optical tweezing is performed by a laser beam
which is tightly focused with an objective lens of high numerical aperture. A sketch of the
experimental setup of the optical tweezers at the Niels Bohr Institute in Copenhagen is shown
in Fig. 2.1. The steep gradient of the electro-magnetic field in the proximity of the laser focus

Experimental setup

Microscope

Quadrant
photodiode

Laser Beam Vanable
NA:YVOy expander apenuator

(C+DHA-B)

A+ D)(B+C)

1:1 telescope D(.t.l)
Camera

VCR | Monitor I

Optical Tweezerss Group,Niels Bohr Institute

Figure 2.1: Sketch of the experimental setup of optical tweezers at the Niels Bohr Institute in Copen-
hagen, by courtesy of Prof. Lene Oddershede.

results in a gradient force on a microscopic or nanoscopic dielectric particle. If that particle has

7



8 Chapter 2. Optical tweezers and viscoelastic media

a refractive index which is higher than that of the surrounding medium, the gradient force is
directed towards the focus. If that force balances the scattering force which also acts on the
trapped particle and tends to push it into the direction of light propagation, the particle will
stay close to the focus, i.e, the particle will be trapped.

Theoretically, the forces that are acting on the dielectric particle can be described for two limiting
cases. When the particle radius is much larger than the wavelength of the trapping laser, the
optical forces can be computed from ray optics. Here, the force on the particle is given by the
rate of momentum change of the light and it is proportional to the light intensity, see Fig. 2.2.
In cases where the radius of the trapped particle is significantly smaller than the wavelength of

' Lazer Dight in
(]
\—:/ Intensity prafile

—

Foousing lens

Polystyrene bead

Dt = M mgchum

Fret = i+ o

EeE o om om e ow E o o

Figure 2.2: Principle sketch of optical trapping in the ray optics picture, by courtesy of Prof. Lene
Oddershede. A particle encountering the laserbeam will be pushed towards the center
of the beam, if the particle’s index of refraction is higher than that of the surrounding
medium. As the light is deflected in the particle, a gradient force results that pushes the
particle vertically to the propagation of the laserbeam, towards the largest intensity of
light. By focussing the light, the gradient force pushes the particle backwards as well. If
this force overcomes the propagation force of the laserbeam, the particle is trapped. The
forces exerted on the dielectric sphere have been calculated by Ashkin [5].

the light, the conditions for Rayleigh scattering are satisfied and the particle can be treated as
a point dipole in an inhomogeneous electromagnetic field. The gradient force Fg..q applied on
such a dipole in an electromagnetic field is then simply given by the Lorentz force which is the
force exerted on a charged particle in an electromagnetic field. This force is proportional to the
light intensity gradient and one has for a sphere of radius R [3]

2o
Fgrad = Wva (21)

m

where [ is the intensity of the incident light, c is the speed of light in vacuum, and the polariz-
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ability « of the sphere is given by

2
-1
a=n2R3 <L> , (2.2)
with m being the ratio of the index of refraction of the particle to the index of the medium

np/nm. For the scattering force one has

Plony
Fscatt = %’ (23)

where (P) is the time-averaged Poynting vector and the scattering cross section o of the sphere
is given by

(2.4)

12875 RS <m2 - 1)2
O‘ =

3\ m2 + 2

The scattering force is in the direction of propagation of the incident light and is proportional
to the intensity.

2.1.2 Optical tweezers as a Hookean spring and calibration

For small displacements, the gradient force is proportional to the distance from the equilibrium
position. This means that the optical trap acts like a Hookean spring which has a characteristic
stiffness that is proportional to the light intensity. Such a harmonic force description of the
trapping force is a very good approximation within a spatial extension of about 300nm [3] and
it even holds for gold particles with a radius as small as R = 20nm which are trapped with a
laser power of 270mW [6]. Throughout this work I describe the action of the optical tweezers
on the trapped particle solely as a harmonic force. This is necessary for the description in terms
of linear response theory. The validity of the harmonic force assumption can be tested by, e.g.,
optical potential analysis which is described in paragraph 6.1.3.

The stiffness constant of the optical trap will be denoted throughout this work as . In principle
x can be found from computation of the electromagnetic forces which are acting on the trapped
particle. In practice, those forces depend on experimental parameters which are difficult to
determine, and a quantitative agreement between calculated and measured forces can only be
obtained for relatively simple situations [7]. In general one has to calibrate the trap stiffness.

In quantitative experiments employing optical tweezers, the motion of the trapped particle has
to be tracked. That motion can be recorded with high sampling rates by quadrant photo diode
position detection systems. Here one typically measures voltages which have to be converted
into positions by positional calibration which is another essential part of the calibration of optical
tweezers. The calibration of optical tweezers is the major concern of this work.

2.1.3 Experiments with optical tweezers

Biophysical experiments with optical tweezers can be divided into two general classes. The first
class are experiments where mechanical properties of a biological material are investigated by



10 Chapter 2. Optical tweezers and viscoelastic media

observing the motion of a trapped micron-sized bead made of polystyrene or latex. The bead
is not chemically bound to any structure and performs Brownian motion in the harmonic trap
potential and interacts hydrodynamically with the surrounding medium. From the observed
bead motion the mechanical properties of the medium can be derived. This technique, which
is called microrheology, is explained in more detail in section 2.3. The materials examined by
microrheology can be membrane-like structures [8,9] or gels and filament solutions [10-13] or the
cytoplasm of living cells [14]. The force calibration method presented in this work allows for a
simultaneous determination of the mechanical properties in viscoelastic media corresponding to
one-point microrheology.

Experiments of the second class are those where the trapped particle is chemically bound to a
biological structure like a single molecule, a filament [15], an organelle [16] or a cell [17]. In most
cases those structures can not be trapped themselves by the optical tweezers with sufficient force.
Therefore an artificial bead has to be chemically attached to such a structure and that bead is
then used as a handle which couples the trap force to the biological structure. This enables
the manipulation of the biological structure by the optical tweezers. If the tweezers have been
calibrated, one can manipulate with quantitatively known forces, and forces can be measured
quantitatively. In that way optical tweezers have been successfully applied since the 1990s to
the characterization of single molecules like molecular motors [1,18] or RNA polymerase [19,20].
Optical tweezers have allowed biophysicists to observe the forces and dynamics of those molecules.
Optical trap force-spectroscopy has led to greater understanding of the stochastic nature of such
molecules. The novel force calibration formalism portrayed within this work suggests a way of
how to obtain force spectra more directly.

Most experiments of both classes have so far been performed in vitro. This means for microrhe-
ological measurements on the one hand, that it is not measured within living matter but rather
on polymer solutions which contain purified ingredients. For measurements on molecules or fila-
ments on the other hand, in vitro experiments typically involve taking the molecule or filament
out of its biological context, diminishing the number of unknown parameters, and getting it to
work in an artificial environment, typically in a sample chamber [21]. Some other experiments
with optical tweezers have already been performed on living systems and an increasing effort
towards such in vivo experiments over the past couple of years can be observed. I will discuss in
vivo experiments in more detail in section 2.4. The novel method presented in this work aims at
a calibration of optical tweezers inside in vivo systems.
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2.2 Viscoelasticity

The term wiscoelasticity describes materials that exhibit both viscous and elastic characteristics.
This means that those materials behave both fluid-like and solid-like with respect to their re-
sponse to stresses. Classical solids, which are purely elastic materials, strain instantaneously
when stretched and return to their original state once the stress is removed. Fluids on the other
hand, which are viscous materials, resist shear flow and strain linearly with time when a stress
is applied, but they do not return to their original, undeformed state.

Viscoelasticity is exhibited by different material classes like glasses, metals, rubbers and poly-
mers. Within biophysics we are typically confronted with viscoelasticity of polymers or polymer
solutions. The book of Ferry gives a comprehensive survey of the viscoelasticity of such materials
and its microscopic origin [22].

Whereas elasticity is usually the result of bond stretching along crystallographic planes in an
ordered solid, the microscopic origin of viscoelasticity is of statistical nature. Generally, vis-
coelasticity is the result of the diffusion of atoms or molecules inside of an amorphous material.
This involves that the response of the material to stress is characterized by one or several typ-
ical time scales. Equivalently, one observes a certain time-dependence of stress response to a
deformation. One has [23]

Oay() :/_ dt'G(t —t’)augi?z,(t/), (2.5)

where Oug, (t')/0t’ is the velocity of shear deformation, o, (t) is the resulting stress and G(t)
is the wviscoelastic shear function which is a material property!. Its Fourier transformed, the
viscoelastic dynamic shear modulus G(w) is composed of the real part G’'(w) which accounts for
elastic processes and is called storage modulus and of the imaginary part G”(w) which accounts
for dissipative processes and which is called loss modulus.

2.3 Microrheology

The investigation of viscoelastic properties of materials is the concern of the research field of
rheology. The traditional approach to determine viscoelastic properties experimentally is called
macrorheology at which stresses or strains are applied on bulk samples of the medium. This
involves that external forces are exerted on the surface of the sample. A more recent approach is
microrheology where only minute amounts of the material to be investigated are required. Either
a known external force or the thermal force arising from fluctuations within the medium acts
on microscopic spherical particles that are immersed in the material. These particles interact
hydrodynamically with the medium. By measuring trajectories of the immersed particles, vis-
coelastic properties of the medium can be extracted. Comparisons of the elastic moduli obtained
by microrheology have yielded good agreement with results from macrorheology. A technique to
perform microrheological experiments is optical tweezers.

Yuzy (t) and o4y (t) are off-diagonal components of the strain and stress tensor, respectively.
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An approach to microrheology is to link G(w) to a quantity which describes the frictional inter-
action between the medium and the microscopic bead moving in the medium. This quantity is
the so-called friction retardation spectrum 7(w) and for incompressible media it can be related
to G(w) with the generalized Stokes-Einstein relation, [10,24-26]

A(w) = 67r%R. (2.6)
iw

In Eq. (2.6) the expression G(w)/(iw) plays the role of a frequency-dependent viscosity. Eq. (2.6)
represents one of the two basic equations of one-point microrheology?. It is derived by solving the
equation of elastic equilibrium do;;/0x; = 0 for w;; with no-slip boundary conditions on a rigid
spherical surface [10]3. Eq. (2.6) is written in a Fourier-transform notation which is convenient if
the power spectrum is used as a measurable quantity for the determination of ¥(w), as proposed
by Schnurr et al. [10] and Gittes et al. [11]. More details on that approach are given in section
9.1. Mason, Weitz and Gang proposed another approach which makes use of the mean square
displacement for the determination of the friction retardation spectrum 4(s) [24,27]. In this
case one has to apply a description which uses the Laplace transform with complex frequency
s instead of the Fourier transform with real frequency w. Both approaches are widely-used in
microrheology. Microrheology measurements have been applied in many different viscoelastic
media including living cells [14,28-32].

Based on experimental rheology results, viscoelastic media have been modelled for a long time
as systems of springs and dashpots [33]. Many viscoelastic media can be described by a limited
number of springs and dashpots and therewith by a limited number of time scales. In the
cytoplasm which can be considered as an viscoelastic medium in first approximation, one has
found that this description with a limit number of springs and dashpots does not longer apply.
One finds rather a continuum of time scales [30,34]. By a description of the bead-medium
interaction through the continuous frequency-dependent function 4(w), it can be accounted for
such a continuum of time scales. In this work I use such a description and apply it to the
calibration of optical tweezers.

2.4 Quantitative force measurements in living cells with optical
tweezers

Several biological processes inside the cytoplasm of a living cell have already been investigated
by means of optical tweezers. For example, the subdiffusion of a natural lipid granule in a yeast
cell [14] and the motion of a trapped bead during its incorporation by a phagocyte [2] have been
tracked with optical tweezers.

In none of these experiments optical tweezers could be used for measuring forces inside the
cell. The reason is that no method for calibrating and measuring forces in situ inside viscoelastic
media was available. Indeed, there is considerable interest in such force measurements, especially

2A second equation, the Fluctuation-dissipation theorem, is used to relate the friction retardation spectrum to
a measurable quantity, see section 4.4.

3For viscoelastic media which are composed of a filament network and a solvent, the condition of incompress-
ibility would be given for high enough frequencies, when the filament network and the incompressible solvent are
moving as one.
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for the elucidation of the intracellular mechanics of the cell. Several research groups aim at
investigating how biomolecules, filaments and organelles like molecular motors, microtubuli and
the cell nucleus are mechanically acting together inside the living cell in order to perform complex
life processes. For example, nuclear positioning in yeast cells is a process which takes place in
the cell interphase. During that process, polymerizing and depolymerizing microtubli that are
associated to bundles and linked to the nucleus are perpetually positioning the nucleus in the
center of the cell [35]. Experiments and computer simulations suggest that several motor proteins
and crosslinker proteins must play a roll in this process [36]. Force measurements could reveal
crucial information about the interaction of the individual components. Cell division is another
example for a complex process where microtubuli and many different proteins act together.
Initially a mitotic spindle is formed which segregates the chromosomes to the daughter cells
and in the end of the process the cell body divides. Many details of cell division are far from
understood. Also in this case, force measurements could help to understand that complex and
dynamic system. With a proper force calibration, optical tweezers could be used here as a
force-scope.

More basic force measurements with optical tweezers in living cells would aim at the deter-
mination of mechanical properties of the individual components, like the bending stiffness of
microtubuli or the force exerted by molecular motor proteins. It would be very interesting to
compare the results to in vitro studies, since it is not straightforward that the mechanical behavior
of the components is the same for different environments. For example, thermal bending modes
of microtubuli which are typically present in water could be suppressed or altered in the more
dense and viscoelastic cytoplasm, which might result in diminishing of entropic contributions to
the total microtubule spring constant.



3 The trapped particle in a viscoelastic medium

In section 2.3 it has already been shortly explained how optical tweezers can be used to investi-

gate mechanical properties of viscoelastic media. For a deeper understanding of how a particle
which is trapped by optical tweezers behaves in a viscoelastic medium, it is necessary to start
from the equation of motion. In the first section of this chapter the equation of motion will be de-
rived as a linear differential equation of second order for the system at thermal equilibrium where
no external forces are present. The interaction between the trapped particle and the medium
is characterized by the friction relaxation spectrum 4(w) which is introduced and portrayed by
means of several examples in section 3.2. In section 3.3, the behavior of the random force Fg(t),
which is not white noise, is described. Finally, in section 3.4 the power spectrum which is an
important measurable quantity is introduced.

3.1 Equation of motion in linear response theory

In this chapter only closed thermodynamic systems in equilibrium are considered. This implies
that no external forces F,y are present and the system is denoted as being undriven. Further, any
heating effect due to the optical trap is neglected. In the following, a continuous, homogeneous
medium is assumed in which the motion of the trapped object is described by three independent
degrees of freedom, the coordinates x, y, z. Here, one of these coordinates xz(t) is described
without loss of generality. In linear response theory, terms of higher than first order in x or in
the derivatives &, & do not appear. In the most general form, the equation of motion describing
the bead dynamics at time ¢ is then given by the differential equation

0=fole(t =)+ fule(t —7)] + fo[2(t — 7)] + Fine(t) with 7> 0, (3.1)

where fq/1/o are functions which are linear in z(t — 7), @(t — 7) and #(t — 7), respectively.
Note that ¢t — 7 indicates the whole range of past times, because in general the present particle
motion at time ¢ can depend on its whole history, due to causality. One can be more specific
about the functions f;/, since it is clear that there must be a harmonic trapping force term
—kz(t) and an inertia term mi(t), where k and m denote the optical tweezer’s stiffness and the
trapped particle’s mass, respectively. Technically, the linearity of fj/1/2 in positions, velocities
and accelerations over a whole range of times can be described with integrals. One has

folz(t—7)] = — /000 7&@ x(t — 7)dT — k2 (), (3.2)
=0, homogeneity

filzt—7)] = — /000 v (1) (t — 7)dr, (3.3)

Plit-r)] = - /0 " a(P)i(t — 7)dr — miE(t), (3.4)

14
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with the memory functions 70/1/2(7')1. In Egs. (3.2) to (3.4) it is integrated over all positive time
lags 78. The memory functions -, /1/2(7) are position-independent since the medium is assumed
homogeneous'. Moreover, homogeneity of the medium implicates that one does not need to
include a position memory term in Eq. (3.2)2, i.e., 70(7) = 0. The only position dependence is
then due to the optical trap. Further, the internal force Fiy(t) is given by the random thermal
force FR(t) which originates from molecules of the medium which incessantly hit the trapped
particle due to their thermal motion, see section 3.3. From these general arguments, Eq. (3.1)
can be rewritten as general integro-differential equation

mi(t) = — /000 v (T)z(t —7)dr — /000 Yo ()& (t — 7)dT (3.5)

-
inertia ~~
velocity memory acceleration memory
—kz(t) + FR(t) ,
— ——

trapping force  random thermal force

where the interaction of the trapped object with the medium is specified by the velocity and
acceleration memory terms. Eq. (3.5) represents an extension of the generalized Langevin equation
[37] by a trapping force term and an acceleration memory term which accounts for inertial forces
on the bead due to the backlash of displaced fluid. The generalized Langevin equation has
been extensively applied in microrheology in non-biological [24] as well as in biological [30, 31]
materials. Furthermore, the extension of the equation by acceleration memory has been used to
describe the Brownian motion of a sphere in an incompressible fluid [38].

3.2 The complex friction retardation spectrum

In this section I switch to a frequency-dependent description of the problem attained by means of
Fourier and Fourier-Laplace transforms. The complex frequency dependent friction retardation
spectrum 7(w) is introduced which accounts for all viscous and elastic processes in the interac-
tion between particle and medium. Thereafter some physical examples which are relevant for
experiments with optical tweezers are given.

3.2.1 Fourier transform of the equation of motion and definition of the fric-
tion retardation spectrum

A Fourier decomposition (see appendix A.2, page 139) of Eq. (3.5) gives

—?mi(w) = —iwy(w)i(w) —ri(w)+ Fr(w), (3.6)
—_————

friction force Fyic (w)

¥Mathematically, 7o /1/2(T) can be understood as weighting functions which embody the importance of posi-
tion/velocity /acceleration at past time ¢t — 7 for the present motion. The physical meaning of the functions v /2(7)
is frictional or hydrodynamic memory. This is discussed in more detail in section 3.2.

$In the literature mostly another parameterization of the memory integral — J5° m(r)a(t—7)dT is used [27,37],
where the integration range is (—oo,t). To avoid the present time ¢ being an integral boundary and because it
appears more intuitive, a parameterization with integral boundaries (0, c0) will be used. See appendix A.1.

'Note that position independence of v (7) and y2(7) are a requirement for linearity.

2In other words, it is not important for the present motion of the particle where it was in the past.
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with the friction retardation spectrum,

Y(w) =N (w) +iwye(w), (3.7)

in which the real part accounts for dissipative processes, whereas the imaginary part accounts
for elastic processes.

3.2.2 Simple viscous friction

Simple viscous friction is instantaneous and only coupled to the velocity of the particle,

1) = 0(t),
72(t) = 0. (3.8)

Here, 7o represents the constant friction coefficient. For a spherical particle of radius R which is
immersed in a viscous liquid of viscosity 7 it is given by the Stokes law,

Yo = 6mnR. (3.9)

From the Fourier-Laplace transform of Eq. (3.8) one obtains a frequency-independent friction
retardation spectrum,

3(w) = 0. (3.10)

3.2.3 Hydrodynamic interactions between a microsphere and a simple vis-
cous medium

In this section, also the acceleration memory term in Eq. (3.5) has is taken into account. This
term corresponds physically to an inertial force from entrained fluid. The acceleration mem-
ory term has not been included explicitly in the approaches for microrheology mentioned in
section 3.2.4, though one should expect that it is non-zero in general viscoelastic media. It is
straightforward to extend those approaches for the presence of acceleration memory. In fact,
the mathematical description in these approaches will not change at all, one only has to under-
stand the friction retardation spectrum 4 (w) as the full expression, Eq. (3.7). In the following,
I present two examples from the literature where the friction retardation spectrum becomes
frequency-dependent because of hydrodynamic interactions.

Stokes friction for a sphere in harmonic rectilinear motion in an incompressible fluid

In 1851 Stokes considered the hydrodynamics of an incompressible fluid surrounding a sphere of
radius R that performs rectilinear harmonic motion with no-slip boundary condition, at vanishing
Reynolds number, and with the fluid at rest at infinity [38,39]. Stokes found an expression for
the frequency-dependent frictional force which gives the friction retardation spectrum

5 L R . 2RZ?
PYStokes(w) =Y <1 + (1 — 1)— — 17> )

dw)  9d(w)? (3:11)
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Here, d(w) is the penetration depth which characterizes the exponential decrease of the fluids
velocity field as a function of the distance from the oscillating sphere. It is given by

d(w) = <2—”>1/2. (3.12)

w

From a Fourier back transform of the corresponding frictional force which is exerted on a particle
following an arbitrary trajectory x(t), one gets the memory functions ( [37,38] and references
therein)

M(r) = Y0(7),
2
Fo(r) = §7TR35(7') + 67T,0R3f3/27'_1/2. (3.13)

Here, f, = v/(nR?) represents a ratio between the kinematic friction v and the cross sectional
area of the sphere. Since during its past motion the particle was displacing fluid, the present
motion of the fluid is affected. One has backflow effects which cause that the present friction
between particle and fluid depends on the past motion of the particle. The memory functions in
Eq. (3.13) describe quantitatively how the interaction force between body and fluid depends on
the body’s past motion.

Proximity of a hard wall

Many applications of optical tweezers require that the trapped microsphere is close to the mi-
croscope coverslip which can be considered as a hard wall. Consequently one must include the
hydrodynamic interaction between the microsphere and the essentially infinite surface of the
coverslip [40]. For a sphere undergoing linear oscillating motion parallel to a plane, one finds the
friction retardation spectrum,

’?hw,R/l(w) = :}/Stokes(w) {1 + %?X
1-i B 2/ R \?
T3 dw) 9 <m>
+§ {1 —exp[—(1—1)(20 + R)/d(w)]}} } , (3.14)

where [ is the distance from the sphere’s center to the coverslip plane.

3.2.4 Viscoelastic media
Incompressible viscoelastic media and one-point microrheology

For viscoelastic incompressible one-component media, the friction retardation spectrum % (w) is
related to the viscoelastic shear modulus G(w). One has a simple relationship between these
quantities which is the generalized Stokes law, Eq. (2.6).
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Viscoelastic two-fluid medium

Levine and Lubensky calculated the response function® a(w) = 1/(iw¥y(w)) of a sphere in a
viscoelastic two-fluid medium which consists of an elastic network permeated by a viscous fluid
[41]. The dynamic shear modulus of the medium is assumed to be given by G(w) = p(w) — iwn
where 7 represents the viscosity of the background solvent and u(w) is the complex, frequency-
dependent shear modulus of the network. From Levine and Lubensky’s result one obtains for
the friction retardation spectrum

H(w) = Gw%:")R {1 + (W) + 7= ;(w) 455:2)\H [j—B} }_1 . (3.15)

Here, J(w) and X (w) are terms which contain corrections to the response function coming from
the inertia of the two-fluid medium and from the difference in the stresses in the background
fluid and in the viscoelastic network, respectively. \ is the Lame coefficient of the network which
may in general be a complex function of frequency®*. The crossover frequency wp is characterized
by the decay time of the network compression mode at the length scale of the bead. Thus the

function H [i} controls the cross-over from compressible network dynamics to an incompressible

network.

Obviously, Eq. (3.15) represents an extension of the generalized Stokes law, Eq. (2.6), for two-
fluid media that accounts for the interaction processes between background fluid and viscoelastic
network which are happening when a microsphere is moving in the medium. Eq. (3.15) demon-
strates that it is difficult to obtain a correct expression for the friction retardation spectrum
A(w) even if one has a good model for the viscoelastic modulus G(w) of the network. The other
way around, because it is difficult to determine the correction terms, it is difficult to obtain the
correct modulus G(w) from a measured friction retardation spectrum 4(w), i.e., microrheology
as described in section 3.2.4 is of limited use here. The solution to this problem is to measure the
correlation in the motion of two microspheres [42]. This technique is called two-point microrheol-
ogy and it yields clearer information about the network modulus p(w). Two-point microrheology
has been applied extensively during the past years in bulk media [25,31,43-46], and for particles
embedded in membranes [47] .

Crosslinked actin networks

From the viscoelastic modulus theoretically derived by Gittes and MacKintosh [48], Mizuno et al.
calculated the response function a(w) for a bead inside a cross-linked actin network [49]. From
that result which agrees well with experimental data for frequencies higher than ~ 100Hz [49]
one obtains for the friction retardation spectrum

[e.e]

—1

1 5 1 1
Y o, 3.16
’)/((A)) iw (277Rpactinlc kBTq%lP zjl n4 B 1&)/2001) - ( )

n=

Here, R is the bead radius, pactin is the length density of actin filaments per unit volume, [, it
the mean distance between crosslinks, ¢; = 7/lc, l;, = Kpend/(kBT) is the persistence length and

3The response function will be introduced in chapter 4.
) and  together define the compression modulus, Kv = X + 2u/3.
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w1 = (Kbend/¢)qi- Further, Kpend is the bending modulus of the individual actin filaments and ¢ is
the transverse friction coefficient per unit length of a filament. Eq. (3.16) describes the response
of a bead in an actin network in the absence of tension. That model has been generalized for
the presence of a tension o. The generalized model has been found to be consistent with data
from a bead within an actin-myosin solution where the actin network is under tension due to the
activity of myosin motors [49].

Viscoelastic liquids and solids

According to Qian [50], viscoelastic media can be subdivided into two classes: viscoelastic liquids
and viscoelastic solids. Viscoelastic liguids exhibit only transient elasticity which means that the
memory function v (t) is approaching 0 for ¢ — oo. In other words, in viscoelastic liquids the
diffusion of the particle will only be confined by the optical trap potential. Viscoelastic solids
on the other hand involve a contribution to ;(¢) which is constant over time. Consequently
one obtains a simple elasticity term of the same structure like the trapping force term which
corresponds to persistent elasticity. An example for a viscoelastic solid is a medium in which the
particle remains trapped within a strong network of filaments. Thus the particle feels two traps,
the optical trap and the trap generated by filaments. Both traps will affect the long-time limit
of diffusion.

3.3 Random force

After the consideration of the friction retardation spectrum 7(w) in the last section, I will turn
now to another important and complicated quantity which shows up in Eq. (3.5). This quantity
is the random force Fi(t). The Fourier transformed of the random force F(w) is characterized
by a correlation function which is given by the fluctuation-dissipation theorem of second kind
(Ref. [51], pages 268-270 and Ref. [37], pages 33-37),

(Fr(w)Fj (W) = 2kpTRe {F(w)d(w — ')} . (3.17)
Note that the delta function on the left hand side of Eq. (3.17) does not imply that one has
white noise. Eq. (3.17) gives rather the colour of the noise by modulating the delta function with
the the friction retardation spectrum 4(w). Thus Eq. (3.17) represents a general expression for

the correlation function of the random force in the frequency domain, but it can be formulated
equivalently in the time-domain. By applying the Fourier back transform twice one obtains

(Fr(t) Fa(ts)) = /_ ” dw /_ Y (Fr(@) F() ) expliot ) exp{~iu/t:}
— 9ksT /_ " dwRe {(3(w)} expliw(ty — t2)}

— kT /_ Z dw% /_ Z dt {y1.4(t) + o (8)} exp{—iot} expliw(ts — t2)}

= kT {"yl,s(tl — tQ) + ")/275(151 — tg)} . (3.18)
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Here, it has been used that the real part of the friction retardation spectrum is given by

o0

Re (7)) = 3 [ dt (ns(0) + a0 exp{ it} (319)
—0o0

with the symmetrized functions 1 (¢) and #2,5(¢)5. The fluctuation-dissipation theorem of second
kind, Eq. (3.17) can be regarded as a consequence of the fluctuation-dissipation theorem of
first kind which will be introduced in chapter 4, but it can also be obtained from relating
the correlation function of the random force to the correlation function of the random stress
tensor [52]. Egs. (3.17) and (3.18) both state that if one has frequency-independent friction,
7(w) = const., which corresponds to that v, (¢) and 425(¢) are both proportional to 6(t), there
will be no correlations in the random forceS. This is the case for simple viscous friction (see
paragraph 3.2.2) and one refers to the random force as white noise. If on the other hand one
does not only have such instantaneous friction, one will have correlations in the random force.
This follows automatically from the frequency-dependence of 4(w) in Eq. (3.17). Accordingly,
in that case the random force can not longer be designated as white noise, it must rather be
addressed as coloured noise. Coloured noise arises in all cases which are described in sections
3.2.3 and 3.2.47. In some cases the colouring of the noise will be only observable at very high
frequencies, however.

With Eq. (3.17), the thermal force can be written as

Fr(w) = V/2kpTRe {7(w)}i(w), (3.20)
where 7(w) is an uncorrelated Gaussian process with
(@) (@) = 0(w — ). (3.21)

3.4 Power spectrum

In experiments, the trajectory is measured for a finite measuring time 7}, and one may expand
the trajectory into a Fourier series with discrete frequencies wy = 27k/Ty, (k = 0,£1,+2,...)
(see appendix A.4, page 140). As an approximation for the delta-function on the right-hand
sides of Egs. (3.17) and (3.21) which is continuous in the frequency w, one may write

T,
lim 2_m5’“7’“’ = 0(wp — wyr)- (3.22)
7

Tim—o00

The power spectrum is proportional to the average intensity of the Fourier expansion coefficients®.
From the Fourier transform of the equation of motion, Eq. (3.6), and from Eq. (3.17) one obtains

®In the literature one often forgets about the subscript s for the symmetrized function. It is included here for
mathematical correctness as done in the book of Kubo [37].

SNote that F2,5(t) o< 6(t) and symmetry of vo,4(t) together require v2(t) to be zero, since 6(t) = (). This
implies that any non-zero acceleration-dependence of the friction causes colored noise.

"An experiment in which the noise coloring due to the hydrodynamic interactions described in paragraph 3.2.3
is directly observed is suggested in Ref. [53].

8The physical meaning of the power spectrum can be illustrated in the following way: If z(t) would be the
noise produced between two terminals of an electrical network, P(w) would be the intensity of the noise heard by
filtering frequencies to a narrow bandwidth Aw around w.
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for the power spectrum at frequency w = wy

_ o (@) 2keTRe{(w)}
Plw) = T&;lgoo T |k +iwy(w) — w2m|?’ (3:23)

by approximating the Fourier transform by a Fourier series with 7}, — oo and by using Eq. (3.22).
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external perturbation

In this chapter, I describe systems out of equilibrium where a time-dependent external pertur-
bation is added to the undriven system of the last chapter. These systems are denoted as driven
systems. The perturbation is taken into account as an external force in section 4.1. Average po-
sitions of the trapped particle are linked to this external force via the response function which is
introduced in section 4.2. In section 4.3 the Kramers-Kronig relations are presented which relate
the real and imaginary part of the response function to each other. The fluctuation-dissipation
theorem which connects equilibrium systems from chapter 3 to perturbed systems is introduced
in section 4.4. Two practical options to perturb the system are relocation of the trap position and
relocation of the piezo stage position as portrayed in sections 4.5 and 4.6, respectively. A conve-
nient measurable quantity related to these options of driving the system is the active spectrum
which is introduced in section 4.7.

4.1 Equation of motion with external force

A time-dependent external force F(t) is added to the equation of motion of the undriven
system, Eq. (3.5). Thus one has

mi(t) = - /0 o (Pt — 7)dr — /O o ()it — 7)dr (4.1)

inertia

velocity memory acceleration memory
—kx(t) +  Fr(t) +Fex(t).
—— N——

trapping force R thermal force

4.2 The response function

Under a perturbation, the average value () is in general different from zero while in equilibrium
one has () = 0. For a small time-dependent perturbation, a linear relationship between the
Fourier components of the external force and the Fourier components of the response exists [54],

(@(w)) = X(w) Fext (w)- (4.2)

X(w) is called response function or generalized susceptibility. Whereas the real part of the
response function describes the reactive response which is in-phase with the driving force, the
imaginary part of the response function describes how the system dissipates energy, since it is
out of phase with the driving force. A Fourier decomposition of Eq. (4.1) gives

—w?mi(w) = —iwF(Ww)E(w) — kE(W) + Fr(w) + Fex (w). (4.3)

From averaging and taking into account that the random force is zero in average, (Fr(w)) = 0,

one obtains )

x(w) = K+ iwy(w) — w?m’ (4.4)

22
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The response function y(w) describes the response of a system where the particle is caught by
a static harmonic trap of stiffness x which is centered at position xr, = 0 to a time-dependent
external force. In the literature, one often uses the response function of the system which does
not comprise the static optical trap,

(W) = —~—5—. (4.5)
From . .
(#(w)) = aw) [~r(Ew)) + Foxt(@)] = X(@) Foxe (@) (4.6)
one obtains a relationship between x(w) and a(w) [25],

1
)= @+

4.3 The Kramers-Kronig relations

The Kramers-Kronig relations are mathematical properties which connect the real and imaginary
parts of any complex function analytic in the upper half plane. These relations are often used to
relate the real and imaginary parts of response functions in physical systems because causality
implies that the analyticity condition is satisfied and conversely.

The real part of the response function, x’(w), is related to the imaginary part x”(w) by the
Kramers-Kronig relation (KKR) [10,11,25, 54]

X/(w) — _'P/ dCCQ_wQ (48)
= ——/ cos(wt)dt /oo X" (¢) sin(Ct)d¢, (4.9)
0 0

7r
where P denotes a principal-value integral, meaning the ¢ — 0 limit of the sum of two ( integrals,
from 0 to w — ¢, and from w + € to co. However, as written in Eq. (4.9), this is equivalent to
successive sine and cosine transforms of y”(w) which can be conveniently performed for the
discrete data points of a long time series [10]. The second KKR which conversely relates the
imaginary part of the response function to the real part is given by

(W) = 2“’7? / (sz (4.10)

In the time-domain, the equation defining the response function, Eq. (4.2), becomes

ity = | () Faxs (£ — 7). (4.11)

For the special case of the system of a trapped bead immersed in a viscoelastic medium, the
response function x(7) describes how the average position (z(t)) of the trapped bead responds
to an applied time-dependent force history Fuy(t — 7). In general, the response x(7) must be
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zero for 7 < 0 since a system cannot respond to a force before it is applied. It can be shown
that this causality condition implies that the Fourier transform x(w) is analytic in the upper half
plane.

The Kramers-Kronig relations have a physical interpretation. The imaginary part of a response
function describes how a system dissipates energy, since it is out of phase with the driving
force. The Kramers-Kronig relations imply that observing the dissipative response of a system
is sufficient to determine its in-phase (reactive) response, and vice versa.

4.4 The fluctuation-dissipation theorem

The power spectrum, Eq. (3.23), and the response function, Eq. (4.4), are apparently related to

each other. One has w

2ksT

which is the fluctuation-dissipation theorem (FDT), sometimes referred to as FDT of first kind
in order to distinguish it from that of second kind which has been presented in section 3.3. The
FDT of first kind is fundamental, it can derived from basic principles within linear response
theory in a general way [37]. It states that the linear response of a given system to an external
perturbation is expressed in terms of fluctuation properties of the system in thermal equilibrium.
The minus sign in the FDT, Eq. (4.12), is due to our sign convention of the Fourier transform
which has a” —” sign in the argument of the exponential of the forward transform, see appendix
A.2. Note that in microrheology one frequently uses the other sign convention with a ” +” sign,
e.g. in Refs. [10,11,25,45].

V(@) = — 5o P(w) (4.12)

4.5 Relocating the laser

Moving the position of the trap center which corresponds to a relocation of the laser, is one
possibility to drive the system of the trapped bead immersed in a viscoelastic medium. It was
applied already in the context of calibration of optical tweezers [55] for the factor 3 = x(t)/x"" ()
which gives the conversion of the quadrant photo diode (QPD) voltage signal to actual particle
positions. The equation of motion for a particle which is trapped by a relocatable optical tweezers
inside a viscoelastic medium is given by

mi(t) = — /0 (Pt — P)dr
- /oo Yo (T)Z(t — 7)dT
0

— k|z@) —zu(t) | + Fr(). (4.13)
——

laser driving

The position z(t) is measured in the resting frame of the stage. Within this frame, the laser is
moved with the driving function x1,(¢) which represents the time-dependent position of the laser.
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This situation is denoted as laser driving. The situation described by Eq. (4.13) is sketched in
Fig. 4.1 (panel (a)). Laser driving is one approach to drive the system within the active part

%(0) 0

s xs(0)

(b)

Figure 4.1: (a): Sketch of the situation described by Eq. (4.1). The trapped particle is situated inside
a resting medium. The optical tweezers which acts approximately like a harmonic potential
on the bead is moving. (b): Sketch of the situation described by Eq. (4.14). The trapped
particle is situated inside a medium which is placed on the moving stage. The optical
tweezers which acts like a harmonic potential on the bead is at rest.

of our new calibration method which will be presented in chapter 6. Laser driven systems have
been simulated in the course of the verification of the novel calibration method, see chapter 7.

4.6 Relocating the stage

Another possibility to drive the system is moving the stage, as performed in recent work on
calibration in viscous media [56]. The equation of motion for a particle which is trapped by a
stationary laser while the stage is moved is given by

mi(t) = — /000 y(r) | 2(t —7)—vs(t —7) | dr

stage driving

- /0072(7) #(t— 1) —is(t —7) | dr
0 ——

stage driving

— kax(t) + Fr(t). (4.14)

The position z(t) is now measured in the resting frame of the laser. The stage is moved within this
frame with the driving function zg(t). We denote this situation stage driving. The velocity of the
stage is represented by vg(t) = @g(t). The integral terms contain now the past relative velocities
z(t —7) —vs(t — 7) and accelerations & (t — 7) — 0s(t — 7) of the particle relative to the medium,
which is assumed to be co-moving with the stage. With a sample holder that is not sealed at
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the ends, one has open boundary conditions and this assumption is only exact if the stage is
not driven too fast and the bead is close to one of the coverslips'. On the contrary, for a stage
oscillating a non-sealed sample holder at higher driving frequencies, the liquid motion midway
between the coverslips can deviate considerably from the motion of the stage [56]. Fig. 4.1(b)
shows a sketch of the situation described by Eq. (4.14). Beside laser driving, stage driving is
another approach to drive the system within the active part of the novel calibration method
which is be presented in chapter 6. For the verification of the calibration method, trajectories
from stage driven systems have been used which were generated in simulations, see section 7, or
measured in experiments, see section 8.

4.7 The active spectrum

In this section two measurable quantities are introduced which are denoted as active spectrum
for laser/stage driving, Ry, /s(w). These active spectra are complex magnitudes which are derived
from the response function x(w). Their real parts are very similar to the power spectrum of the
undriven system. The latter fact is crucial, since it will allow to write down the fluctuation-
dissipation theorem of section 4.4 in a convenient way. This will directly lead to the novel
calibration method as presented in chapter 6. This section mainly serves as a formula collection,
in which the active spectrum will be introduced formally and relations will be derived which will
be used later in this thesis.

4.7.1 Definition of the active spectrum

In sections 4.5 and 4.6 two ways to drive the system were proposed which are relocating the laser
(L) and relocating the piezo stage (S). These perturbations correspond to external forces which
are characterized according to

Foxrys = é1s(w)dp s (w) (4.15)
by a coupling part,
aw= -& (L. (4.16)
s(w) = F(w) (S), (4.17)
which is a function of the system’s internal parameters x and 4(w) and by a controlled part
dp(w) = —iwig(w) L), (4.18)
ds(w) =  iwEg(w) (S). (4.19)

which is proportional to the laser/stage velocity spectrum?. The active spectrum for laser/stage
driving Ry g(w) is then defined as the ratio between the average positional spectrum of the

trapped particle (Z(w)) and the controlled part dj, /s(w),

RL/S(UJ) = % (420)

"Very close to one of the coverslips the medium can be assumed to be co-moving with the stage due to non-slip
boundary conditions.
2The sign convention in Eq. (4.18) is made for later convenience.
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Note that the unit of RL/S(w) is a time. From Egs. (4.2), (4.15) and (4.20) one finds for the
active spectrum

Ry js(w) = érs(w)x(w), (4.21)

so it turns out that the active spectrum is equal to the product of the coupling part ¢;,/s(w) and
the response function x(w). According to Eq. (4.21) one has from Eqgs. (4.16)/(4.17)

Rp(w) = —{xW) (L), (4.22)
Rs(w) =3(w)x(w) (S). (4.23)

4.7.2 The active spectrum fiL/S(w) in terms of amplitudes and phase angles

The definition of the active spectrum, Eq. (4.20), gives a general measurement prescription. In
an experiment, one typically determines amplitudes and phase angles instead of the pure spectra
(#(w)) and dj, /s(w). In this paragraph, general relations for the active spectrum in terms of the
laser/stage amplitude Ay, /s(w), the particle amplitude Ap(w) and the phase shift A¢(w) between
laser/stage and trapped particle are derived. Here, the frequency w should be understood as
parameter of the Fourier spectrum and the amplitudes Ap,/s(w) are the absolute values and
¢p/1./s(w) are the phase angles of the Fourier transform of the particle/laser/stage motion at
frequency w. From the controlled part, Egs. (4.18)/(4.19), and the definition, Eq. (4.20), one has

Ruw) =G @), (4.24)
Rs(w) = el (S). (4.25)

The active spectrum is complex magnitude and therefore one can write it as

Ry s(w) = Re{ Ry s(w)} +iIm{ Ry 5(w)} = | Ry /s(w)| exp(i(w)) (4.26)

with the phase angle ¢(w). The particle positional spectrum and the laser/stage positional
spectrum are complex functions, too,

(Z(w)) = Ap(w) exp(—igp(w)), (4.27)
I (w) = Ap(w) exp(—igp (w)), (4.28)
Is(w) = As(w) exp(—igs(w)), (4.29)

with the amplitudes Ap /1, s(w) and phase angles ¢p 1, /g(w) of the particle, the laser and the
stage, respectively. With the definitions, Eq. (4.24)/(4.25), one can put the active spectrum into
the following form,

Ri(w) = zatm exp(i(Ag(w) +7/2)) (L), (4.30)
Rs(w) = gilm exp(i(Ad(w) — 7/2)) (S), (4.31)

with the phase shift Ap(w) := ¢r,/5(w) — ¢p(w). For the amplitude of the active spectrum one

finds M
st = 3o (4.3
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By comparison between Eq. (4.26) and Eqgs. (4.30)/(4.31), relationships between the the phase
angle 1(w) of the active spectrum and the phase shift A¢(w) between laser/stage and particle
can be found,

bw) =Adw) +r/2 (L), (4.33)
bw) =Adw)-7/2  (S) (4.34)

From that result one immediately obtains relationships between the trigonometric functions,

sin[(w)] = cos[A¢(w)] (L), (4.35)

sin[(w)] = —cos[Ad(w)] (S), (4.36)
and

cosfir(w)] = —sinfAd(w)] (L), (437)

cos[p(w)] = sin[Ad(w)]  (S), (4.38)
and further

tanf(w)] = — cot[Ad(w)] (L), (4:39)

tan[p(w)] = —cot[Ap(w)] (S). (4.40)

Later the real part and the imaginary part of the active spectrum will be needed. In terms of
the amplitude and the phase angle of the active spectrum the real part is given by

Re{RL(w)} = — 5 sin[Ag(w)] (L), (4.41)
Re{Rs(w)} = 25 sin[Ag(w)) (S). (4.42)

For the imaginary part one has

m{Ry (@)} = 22 cos|Ad(w)] (L), (4.43)
Im{Rs(w)} = — 24 cos[Ag(w)] (9). (4.44)

To obtain Egs. (4.41) to (4.44), Egs. (4.26), (4.32), (4.35)/(4.36) and (4.37)/(4.38) have been
used and the decomposition of the complex exponential function into real and imaginary parts,

explit)(w)] = cos[th(w)] + isinfy(w)]. (4.45)

To summarize, the active spectrum Ry, /s(w) can now be expressed in terms of the amplitudes
Ap1,/s(w) and the phase shift Ag,

Riw) = 22 (= sin[A¢(w)] + icos[Ad(w)]} (L), (4.46)

Rs(w) = 2t {sin[Ag(w)] — icos[Ag(w)]} (S). (4.47)
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4.7.3 The active spectrum Ry 5(w) in analytical terms

Starting from Eqs. (4.22)/(4.23), analytical expression for the real and imaginary part of the
active spectrum and the tangent of its phase angle are derived in this paragraph. Limiting cases
for simple viscous media and for low frequencies are considered. The relations established in the
following will be applied in the derivation of the calibration method in chapter 6.

From Eqgs. (4.22)/(4.23) one finds analytical expressions for the real and imaginary parts of the
active spectrum. One has for the real parts

Re{ R, (w)} = Alx(@)PRe{7(w)} = —Em{x(w)} (L),  (448)
Re{As(w)} = (1 —w?m)|x(@)’Re{(w)} = —=DIm{y(w)} ().  (4.49)

In the border case of low frequencies, w — 0, this gives

Re{Ry(w)} ~ Relill for low frequencies (L), (4.50)

K

Re{Rs(w)} ~ Re{3(w)} for low frequencies  (S), (4.51)

K

which gives v9/k = 1/w. with the angular corner frequency w. in the case of a purely viscous
medium with Re{5(w)} = 70 and Im{7(w)} = 0. For the imaginary part one has

Im{ Ry, (w)
Im{Rg(w)

Ex(@)P[(s = w?m) — wim{F(w)}] (L), (4.52)
(@) PIm{F (@)} (5 - w?m) — wli(w)?] (S). (4.53)

In the limiting case of a particle in a purely viscous medium at low frequencies, this gives
approximately

} =
} =

Im{Ry,(w)} ~

1 for low frequencies (L), (4.54)
Im{Rs(w)} ~ o for low frequencies (S). (4.55)

One obtains for the tangency of the phase angle 1)(w) of the active spectrum,

m{Ry(w k—w?m)—wIm{7(w
tanf(w)] = pegee = et (L), (4.56)
_ Im{Rs(w)} _ —w|y(W)|*+Im{F(w)}(r—w?m)
tan(@)] = RoRE Oy = T ReB@ ot (8), (4.57)

In the limiting case of a particle in a purely viscous medium at low frequencies, one has

tan[(w)] = =%, for low frequencies (L), (4.58)

tan[p(w)] = =2 = -2, for low frequencies (S). (4.59)

K



5 Bound and bio-active systems

In a typical experiment with optical tweezers on a biological system, the trapped particle is

bound to some biological structure like a protein in the cell membrane, the cell nuclear mem-
brane, a motor protein or an RNA molecule. In those bound systems the trapped particle is
mostly used as a handle which is mediating the manipulation of the biological structure by the
optical tweezers. The motion of the trapped particle can be detected with high temporal reso-
lution which yields information about the motion of the biological structure and about exerted
forces.
In solutions of actin and myosin, the activity of molecular motors alters the bead motion. Simi-
larly, within living cells the motion of the bead can be influenced by the remodelling of the cy-
toskeleton. I call systems which exhibit molecular motor activity or in which a filament network
is remodelled bio-active. In this chapter both bound and bio-active systems will be addressed.
In section 5.1 suggestions are made, how systems could be described when the trapped particle
is bound to a linearly or a non-linearly responding biological structure. The effects of bio-active
processes on the motion of a trapped particle are described in section 5.2.

5.1 Bound systems

Biomolecules as well as organelles can often not be trapped with sufficient force by the optical
tweezers. Therefore in most experiments, the biological structure which is of interest is not
trapped itself. Rather, a small artificial bead of, e.g., polystyrene, silicon or gold is trapped.
The bead is biofunctionalized, so that it binds specifically to the biological structure. The
link between bead and biological structure can be approximated as a stiff Hookean spring. An
example for such a strong link is the binding between a streaptavidin-coated polystyrene bead
and the biotinylated A-receptor in the outer membrane of Escherichia coli [57]. In general, it is
desirable that the link is as rigid as possible, so that the bead follows the motion of the biological
structure.

5.1.1 Linearly responding biological structures

Assuming now that a rigid link between the trapped bead and the biological object has been
established, one may ask, how the response function y(w) of the unbound system can be used for
force spectroscopy on the bound system. If the link is rigid, the bead and the biological structure
can be considered to be moving as one object [57] at not too high frequencies. I will show this by
an argumentation which is very similar to that given in Ref. [57], where a trapped bead which is
bound to the E. coli A-receptor has been described. However, I assume a viscoelastic instead of
a simply viscous medium. Consider the following coupled set of Fourier transformed equations
of motion for an undriven bound system,

—WPmEw) = —iwi(Ww)E(w) - Kw)EW) + Fr(w)
+Kbead—struct [Tstruct (W) — T(w)] . (5.1)
_w2mstructjstruct (w) =  —1lWYstruct (w)%truot (w) — Kstruct (w)fstruct (w) + FR,struct (w)
—Rbead—struct [jstruct (w) — :E(w)] . (5-2)

30
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Eq. (5.1) describes the spatial coordinate x of the trapped bead, while Eq. (5.2) describes the
spatial coordinate xgiyct Of the biological structure which is bound to the bead. In Eq. (5.1), the
parameters x, ¥(w), m and FR(w) represent the same quantities as in the previous chapters of
this work, i.e., the trap stiffness of the optical tweezers, the friction retardation spectrum of the
trapped object moving in a viscoelastic medium, the mass of that object and the random thermal
force, respectively. In Eq. (5.2) the motion of the biological structure which is attached to the
trapped bead is described by similar parameters. Agtruct(w), Mstruct and FRﬁtruct (w) represent
the friction retardation spectrum of its motion within the medium, its mass and the random
thermal force acting on the structure, respectively. Kstruct represents a harmonic bond within the
biological structure or between the biological structure and the coverslip or another biological
structure like the cell wall. The remaining parameter Kpead—struct describes the bond between
bead and biological structure which is assumed to be spring-like. The stiffness Kpead—struct 1S
assumed to be much larger than the quantities Astruct, iWYstruct(w) and —w?Mgtruct at not too
high frequency w. Then, solving Eq. (5.2) for Zgtyuet(w) and insertion into Eq. (5.1) yields

_w2mb0und£‘(w) = _iw’?bound(w)i‘(w) - Kbound(w)j(w) + FR,bound(w) (53)

This equation has nearly the same structure as Eq. (5.1). But instead of the last two terms in
Eq. (5.1), which characterize the binding between bead and biological structure, Eq. (5.3) has
modified parameters describing the bound system, i.e., a modified mass Mpound := M + Mstruct,
a modified friction retardation spectrum pound(w) = (W) + Fstruct (w) and a modified spring
constant Kpound := K + Kstruct- Lhe random force acting on the bound system is the sum of the
random force contributions which act on the bead and on the biological structure, respectively,
FRbound (w) = FR(w) + FRvstht (w). In that way the bead and the biological system appear like
moving as one object. Accordingly, the power spectrum of the undriven bound system is given
by
. 2kB TRe {:Ybound (w)}

|"1bound + iwYbound (w) - wzmbound|2 '

Getting back to the response function y(w), Eq. (4.4), which is useful to describe driven systems,
one obtains

Pbound (w) (54)

<53(w)> = X(W) —Rstruct — iw'?struct(w) + w2mstmct + Fext (UJ) = Xbound(w)Fext (w) (5.5)

by adding an external force Fyy(w) to Eq. (5.3) and using Eq. (4.4) for the response function
X(w) of the unbound system of only bead, trap and medium. This gives

Xbound (w) =1 ! (56)

1l 4,1 7

M) T X @)
where Ystruct (W) = (Fstruet + 1W0struct (W) + w?Mgtruct) ", Note that Eq. (5.6) mathematically
equals to adding up conductances in serial connections of elements in electric circuits. Instead

of conductances, effective inverse spring constants are added up here.

This procedure reminds of the system of springs and dashpots which have been used for the
description of viscoelastic materials for a long time [33]. Such a model has been applied to the
description of the viscoelastic properties of the cytoplasm of a living cell [28]. Unlike in our case,
where we want to describe the bound system of bead and biological structure, in that models
the cytoplasm itself is described as serial combination of springs and dashpots. A problem of
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these models is that a finite number of scalar parameters which corresponds to a finite number of
springs and dashpots cannot account for a continuum spectrum of relaxation times as found in
cells [30,34]. In the description used in this work, such a problem is avoided by using a general
frequency dependent friction relaxation spectrum Apounq(w). The response function Xpound(w)
comprises on the one hand the optical tweezers and attachments of the biological structure to
the coverslip or to another biological structure as well as filament cages which trap the particle
permanently. Those contributions all appear as springs which are summing up to Kpounq- On the
other hand, transient interactions of viscous or elastic nature between the bound system of bead
and biological structure and the medium appear as “continuous system of dashpots and springs”
which is not necessarily described by a finite number of relaxation times. Those interactions
contribute t0 Fhound (w) which is as well included in Xpound(w)-

The linear parameters Kgtruct and Jsiruct (w) have been determined experimentally for the E. coli
A-receptor system by evaluation of histograms, mean square displacements and power spectra
by assuming that the bound system of bead and A-receptor moves in simple viscous media [57].
This assumption is critical since the bead performs Brownian motion near a surface which is the
outer membrane of E. coli [58] and since the A-receptor moves in a complex liquid which is the
outer membrane bilayer. Hence potentially important effects have been neglected.

In the general case of a viscoelastic medium and where hydrodynamic effects are to be taken
into account, Kbound, Xbound (W) and Ypound (w) might be found by calibration however, using the
novel FDT method presented in chapter 6 with stage driving in-situ directly at the bound system.
Frequently, bound systems are also bio-active which involves that the noise affecting the motion
of the bound system is not purely thermal. In this case the calibration has to be performed at
frequencies which are higher than those frequencies at which the bio-active motion takes place,
see section 5.2.

Note that all arguments which were put forward in this section are made in linear response
theory. Many biological structures exhibit non-linear mechanical properties. Then Ypound(w)
can only be used in the linear range.

5.1.2 Small non-linearly responding biological structures

If a small biological structure exhibits non-linear mechanical properties already at modest strains,
i.e., its force-extension relationship f5""“!(z) is non-linear, the description of the bound system
in linear response theory is inappropriate. The (unbound) system of the trapped bead immersed
in the viscoelastic medium could remain in the linear regime, however, and in this case the
response function x(w), Eq. (4.4), may still be helpful. In this case on can describe the action of
the biomolecule on the bead as an external force Figuet (w). One finds

#(w) = x(@) { Fuiruer (@) + Fo (@)} (5.7)

where Fy (w) is a chosen external force, i.e., a non-equilibrium protocol, which is implemented by
relocating the trap position or the piezo stage within a time interval [t;; ¢f]. If x(w) is known for all
frequencies, the time dependence of the force exerted by the biological structure on the trapped
bead, Fyuct(t), can be extracted by means of Fourier back transform. The structure’s position
during the course of the experiment is characterized by the bead position coordinate x(t), since
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the trapped bead is bound to the biological structure. Then the following relationship connects
the force-extension relationship f5"%“*(x) and the experimentally determined force Fyryct(t),

£ (2(t)) = Fupues(t). W (5.8)

From f5¢(z(t)) the work performed by the structure can be calculated,

153
Wstruct — / fstruct (ﬂj‘(t)) i’;dt, (59)
t;

It is important to note that for a correct thermodynamic treatment of small systems it is not
enough to consider only the average work (Ws"U¢%) in order to determine correct free energy
differences AGS™°t. For this reason, Eq. (5.7) has not been written in terms of averages. Since
the force is a fluctuating quantity, W™ will also fluctuate for different trajectories [59]. For
the work one gets

te
Wstruct — / fstruct (ﬂj‘(t)) ."L‘dt (510)
t;

For the average work the inequality (WSTuct) > AGS'™Ut holds, which is a statement of the
second law of thermodynamics [59]. The Jarzynski equality [60] however states that

AGstruct Wstruct

The Jarzynski equality enables one to determine the free energy difference AGS"Ut between the
equilibrium states at initial and at final times from a large ensemble of measured forces. A more
general relation is given by the Crooks fluctuation theorem [61].

5.2 Bio-active systems

Activity in the cytoplasm of a living cell or in a solution of actin and myosin can arise for example
from growing and shrinking of microtubuli or from activity of molecular motors. This activity
can be so strong that even a trapped bead, which was engulfed in a macrophage cell, can be
moved in a directed way by molecular motors [2].

Biological activity affecting the motion of trapped particles inside the cell can be divided into
two different classes. The first class is direct action on the trapped particle, e.g., by binding of
molecular motors. Such processes might have a certain direction, e.g., like the transport of a
vesicle towards the nucleus of an E. coli cell, as has been observed with fluorescence microscopy
[62]. But in most cases, such action appears random and it can be taken into account as
random force FR pio(t) which is zero in average, (FRrpio(t) = 0). Furthermore, such activity
happens on relatively large time scales, i.e., on the order of 10 ms to seconds. The second class of
biological activity comprises processes which alter the environment of the trapped particle. For
example, myosin motors within an actin solution become processive at low ATP concentration
and generate tension on the actin network. Mizuno et al. [49] have shown that this process
increases the stiffness of the network. This stiffening affects the diffusive motion of the trapped
particle and it modifies the response function «(w). This means that the friction retardation
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spectrum ~y(w) is also altered, see Eq. (4.5). In the following, the friction retardation spectrum
altered by biological activity will be denominated as Apio(w).

Taking into account these two classes of bio-active processes, the Fourier transformed equation
of motion for the trapped particle in the viscoelastic medium, Eq. (3.6), is modified to

—wmE (W) = —1whio(W)F (W) — kF(W) + Fr(W) + FRpio(w)- (5.12)
With this description of the system, the violation of the FDT observed by Mizuno et al. [49] can
be easily explained. The FDT, Eq. (4.12), relates systems slightly out of equilibrium to systems
in thermal equilibrium. Due to the bio-active processes of the first class, the system is no longer
in equilibrium. This is reflected in the power spectrum of the motion of the trapped particle: The
random force FR,biO(w) adds extra low-frequency noise to the system, hence the power spectrum

(25 ]*)

Plw)= 1 1
(W) = Jim (.13)
is modified. The response function .
Z(w
X(w) = Ew)) (5.14)

on the other hand is not altered, since (Fgpio(t) = 0). Therefore, the FDT is not valid for a
medium which contains bio-active processes of the first class.

Moreover, the presence of extra noise due to bio-active processes of the first class is relevant for
the calibration method presented in the next chapter. The method is based on the validity of
the FDT, and we have just seen that the presence of the term FRbio(w) violates the FDT. Hence
for a calibration inside a bio-active medium, FR pi,(w) must be negligible. The data of Mizuno
et al. [49] show that this is the case for frequencies 2 20Hz. Thus, in solutions of actin and
myosin at low ATP, calibration with the novel method would yield reliable results only for driving
frequencies fx = 20Hz. On the other hand, bio-active processes of the second class which only
alter the environment of the trapped particle, do not violate the FDT and hence they do not
affect the result of the calibration method. Here, the novel calibration method rather enables to
measure the altered friction retardation spectrum Ap;,(w) and to receive accurate force values.
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in viscoelastic media

In this chapter, the main analytical result of this thesis will be presented, which is the derivation
of a novel calibration method for optical tweezers in general viscoelastic media, the so-called
FDT method. The FDT method is based on the description of the particle by one degree of
freedom in linear response theory in continuous media. This description has been introduced in
chapters 3 and 4. In the FDT method, no specific model for the friction force is assumed, which
is applied on the trapped particle by the medium. The central assumption of the FDT method
is rather the validity of the fluctuation-dissipation theorem (FDT) which gives the method its
name. In fact, the basic equations of this method are convenient formulations of the FDT. For
the FDT method to work, it is not necessary that the FDT is valid for all frequencies. This is
especially important if the calibration is to be performed in bio-active media like the cytoplasm.

I will introduce the problem of finding a calibration method for optical tweezers in section 6.1. A
precise and effective calibration method in water is the purely passive power spectrum method.
In section 6.2 it will be explained why such a purely passive method is not sufficient in viscoelastic
media with unknown frictional behavior and why also a purely active method would fail. The
FDT method, which is a combined active and passive approach, is presented in section 6.3.

6.1 Introduction to the calibration of optical tweezers

6.1.1 Calibrating optical tweezers

As briefly explained in the introductory section on optical tweezers, section 2.1, the tweezers act
as a spring of stiffness x on the trapped particle if the particle is not deflected too far from the
equilibrium trapping position. Thus, if the deflection of the trapped particle from the equilibrium
position is known, knowledge of the spring constant x would allow for determining the force which
the tweezers exert on the trapped particle.

In principle, x is determined by the electromagnetic field distribution around the trapped object
and by the ratio of the refractive indices of object and medium. While the latter is mostly known
with precision, the exact electromagnetic field distribution and hence the force on the trapped
particle are difficult to determine. For not too complicated situations a quantitative agreement

between the trap stiffnesses «, as obtained from electromagnetic theory and from the experiment,
has been found [7].

For general situations, x has to be found by calibration. Calibration means that the trapped
particle is observed while it is performing motion in response to defined calibration forces. These
calibration forces can be the thermal force or an external force or both of them. By analysis of
the observed motion finally the trap stiffness x is found. Generally, it is desired to apply as few
different forces as possible to keep the calibration as simple as possible. Furthermore, the forces
should be applied in a way so that the statistical error of k is minimal.
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For an analysis of the particle’s motion it is important how much information about other
relevant parameters of the system is available. These other parameters are those of the Fourier
transformed equation of motion for the trapped particle in the undriven system, Eq. (3.6), i.e.
the mass m, the friction retardation spectrum 7(w) and the temperature T'. These parameters
might be known with high precision. This is the case, for example, for spherical polystyrene beads
that are trapped in water. But for particles of unknown volume or density that are trapped in
arbitrary viscoelastic media, both m and 4(w) are usually unknown.

Beside the spring constant «, both the mass m and the friction retardation spectrum 7(w) enter
the response function x(w), according to Eq. (4.4). The response function is thus in general
unknown, too. According to its definition in Eq. (4.2), the response function can be understood
as an effective reciprocal spring constant [10]. Whereas 1/x, which represents the low-frequency
limit of x(w), contains information only about the static long-time limit of the particle position
at a given trap force, the response function contains all information about the dynamics of the
linear response of the trapped object to any time-dependent external force. Vice versa, external
forces acting on the trapped object can be found by measuring its positions and averaging, if
one knows the response function x(w). Thus x(w) represents a very helpful quantity for the
implementation of force spectroscopy.

In fact, the response function y(w) is a central quantity at the calibration where one observes
the particle moving in response to a force. However, typically the response function is not
directly measured. One rather measures quantities like the power spectrum, Eq. (3.23), which
are combinations of x(w) and other parameters of the motion.

Moreover, particle position detection at high sampling rates is typically achieved with quadrant
photo diodes (QPD). With the QPD no positions are measured, but voltages. Within a certain
range, these voltages are proportional to the positions, so the proportionality factor needs to be
known in order to relate voltages to positions. This proportionality factor is usually defined as
ratio 3 between positions and voltages. For example one has for the = coordinate § = z/V,, .
The factor 8 has to be found by calibration. Since forces are always computed via positions,
according to Fiap = k7 or (#(w)) = x(w)Fuxt(w), the determination of 3 must be regarded as
an essential part of every force calibration.

I will summarize this section by giving the following definition for the problem of calibration of
optical tweezers:

Apply as few different defined calibration forces as possible on the trapped particle,
so that the parameters «, § and preferably also x(w) can be determined unambigu-
ously and with minimum statistical error from the analysis of the motion of the
particle in response to the defined calibration forces.?

Note that knowledge of both k and x(w) would entail that also ¥(w) and m are determined, see
Eq. (4.4)3.

!The temperature shows up in the random force spectrum, Eq. (3.20).

$This definition allows to simply multiply measured voltages with 3 to find positions. However, sometimes (3
is defined the other way around, § = V,/z, so one has to watch out which definition is used.

2 A defined force which is "applied" can also mean here the thermal force, though this is not externally applied,
but always apparent in the medium.

3The parameters 5(w) and m could be separated from each other by a fitting procedure, if x(w) is known for
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6.1.2 Friction models for the calibration of optical tweezers

In many calibration methods a model for the frequency-dependence of the parameter function
A(w) is used. The measured quantity, e.g. the power spectrum, can be fitted according to that
model. Thus in most cases, the parameters of the model for 5(w) have to be known.

The simplest example for such a model is the simple Stokes friction for spherical particles, see
section 3.2.2. Here, the particle radius R and the medium viscosity n(7") describe the friction.
If only one kind of calibration force is applied on the trapped particle, e.g., the thermal force is
acting while the laser and the piezo stage are at rest, these two parameters need to be known a
priori, in order to unambiguously determine x and § by calibration. Accordingly, the polydis-
persity of the bead size as well as the temperature and solute dependence of the viscosity lead
to calibration errors.

If not only one but rather two different forces are applied on the particle, it is possible to calibrate
for k and [ without knowing the parameters R and n(T"). For example one can analyse both the
motion of the bead in response to the thermal force and in response to the external force from
oscillating the piezo stage as shown by Toli¢-Ngrrelykke et al. [56]. The FDT method presented
later in this chapter, is also based on the application of two different forces on the trapped
particle, but I will additionally abandon the assumption of simple Stokes friction.

A more elaborate model for the friction between a spherical particle and an aqueous medium
is taking into account the proximity of the coverslip, see section 3.2.3. This model has been
successfully applied in the power spectrum method for the calibration of optical tweezers in
simple viscous media [40]. This is a purely passive method, see section 6.1.4. Additionally to the
parameters of simple Stokes friction, two more parameters are taken into account in the model
for the friction retardation spectrum 7(w). These parameters, which have to be known for the
calibration, are the distance from the coverslip [ and the penetration depth d(w), where the latter
is given by the kinematic friction coefficient v, see Eq. (3.12).

The main focus of this work is the calibration in viscoelastic media. So one might ask here, if it
is feasible to calibrate with a friction model for a bead in a viscoelastic medium like actin. For
example, the friction between a bead and a network of crosslinked actin filaments is described
within the model of Mizuno et al. [49] by five parameters for the frequency-dependence of the
friction retardation spectrum (w), see section 3.2.4. These parameters are l., ¢, [,(T), R, pactin”-
If the network is additionally under tension, e.g., due to local stress exerted by myosin motors,
one more parameter has to be taken into account which is the tension o. For the calibration of
the optical tweezers, it should theoretically be possible to fit the measured power spectrum of
the motion of a bead inside the actin network according to that friction model, if the model’s
parameters are known®. However, the model of Mizuno et al. agrees with the data only for a
certain frequency range, i.e., not for too small frequencies, but fitting could be done only in that
frequency range. Much more severe problems are, firstly, that some of the model parameters are

several frequency values.
4Some of these parameters depend on each other. But the relationship between them is not trivial. See [49,63].
®In principle, one could also think about fitting the power spectrum with the friction model of Mizuno et al.,
by assuming that the model parameters are unknown fit parameters. Unfortunately, the power spectrum is a
smooth function, which cannot be unambiguously fitted for a large number of parameters, so that this idea would
not work out.
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difficult if not impossible to control or to determine exactly. Secondly, some of these parameters
can exhibit a large spatial variability in the unordered actin network. For those two reasons I
am convinced that calibration with a friction model is at least impracticable, if not impossible
in a complex medium like a crosslinked actin network.

What is about calibration with a friction model inside the cytoplasm? The cytoplasm contains
a large amount of crosslinked actin and in addition many more components which make the
situation even more complicated than in purified actin networks. Moreover, bio-active processes
occur in the cytoplasm which do not only cause a modified friction retardation spectrum, but
they also add noise to the system, see section 5.2. I conclude that it would be impossible to
calibrate inside the cytoplasm by fitting to a friction model.

6.1.3 Calibration of optical tweezers without friction model

From the arguments given in the last section I conclude that in arbitrary viscoelastic media it
has to be calibrated without a specific friction model. A simple possibility for doing so would
use the Equipartition theorem which states that for large observation times, the mean-square
displacement of the trapped particle is equal to the half-width of the trap,
lim o2(t) = kpT/k. (6.1)
t—oo
The mean-square displacement is always positive, because it is derived from the square of a
quantity [3]. Noise, drift, and low pass filtering give biased errors on the mean-square displace-
ment [3,40]. Similarly, on long time-scales, bio-active processes would add to the mean-square
displacement. These are shortcomings of the equipartition method which are so severe that it is
no capable choice for a calibration in viscoelastic and bio-active media.

Instead of simply computing the variance of a distribution as in the equipartition method, the
whole distribution of particle positions can be determined. This method gives more information
about the optical potential exerted by the optical tweezers, than just the spring constant. It even
gives information about non-harmonic contributions to that potential. Therefore this method is
called optical potential analysis |3,64]|. The probability for the displacement of a trapped object
in a potential well is given by the Boltzmann distribution

Px) x exp {— f}i‘? } , (6.2)

where E(z) is the potential energy. However, just as the equipartition method, this approach
is not useful in practise without a considerable amount of low-noise/low-drift position data
[3]. Moreover, both the equipartition method and optical potential analysis do not reveal any
information about the dynamics of the trapped particle. Both techniques require an independent
calibration of the voltage-position conversion factor 5. Furthermore, in viscoelastic media it is
not clear a priori if optical potential analysis could separate the potential exerted by elastic
contributions of the friction force —wi(w)y”(w) from the optical trapping force k.

To my knowledge, except from the equipartition method and the optical potential analysis there
is so far no other calibration approach which does not need a friction model. If no specific friction
model is given, the assumptions of the validity of continuum limit, linear response theory and the
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description of the trapped particle by one degree of freedom x should remain for the most cases.
In this chapter a calibration method is presented which is only based on these assumptions and
not on a specific friction model.

6.1.4 Passive, active and combined calibration approaches

In the last two subsections, calibration methods for optical tweezers have been classified according
to their use of a model for the friction between trapped particle and medium. Another possibility
to classify calibration methods is according to the defined calibration forces which the trapped
particle is subjected to. In this respect, the most coarse sub-division is into passive, active and
combined methods.

Passive methods use the internal random thermal force Fr(t) as calibration force. They are
experimentally very easy to put into practice, since all one has to do is to record the trajec-
tory of the trapped particle which performs Brownian motion inside the optical trap’s potential.
Information about the response of the particle to the thermal force is then obtained from eval-
uating the position autocorrelation function [65], the mean-squared displacement, the position
histogram [64], or the power spectrum [40]. The power spectrum method is especially robust,
since it operates in the frequency-domain. Typically, systematic errors caused by drift or in-
strumental noise, occur at certain frequencies. These frequencies can be left out in the fitting
procedure of the power spectrum method.

In active methods the system is driven with external forces, i.e., laser driving or stage driving, as
described in sections 4.5 and 4.6. Calibration using stage driving is known as drag force method
and it has been performed with oscillating or triangular stage motion or with a stage which is
moving with constant velocity. The latter option is frequently applied and it is called constant
flow method [66,67], since the medium is moved with a constant velocity relative to the trapped
particle. Laser driving by means of galvanometric mirrors has been performed with oscillate laser
motion [8]. A fast oscillating laser has been used for that part of the calibration in order to find
the conversion factor 3 [55].

A combined method which makes use of both the thermal force and the external force from an
oscillated stage was presented recently by Toli¢-Ngrrelykke et al. [56]. A trapped particle was
immersed in an aqueous medium which is placed on the oscillating stage. From the evaluation of
the power spectrum of the particle’s motion, both the trap stiffness x and the conversion factor
0 could be found. This approach is based on the assumption that the particle is immersed in a
simple viscous fluid. This requirement is not necessary FDT method which is presented later in
this chapter.

6.2 On purely passive and purely active approaches

In viscous media optical tweezers can be calibrated by applying a purely passive method, like the
power spectrum method [40,53]. Rhetorically, one may ask why a passive method is not sufficient
for the calibration of optical tweezers inside viscoelastic media? In subsection 6.1.2 it has been
explained why it would be impossible to calibrate optical tweezers in complex viscoelastic media
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like crosslinked actin networks or the cytoplasm with a method which makes use of a model for
the friction which the trapped particle feels inside such a medium. This implies that for the
general case it has to be calibrated without a friction model. In this section I will show that
in this case a purely passive or a purely active method can not be a solution to the problem of
calibration as stated in subsection 6.1.1. Basically, a purely passive or a purely active method
alone gives too few equations for too many unknowns.

6.2.1 Why a purely passive method is not sufficient

As indicated in the paragraph 6.1.4, a passive method is very convenient, since only the Brownian
motion of the trapped particle has to be observed. From the observed trajectory of the particle
one can determine for example the power spectrum, Eq. (3.23). The power spectrum contains
the parameters temperature 7', trap stiffness «, friction retardation spectrum 4(w) and mass m.
Whereas the temperature can be determined with good precision, the other parameters must
be considered as being unknown. The friction retardation spectrum 7(w) is unknown, since we
do not assume a model for the friction. Already at intermediate frequencies the particle inertia
term w?m can become comparable to x or to wy(w). Instead of neglecting it, the particle mass
m is assumed unknown and treated as a parameter. Finally, x is the unknown parameter which
is of main interest at the calibration®.

Fitting of the power spectrum for so many unknown parameters would not give unambiguous
results. Hence, Eq. (3.23) gives one equation for the unknowns k, 4(w), and m for each frequency.
Thus, additional information is required in order to solve for these unknowns.

According to the fluctuation-dissipation theorem, the power spectrum is related to the imaginary
part of the response function x”(w), see Eq. (4.12). The imaginary part of a response function
describes how a system dissipates energy, when it is out of phase with the driving force. The
so-called Kramers-Kronig relations imply that observing the dissipative response of a system is
sufficient to determine its in-phase response, and vice versa. Hence one could use in principle the
Kramers-Kronig relation, Eq. (4.9) in order to obtain also the real part of the response function
and thus more information about the system. This is done in the microrheology approach
by Schnurr, Gittes, et al. introduced in section 2.3 and applied in chapter 9 of this thesis.
However, the Kramers-Kronig integral has to be cut at the Nyquist frequency, which results in
an underestimation of the real part of the response function [45]".

For media with a static elastic modulus that is not too large, one might find the trap stiffness x
from the low-frequency limit of the elastic modulus, that is derived from the obtained complex
response function x(w), see Atakhorrami et al. [25]. The statistical error on the value of x thus
obtained would be non-negligible, since typically only few data points are available in the quasi-
static limit. Secondly, the trap stiffness and the elastic contribution to the response function
which arises from the medium, —wIm{%(w)}, would be difficult to separate from each other.
Therefore it could be intricate to validate the assumption of a negligible static elastic modulus.

SFurthermore, the conversion factor 3 in principle represents another unknown parameter, but it can be found
by an independent calibration.

"The cut-off of the Kramers-Kronig integral at the Nyquist frequency is a general problem in passive microrhe-
ology. This will be demonstrated in chapter 9 of this work.
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In bio-active media, i.e., viscoelastic media in which active biological processes appear, the
validity of an approach based on the power spectrum in its entire frequency range would be
debatable: bio-active media such as the cytoplasm contain low-frequency processes which arise
from the biological activity, e.g. of molecular motors, see section 5.2. As describe in section
5.2, those processes render the FDT invalid at low frequencies, presumably up to the order of
tens of Hz. At those frequencies, the power spectrum may no longer be related to the imaginary
part of the response function. Since the imaginary part of the response function would be
needed at all frequencies for the computation of the Kramers-Kronig integral, the real part of
the response function can not be determined properly. I thus consider it impossible to perform
microrheological and trap stiffness calibration measurements with a purely passive method in
bio-active media.

As explained in subsection 6.1.3, a first rough estimate of k could in principle be obtained by
the equipartition method. There, the mean-square displacement is considered for large times,
which is equal to the half-width of the trap, see Eq. (6.1). Since the mean-square displacement
is a biased estimator, this method is not recommendable. The mean square displacement as a
function of time contains further information. Under the assumption of the validity of the FDT,
it’s Laplace transform fulfills [24,68]

Lo2(t)] = 62(s) = g 522 ;"ngL T (6.3)

Eq. (6.3) appears to give us one complex relation for the response function x(s). However, since
X'(w) and x”(w) must obey the Kramers-Kronig relations, x(s) for a real argument s contains
the entire information [24]. Effectively, one has again only one equation for the unknowns x,
A(w) and m.

Another passive approach is optical potential analysis, but this exhibits the same main short-
comings as the equipartition method, as explained in subsection 6.1.3.

Yet another option is ex situ calibration in water with trapped particles of the same kind as those
used in the viscoelastic medium [25,49]. The short-comings of this method are due to particle
polydispersity and different optical properties of water and viscoelastic medium.

I conclude that the observation of the Brownian motion of a trapped particle is not sufficient for
the exact calibration of optical tweezers in viscoelastic media with unknown frictional behavior.

6.2.2 Why a purely active method is not sufficient

Similarly to the insufficiency of a purely passive method demonstrated in the previous section, a
purely active method would not give enough information either. For example, in active methods
with an harmonically oscillating external force one typically measures an amplitude and a phase
shift of the trapped particle which performs oscillations in response to the external force. These
two quantities do not yield enough information to solve for the unknowns «, (w), and m.
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6.3 The FDT method

In the last section it has been demonstrated that a purely passive method is not sufficient for
the calibration in arbitrary viscoelastic media. A purely active method would not yield enough
information about the system parameters, either. Here, an approach is presented which combines
the passive and active methods. The combination of data requires the FDT to be valid for the
viscoelastic medium and experimental situations considered. The approach is not based on
a friction model, only very general assumptions were made. These assumptions are that the
medium is continuous and at least locally homogeneous. Furthermore, the description of the
particle by one degree of freedom and in linear response theory must be justified.

The requirement that the FDT must not be violated, implies that the active driving amounts to
a small perturbation of the equilibrium system only. By reformulating the FDT conveniently for
two ways in which this perturbation may be done in practice, simple relations for the calibration
of the trap stiffness x are found, as presented in paragraph 6.3.1. Moreover, relations to determine
the response function x(w), the friction retardation spectrum 7(w) and the conversion factor (3
are derived in the paragraphs 6.3.2 to 6.3.4.

6.3.1 Trap stiffness calibration

In this paragraph, the basic equations of the FDT method are derived, These basic equations
relate the trap stiffness x to measurable quantities. A formulation in terms of amplitudes and
phase angles is given in this paragraph as well. Finally it is described how the frequency depen-
dent results of the basic equations can be fitted in order to obtain a reliable value for the trap
stiffness.

The FDT with perturbative laser motion

The first of the two ways to apply an external perturbation to the system is to deflect the laser
slightly. Thereby the center of the trap is moving according to an arbitrarily chosen trajectory
x1,(t) as described in section 4.5. The trajectory is in principle infinitesimal around the resting
position z1, = 0. For that case, the FDT, Eq. (4.12), can be formulated in a more convenient way.
By multiplying the FDT with —x/w and thereafter identifying the left-hand side —x/wx” (w) with
the real part of the active spectrum Ry, (w) according to Eq. (4.48), one obtains the basic equation
of the FDT method for the case of laser driving,

2T -
Ko = T]Z)Re{RL(w)} (L). (6.4)

Eq. (6.4), is still the FDT, which in this form represents a general measurement prescription for
finding the unknown k. Note that P(w) in Eq. (6.4) still represents the power spectrum of the
unperturbed system and is therefore obtained in the passive part of the measurements.
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The FDT with perturbative stage motion

The second way to apply an external perturbation to the system is to move the piezo stage on
which the sample is placed, as described in section 4.6. If the sample container is sealed on all
sides, the liquid in which the trapped particle is immersed can be assumed to be co-moving with
the piezo stage. Also for that case, the FDT, Eq. (4.12), can be formulated in a more convenient
way. By substituting Eq. (4.49) into the FDT one obtains the basic equation of the FDT method
for the case of stage driving,

(5 — w?m),, = %Remg(w)} (S). (6.5)

Similar to Eq. (6.4), Eq. (6.5) represents a general measurement prescription for the unknowns
K and m.

The FDT with perturbative sinusoidal motion of stage or laser

The simulation results and analytical considerations presented in chapter 7 suggest that for a
calibration, it is most practical and reliable to perturb the system with harmonic oscillations.
In the special case of a sinusoidally moved trap, xy,(t) = Ar sin(wrt + ¢r,), the trapped particle
responds with sinusoidal motion, (zp(t)) = Ap sin(wst + ¢p). By using Eq. (4.41) to express the

real part of the active spectrum Re{Ry,(w)} in terms of amplitudes and phase angles, the FDT
Eq. (6.4) becomes

2T Ar
“L " P(wn) wp AL

sin(Ag) (L), (6.6)

where A¢ is the phase difference between laser and particle oscillations, A¢ = ¢, — ¢p. Similarly,
if the stage is moved sinusoidally, xg(t) = Agsin(wst + ¢g), one obtains from Egs. (4.42) and
(6.5)

2kgT Ap
P(wg) wsAg

sin(A¢) (S), (6.7)

(k — w2m)ws =

where A¢ is now the phase difference between stage and particle oscillations, A¢ = ¢g — ¢p.
Egs. (6.6) and (6.7) represent simple formulas for the experimental determination of the trap
stiffness, since all magnitudes on the right-hand sides can be directly obtained from measure-
ments.

Fitting of the results

Eqgs. (6.4)/(6.5)% allow the trapping stiffness to be determined experimentally from the power
spectrum P(w) and the active spectrum Ry, /s(w). The equations hold for each frequency w
individually. In the case of stage driving, the mass still appears in an extra frequency-dependent
term. This is an obvious disadvantage of stage driving with respect to laser driving. In principle,

iThe forward slash in "Egs. (6.4)/(6.5)" does not mean dividing one equation by the other. It indicates that
either Eq. (6.4) or Eq. (6.5) is meant, depending on if laser or stage driving is considered.
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one can fit the data according to the quadratic frequency behavior of the mass term. But, since
stage driving operates at low frequencies, one may choose to neglect the mass term, if the trap
is not too weak and the bead is not too heavy. In that case and in the case of laser driving
one would fit a constant value®. In the experiment, statistical fluctuations are always present in
the active spectrum and in the power spectrum. Therefore it is appropriate to average over the
recorded frequency interval (averaging denoted by (.),,) to obtain a value with lower statistical
error,

K@) = (K)o (L). (6.8)
K = (5 — W)y ~ (Fw)w (S). (6.9)

Frequencies for which measurements are unreliable due to, e.g., drift, bio-active processes or nu-
merical errors like aliasing, could and should be omitted in the averaging procedure, Eq. (6.8)/(6.9).
Thus it is an important task to determine the "correct" frequencies over which one has to av-
erage. A major advantage of the whole calibration method is that "faulty frequencies" can be
omitted?.

6.3.2 Determination of the response function

Egs. (6.4) / (6.5) allow for an experimental determination of the stiffness x of the optical tweezers.
The knowledge of k enables the determination of the trapping force at any position where the
trapping potential is harmonic. On the other hand, the response function x(w) introduced in
section 4.2, can be understood as an effective reciprocal spring constant [10]. It contains all
information about the dynamics of the response of the trapped object to any external force,
according to the Eq. (4.2). Hence, external forces acting on the trapped object can be found
by measuring its positions and averaging, if one knows the response function. From the general
relation for the response function, Eq. (4.4), and the analytical relations for the active spectrum,
Egs. (4.22)/(4.23), one obtains

O ] (6.10)
and _
W) = ) (6.11)

for the laser and stage driven cases, respectively. Eqs. (6.10)/(6.11) represent measurement
prescriptions for the response function. For the denominators in Egs. (6.10)/(6.11), the averaged
value, Egs. (6.8)/(6.9), from the trap stiffness calibration should be used. This would yield a
result for the response function x(w) with relatively low statistical error. The active spectrum

8Fitting to a constant value in principle corresponds to averaging.

In general it is convenient to work in the frequency domain since physical processes are typically localized in
frequency space. The possibility to omit frequencies which are governed by different physics than contained in
the fit model is of course given for all calibration methods which are based on fitting in the frequency domain.
An example is the usual omission of very low frequencies when fitting with the power spectrum method to avoid
errors due to drift [40].
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in the numerators in Egs. (6.10)/(6.11) can be expressed in terms of amplitudes and the phase
difference A¢(w) by using Eqgs. (4.46)/(4.47).

Moreover, Eqgs. (6.10)/(6.11) can be expressed entirely in terms of amplitudes and the phase
difference A¢(w) by using Eqgs. (4.46)/(4.47). This yields

X(w) = — 5 [i + cot (Ag(w))] (L), (6.12)
Xw@) = =525 i — cot(Ad(w)) - Tmiedsmy (S). (6.13)

Egs. (6.12)/(6.13) are complex equations which contain the original FDT, Eq. (4.12), in their
imaginary parts, respectively. In the border case of a particle in a purely viscous medium where
Re{¥(w)} = 70 and Im{#(w)} = 0 at low frequencies, w — 0, one has for the case of stage driving
a relation which is independent of the amplitudes,

X(w) ~ —‘gfé“T’) [i —tan(Ag)], viscous medium, for low frequencies  (S)  (6.14)

since

_As a1 @Shwedm 1w L)
Apsin(A¢)  wRe{Rg(w)} w tan[(w)]  cot[Ag(w)] ’

(6.15)
and because the cot(A¢(w)) term in Eq. (6.13) is negligible, cf. Egs. (4.40) and (4.59). Re-
lation (6.14) will later be used in the context of positional calibration in viscous media, see
subsection 6.3.4.

6.3.3 Determination of the friction retardation spectrum

Finally, one can solve for more unknowns of the equation of motion. From Eq. (4.4) one obtains
for the friction retardation spectrum

- .o ke 1
3(0) +iwm = 12 (—inL(w)H) w), (6.16)

for the case of laser driving and

7(w) = Rs(w)/x(w) (S), (6.17)

for the case of stage driving. The additional mass term on the left-hand side of Eq. (6.16) could
be fitted. For spherical particles with known radius R and negligible mass in an incompressible
medium, the friction retardation spectrum 74 (w) can then be related via the generalized Stokes-
Einstein relation to the dynamic shear modulus G(w) of the medium, see section 2.3.

6.3.4 Positional calibration

Calibration from the voltage signal results in the case of laser driving in k(") = k(¥ 3 and
XV (w) = ¥ (w)/3%. Since the zero frequency limit of Re{x(w)} is 1/, one may find £
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through the relation

1

= Ro[x 0 () jpol | Lor low frequencies (L). (6.18)

g

For the determination of Re{x(**')(w)}, Eq. (6.10), can be used. For the case of stage driving,
the situation is more complicated, since there is no meaningful expression for y(voIt) (w), see
Eq. (6.11). For purely viscous media, one may use Eq. (6.14) however, to find § from the low
frequency limit. One has

5= 2kgT  cot(A¢)

= SPGI(0) At for low frequencies, viscous media (S). (6.19)

A value with lower statistical error can then be obtained from Eqs. (6.18)/(6.19) by averaging,
B3@) = (), for low frequencies (6.20)

which may be used in case § appears constant for a range of frequencies w — 0.
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with simulations

The equations of the FDT method are of general nature, i.e., they are in principle valid for
arbitrary profiles with which the laser/stage is moved. In practice, there are important differences
between a relocation of the trap and a relocation of the piezo stage, and it is important how the
time-dependence of the driving is chosen. In section 7.1, laser and stage driving will be discussed
and compared from a practical point of view. Moreover, it will be explained with which profile
the laser/stage should be driven.

Furthermore, the FDT method is exact in the frequency domain and it is exact for thermal
averages which have to be taken over an infinite number of ensemble members. In practice, one
records data for one particle in form of finite time series, however. Therefore, even under ideal
conditions, i.e., i) if the system behaves ideally in that sense that it follows exactly the equations
of motions given in chapters 3 and 4 and ii) if there are not any experimental imperfections,
one will always have certain numerical and statistical errors. In principle one may ask here the
question if the method is applicable at all for finite time series of reasonable length, i.e., for
measuring times of order 10 — 1000s. Before starting any experiments, simulations have been
performed in order to answer that question. The applied simulation technique will be explained
in section 7.2. In section 7.3, the results of the simulations will be presented. In section 7.4, I
will present error calculations, in which the statistical errors of the quantities which are obtained
from the simulated calibration are derived. Finally, the simulation results will be discussed in
section 7.5.

7.1 How to drive?

In the active part of the proposed calibration method a small time-dependent perturbation is
applied to the system. For a reliable calibration it has to be ensured that this perturbation is
truly small and that it excites the system with frequencies at which the fluctuation-dissipation
theorem is valid. Further, the statistical error should be low. The perturbation amplitudes and
frequencies are controlled via the choice of the external force Fex(t). According to Eq. (4.15) the
Fourier transformed external force Foy (w) is the product of a coupling part which is different
for laser and for stage driving and a controllable part which contains information about the
time-dependence and the amplitude of the applied perturbation. Therefore one might ask the
following questions:

e Which driving method should one rather choose for a reliable calibration - laser or stage
driving?

e Which time-dependence of the driving should one choose for a reliable calibration?
e Which laser/stage amplitudes should one choose for a reliable calibration?

47
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The first two questions are addressed in the following two subsections. The third question is
discussed in the context of the performed experiments in paragraph 8.4.1.

7.1.1 Laser or stage driving?

On one hand, there are several reasons to prefer laser driving. Firstly, in the basic equation
of the FDT method for laser driving, Eq. (6.4), the mass is eliminated, whereas in the basic
equation for stage driving, Eq. (6.5), the mass appears as an frequency-dependent extra term.
Secondly, for stage driving with open boundary conditions, the medium will not follow the stage
motion exactly, especially at fast driving speeds and far away from the coverslips. With laser
driving, this problem does not exist, since when the laser is moved the medium stays at rest.
Thirdly, the positional calibration with the FDT method, as explained in paragraph 6.3.4, is
working for general media when driving the laser. For stage driving, the positional calibration
works only in simply viscous media, so another method for finding the conversion factor  has to
be applied within general viscoelastic media. Fourth, in lateral directions the trap can be moved
faster than the stage. Thus, with laser driving, a higher bandwidth can be obtained. The result
of the basic equation can then be fitted taking into account many frequencies, as explained in
paragraph 6.3.1. Acousto-optic modulators (AOM), electro-optic modulators (EOM) and dual
traps generated by beam polarization splitters provide tools to change the trapping position very
fast, up to the order of GHz with EOM, in lateral directions. In contrast, stage driving allows
to change the stage position only relatively slowly, up to the order of sub-kHz.

On the other hand, moving the stage requires less instrumental effort than implementing a
moving trap and it is easily possible in all directions. Moving the trapping center relative to the
stage in axial direction is, however, a fairly slow process as it happens by means of diffractive
optical elements (DOE). Further, the maximum oscillation frequency of a fast piezo stage should
be sufficiently much higher than those frequencies at which bio-active processes typically occur
so that the new calibration method should be applicable in bio-active media also with stage
driving!. Moreover, at a given displacement of the trapped particle? and at low frequencies,
stage driving would give a lower statistical error than laser driving since it has to operate with
higher amplitudes®, see figure 8.2 in paragraph 8.4.1 and the text to that figure.

Thus the choice between moving the laser or the stage depends on the directions for which the
calibration is to be performed and on the instrumental effort which one wants to make.

7.1.2 Time-dependence of driving - driving sinusoidally or non-sinusoidally?

The controllable part cZ(w) of the external force spectrum Fext(w) contains information about
the time-dependence and the amplitudes of the applied perturbation, see Eq. (4.15). Accord-

ing to Egs. (4.18)/(4.19) d(w) is equal to the (negative) velocity spectrum of the laser/stage,

!The piezo stage on setup 2 in the optical tweezers lab at the Niels Bohr Institute (Physik Instrumente, P-
517.3CL) performs very accurate small-amplitude oscillations at 100 Hz. Bio-active processes are presumably only
relevant at lower frequencies up to 20 Hz [49].

2The trapped particle should be displaced as little as possible to ensure that the fluctuation-dissipation theorem
holds. See subsection 8.4.1.

3The relative statistical error is proportional to the laser/stage amplitude, not to the particle amplitude.
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+iw?r, /g(w). A general classification of time-dependencies of the laser/stage position xr,/5(t)
is into sinusoidal and non-sinusoidal functions. In the following, some characteristics of sinu-
soidal and non-sinusoidal driving with respect to the new calibration method will be explained.
Furthermore, example profiles, which will be applied in the simulations in section 7.2, will be
presented.

Non-sinusoidal driving

With non-sinusoidal driving, the laser/stage is typically deflected by a distance Ay, /s according
to a chosen profile y,/5(t). The basic equations Eq. (6.4)/(6.5) can be applied simultaneously
at many frequencies, i.e., these frequencies which are contained in the non-singular driving ve-
locity spectrum iwy,/g(w). Fitting as described in paragraph 6.3.1 then yields a decrease in the
statistical error.

Example 1: Laser driving with a jump profile

At non-sinusoidal driving, the laser motion profile zp (¢) is required to exhibit an extended fre-
quency spectrum which allows for a reliable calculation of the active spectrum according to
Eq. (4.24). Such a driving function is given by a jump in the laser position

er(t) = AL(1 — 0(t) = ALo~ (1), (7.1)

where we have introduced 6~ (t) := 6(—t) as the Heaviside function with a negative time ar-
gument. Ar, is a positive constant with dimensions of a length. The negative driving velocity
spectrum is then given by

—iwzr(w) = AL(1 — inwd(w)), (7.2)

This spectral function is easily inserted in Eq. (4.24), since it is constant for non-zero frequencies.
One has -

Rulw) = E9O) (o w2 0), (7.3)

AL

where Z(w) is the positional spectrum of the trapped particle in the driven system. Since the
active spectrum at non-zero frequency is easily obtained by dividing the positional spectrum
by Ap, the entire accessible frequency spectrum can be used for the calibration. Eq. (7.1)
corresponds to a jump in the laser position from the deflection Ay, to the value 0%, see Fig. 7.1
(dashed line) on page 57 . Describing the jump of the laser position by a f-function is realistic,
because with fast equipment the time to switch the laser position laterally is very small compared
to the time scales on which the movement of the trapped object takes place.

Ezrample 2: Stage driving with error-function profile

The stage motion can be controlled only on a relatively slow time scale on the order of sub-ms.
This is slower or comparable to typical time scales of the particle motion, like the relaxation time
in the trap which is on the order of ms. Therefore it is impossible to choose the driving function
xg(t) to contain a Heaviside function. Instead a function with an extended velocity spectrum is
chosen, namely

Ag t
= 7 erf
1/ 20%

4Since the laser position defines the zero-point of the QPD measurement, the jump would go from Ay, to 0.

zs(t) +1p, (7.4)
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with the error function
erf(t / exp(—t?)dt’, (7.5)
\/_
the amplitude Ag and the width og. xg(t) is plotted in Fig. 7.7 (dashed line) on page 63. The

discrete driving velocity spectrum is given by the Gaussian function

wis(w) = Asexp (~3od(0)). (76)

According to Eq. (4.25), the active spectrum becomes

B () — { W)>

Z(
R —
R E I mE

Sinusoidal driving

Sinusoidal driving profiles like

wys(t) = Apssin(wys ot + é1/s), (7.8)

where Ay, /g is the laser/stage amplitude, wy,/s o is the oscillation frequency and ¢, /g is the phase
shift, are singular in frequency space. Hence, the calibration equations in terms of amplitudes
and angles, Egs. (6.6)/6.7), can be applied at one frequency only and one obtains one values
for k or kK — w?m. For a reliable calibration result, Egs. (6.6)/(6.7) should therefore be applied
for Kyjax different driving frequencies wy, /g g, with K = 1,..., Knax. This reduces the statistical
error and enables fitting for the mass in the case of stage driving. Further and most importantly,
it allows the recognition of systematic errors that may occur at certain frequencies: For stage
driving, e.g., the spectrum of the calibration results should give a parabolic function, cf. Eq. (6.7).
Deviations from that functional form may indicate frequencies for which systematic errors occur
and they may be excluded in the calibration procedure. This identification of systematic errors
is especially relevant for calibration inside living cells. Here, the FDT is likely to be broken at
low frequencies due to active processes [49]. In general, it is recommendable to choose the values
of wg/, k in an interval as broad as possible with the equipment available. The Kyax angular
frequencies wx = 27 fx were chosen to be an integer multiple of the angular frequency spacing
27 /T to avoid leaking®,

wg =K - 2r/T, K=1,..., K\ax- (7.9)
The driving velocity spectrum then becomes for ¢r, /5 =0
wy g(w) = Atwk[§(w + wk) + 6(w — wk)]- (7.10)

Calibration with sinusoidal driving has been tested with simulations, see section 7.3. Further, for
the verification of the novel calibration method in the lab, we use exclusively sinusoidal driving,
see chapter 8.

SFor the simulations presented in section 7.3, the measuring time 7T is given by the window length Tiina, see
section 7.2.2.
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7.2 Simulation of the calibration with the FDT method

Real data is recorded as finite time series. With a finite measurement time, averaging will leave
some noise. Furthermore, the Fourier transform of the finite time data to the frequency domain
can cause leaking and the finite sampling frequency causes aliasing [40,69]. The simulations
presented in the following sections serve to demonstrate that the novel calibration method works
well under realistic conditions. The motion of the particle itself and also the position tracking
with a finite sampling frequency have been simulated. In this section, the applied simulation
technique is explained and it is described how the simulated data is evaluated according to the
FDT method.

7.2.1 Propagation of the equations of motion

In the simulations, the undriven equation of motion, Eq. (3.5), and the driven equations of
motion, Eq. (4.13)/(4.14), were propagated with a modification of the fourth order Runge-Kutta
(RK) method® to solve the ordinary differential equation

di(t)
dt

= (ta(t), #(1) (7.11)

iteratively. The function f (¢, z(t),(t)) is given by the right hand sides of Egs. (3.5), (4.13)/(4.14).
The trapped particle is assumed to be a spherical bead of radius R and density p. For the trap
stiffness of the optical tweezers, a value Kinpuy has been chosen as input to the simulations”.
The friction retardation functions 7;/5(t) are chosen according to a certain frictional behavior,

namely i) instantaneous simple Stokes friction, i.e.,

7)) = 196(t), (7.12)
’)/Q(t) = 0. (713)

with the friction coefficient ~y = 67 R corresponding to a spherical object situated in water, or
ii) exponentially retarded friction,

M) = /7 - exp(—t/ms), (7.14)
Y(t) = 0, (7.15)

where 7, is a characteristic decay time of order pus. Case ii) represents a simple model for a
viscoelastic medium. The acceleration dependence can be omitted at the numerical propagation,
since in all simulations 75(t) is set to zero. The most intricate steps at the propagation of the
equation of motion have thus been the determination of the velocity memory term

- [t - ryir (7.16)

5The Runge-Kutta method solves initial value problems with an ordinary differential equations of type § =
f(t,y(t)) and an initial value y(to) = yo. Here that method has been applied for y = & and a position dependence
was included. Then two initial values must be given, x(to) and #(to).

"The main goal of the simulations is to check if the value of Kinpus can be reproduced by applying the FDT
method.
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and the determination of the random force term Fg(t). The velocity memory term, Eq. (7.16),
has been computed by numerical integration, whereby several approximations for obtaining a
fast propagation have been applied®. The random force term was obtained by numerical inverse
Fourier transform of Eq. (3.20), thereby generating the right noise color of the time-domain
random force. In the case of simple Stokes friction, however, both the velocity memory term
and the random force term become trivial. The velocity memory term becomes the well known
Stokes friction —~g2, while the random force is white noise, see section 3.3. Then, the equation
of motion of the undriven system, Eq. (3.5), has been propagated with its analytical solution,
Eq. (15) of [40], which is much faster on the computer.
Trajectories corresponding to windows of duration Tyinq and Tying,p for the undriven and for the
driven system, respectively, were found, cf. paragraph 7.2.2. The initial positions and velocities
for each window were taken as the final positions and velocities of the previous window. Also the
previous velocities, relevant for the initial velocity memory term calculations, were handed over
from one window to the next. On the obtained raw trajectory data, windowing and the numerical
Fourier transform were applied as described in section 7.2.2. The mean squared displacement
o2(t) = ([x(t) — z(to)]?) was calculated in order to check if the equipartition theorem

lim o?(t) = kpT/x, (7.17)

t—o0
is fulfilled (data not shown). Then the calibration method has been applied like explained
in paragraph 7.2.3. The frequency-dependent results were plotted against the frequency f =

w/(2m).

7.2.2 Handling data

In practice, one records data for one particle in form of finite time series. In the following it
will be explained how to deal with simulated data series xg»sml). Thermal averages are calculated
by windowing and the discrete Fourier transform is applied in order to change to the frequency
domain. Further, thermal averages are calculated by windowing and blocking. Moreover, one

has to perform positional calibration.

Discrete Fourier transform

(sim)

Data are recorded for a time 1" with frequency fsample- From the resulting time series = S J=
1,..., N, one forms the discrete Fourier transform,
. N . N .
B0 = A Y et ) = A N emizmk/N i), (7.18)

j=1 j=1

k=—-N/2+1,...,N/2, where At = 1/ fsample, t; = jAt, and NAt = T. The discrete data have a
frequency spacing of 1/7" and a maximum frequency fxyq = fsample/2. The discrete frequencies
are given by fr = wi/(2m) = k/T [40].

8The upper integration limit in Eq. (7.16) has been cut-off at a frequency on order ms. Furthermore, blocked
velocity values have been used, in order to reduce the number of terms contributing to the sum which approximates
the integral.
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Windowing

Windowing as a tool of data compression has already been used in power spectral analysis for
optical tweezers [40]. Windowing essentially means that a long time series is cut into shorter
pieces, from this pieces one calculates observables like the power spectrum or the active spectrum,
and finally one averages over the resulting spectra. When the number of windows is large, the
values of the compressed spectra are statistically independent and Gaussian distributed and the
statistical error decreases, see the error calculation in section 7.4.

In the simulations presented in section 7.3, no long time series vectors were created and then
cut into pieces, however. Instead many relatively small data windows were generated a priori,
both for the driven and the undriven systemg. Over these windows it was averaged then, (.)wind,
to obtain an estimate for the thermal average, (.). To avoid leakage, the window length for the
undriven system Tlinq must not be chosen too small'®. For the driven part, many relaxation
processes over a time interval Tnqp are recorded and then it is averaged. Tynq,p must be
chosen high enough to cover the whole relaxation process. For non-sinusoidal driving, Tyina,p
may be chosen smaller than Tyi.q, since the relaxation process is typically in the order of ms.
Therefore it is convenient to add zeros to the recorded driven data, a procedure called zero
padding [69], so that again a window of length Tyinq is obtained. For sinusoidal driving, Tyind,D
should be chosen equal to Tying- Then both the undriven and the driven data sets will have a
frequency spacing of Af = 1/Tying- The total measuring time is given by

Tmeas = wind,UTwind + Nwind,DTwind,D7 (719)

where Nying,u and Nying,p denote the window numbers for the undriven and the driven system,
respectively.

Also in the undriven part of the experiments shown in chapter 8, windowing has been applied
in that sense that small data windows have been recorded and the resulting power spectra have
been averaged.

Blocking

Blocking [40,69] basically means to average the obtained spectra over adjacent discrete frequen-
cies fr which are so close to each other that the theoretical spectrum values do not vary much
over these frequencies. In the simulations, the trajectories are only generated for short times
Twind- One obtains a very large frequency spacing Af = 1/Tying on the order of 100 Hz. Thus
one may not simply block the spectrum over several discrete frequencies, since the theoretical
value of the spectrum would vary for these frequencies considerably. However, it can be blocked
over the ratio between measured and theoretical spectrum which ideally would be equal to 1.
Further, one may block over the results of the basic equations Egs. (6.4)/(6.5), which ideally
would be equal to the simulation input value /@mputu. Blocked data is indicated by a bar above

the quantity symbol, e.g. R,(fim/ ) for the result of the calibration equation which is obtained
from blocking of frequencies around fg.

9Only small data windows of sub-second length could be generated due to finite computer memory and speed.

0T ypically, a window should have a length which is at least a few times the time scale t. which is given by the
corner frequency, tc = 1/f..

UFor stage driving, this requires the negligibility of the mass term.



54 Chapter 7. Driving method and investigation of the FDT method with simulations

7.2.3 Calibration from simulated data

In this paragraph it is explained how the FDT method is applied to the data from the simulations.

Trap stiffness calibration

From 5:,(:'im) and windowing as described in paragraph 7.2.2, the simulated, discrete power spec-

trum,
. A (sim) 2y
pEm = W’kTM (7.20)
wind
and active spectrum
N A (sim)y
R(LS,I;I) = <—xf27rf,€>;:n: (L), (7.21)
N A (sim)y
RS = 7<f§7rfk;§fzd (8), (7.22)

are obtained from the trajectories of the driven and the undriven system, respectively. Using
both spectra it is calibrated with the discretized versions of Egs. (6.4)/(6.5)2,

) o o % (L), (7.23)
2
(k — (27Tf)2m)](:im) = 2kpT - Re;?%%ﬂ) (S). (7.24)
The frequency dependent calibration results thus obtained are finally averaged over frequencies'3,
) = (k™) (L), (7.25)
R = (™ = (s = e f)?m™ e (), (7.26)

where the average is denoted by (.);. Local blocking of frequencies is also applied in the case of

laser driving, one obtains R](:lm)

Response function and friction retardation spectrum

The response function at frequency f, is obtained from the discretized versions of Eq. (6.10)/(6.11),

sim i2m f) R

Xp =T (L), (7.27)
sim 1—i2n f, RS

X;(f ) _ H(;vv)s,k (S). (7.28)

2For sinusoidal driving with frequency fix, results are obtained only at fx, not at generic frequencies fy, see
paragraph 7.1.2
13For sinusoidal driving, one averages over the results of several driving frequencies fx, see paragraph 7.1.2
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Finally one can find the friction retardation spectrum at frequency fi from the discretized version
of Eq. (6.16)/(6.17),

S (sim) _ gv) 1
(¥ +i27 fm), = T2 (i%rfﬁfffo " 1) ) (729
'3/](:im) _ Rslkm)/xl(:lm) (S) (730)

In favour of a lower statistical error in Eqgs. (7.27) to (7.29) we have used the averaged stiffness
x@) from Eqs. (7.25)/(7.26) instead of the local stiffness values from Eqs. (7.23)/(7.24).

Positional calibration

Since the zero frequency limit of Re{x(w)} is 1/k, for the case of laser driving one may find
experimental values S through the relation

Br = Re{X,(CVOlt)}/i(aV’VOIt) for low frequencies, (L) (7.31)

which is valid if f; is low, cf. section 6.3.4. A value with lower statistical error can be obtained
by averaging
@) = (8), for low frequencies, (L) (7.32)

which may be used in case (5; appears constant for a number of frequencies fr — 0. With the

conversion factor thus found, one can now calculate the actual values m,(gsml), X,(:im) and ﬁ,(:im) 14

7.3 Simulation results

The calibration method has been tested for different cases, i) fast relocation of the laser in a
medium with retarded friction, see paragraph 7.3.1, ii) slow relocation of the stage in a simple
viscous medium, see paragraph 7.3.2, iii) slow sinusoidal motion of laser or stage in a simple
viscous medium, see paragraph 7.3.3 and iv) fast sinusoidal motion of the laser in a medium
with retarded friction, see paragraph 7.3.4. In paragraph 7.3.5 the parameters of the simulations
are subsumed in tables. Finally, in paragraph 7.5 I will discuss why sinusoidal driving would
perform best in a real experiment.

7.3.1 Calibration with fast relocation of the laser (non-sinusoidal driving)

A calibration for the trap stiffness while simultaneously probing the system’s response function
and the friction retardation spectrum at high frequencies can be implemented by fast laser driving.
In an experiment, high spatial and temporal resolution of the positional detection system is
required. Such a situation has been simulated, whereby a relatively strong trap of stiffness
Kinput = 0.1 pN/nm has been driven non-sinusoidally. As suggested in paragraph 7.1.2, a driving

1 our simulations, a volt-meter conversion has not been included, i.e., it is assumed that one measures
positions. Sinpus is therefore 1. (i and B3 have been determined only for the case of laser driving for which
positional calibration with the FDT method works for general media.
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profile which corresponds to a jump in the laser position from the deflection A, to the value 0,
Eq. (7.1), has been used. The laser position is plotted in Fig. 7.1 (dashed line). The friction
retardation function 7 (t) chosen is the exponentially decaying function Eq. (7.14). The results
of the simulation are shown in Figs. 7.1-7.6.
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In Figs. 7.1 and 7.2(a) the system’s behaviour in the absence of thermal noise is shown. This

Position (nm)

Position (nm)
[\ \] [\
W SN (V)]

N
N

Figure 7.1: Simulation results for the case of non-sinusoidal laser driving, Eq. (7.1), with exponentially decaying
friction retardation function, Eq. (7.14), I: Trajectory mgs"") (solid line) of the driven system,
simulated without thermal noise (Fr(¢;) = 0). Averaging over windows is not necessary here,
because there is no thermal part of the motion. The data are sampled with a high sampling
frequency of fsample = 10 MHz. (a): The entire relaxation process. After the jump of the laser
position (dashed line) at time ¢ = 0 the trapped particle relaxes into the new trap center. The
bead follows a trajectory similar to zo(t) = Aexp(—FKinput/70t) (dotted line). (b): Beginning of
the relaxation process. The trajectory deviates from zo(¢). This is due to the exponential friction
retardation function in the memory kernel. Because of the delayed impact of the friction, initially
the particle is accelerated relatively too much and an oscillating contribution to the motion of the

particle results.

corresponds to averaging the thermal noise. In this case one obtains the driven, non-thermal
part of the motion without averaging over a large number of windows. The driven part has an
oscillating contribution due to the complex friction, see Fig. 7.1(b).
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This leads to a resonance peak in the real part of the active spectrum Re{f%(LS i,zn)}, see Fig. 7.2(a),

which is also present in the power spectrum P,ESim) of the corresponding undriven system,

Fig. 7.2(b).

Similar resonance peaks appear at power spectra of AFM, but at lower frequen-
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Figure 7.2: Simulation results for the case of non-sinusoidal laser driving, Eq. (7.1), with exponentially de-

caying friction retardation function, Eq. (7.14), II: (a): Same data as in Fig. 7.1. The oscillating
contribution at the particle’s motion produces a resonance peak in the real part of the active spec-
trum Re{RSi,in )} (solid line) at about 830 kHz. The analytical result, Eq. (4.48), is indicated by
a dotted line. (b): A corresponding peak occurs also at the power spectrum of the corresponding
undriven system. The simulation result PéSim) is indicated by a solid line, the analytical result,

Eq. (3.23), by a dotted line.

cies [70,71]. Comparing the two panels of Fig. 7.2, one can clearly recognize the proportionality
between the real part of the active spectrum and the power spectrum which is a consequence of

the FDT.
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In Figs. 7.3 to 7.6 however, data from a simulation with more realistic parameters is presented,
on which the new calibration method finally has been applied. Thermal noise was added and
a sampling frequency of fsample = 300kHz has been used. In Fig. 7.3 the results for the power
spectrum (left side) and the real part of the active spectrum (right side) are shown, respectively.
Both spectra exhibit significant aliasing errors for frequencies higher than 10kHz.
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Figure 7.3: Simulation results for the case of non-sinusoidal laser driving, Eq. (7.1), with exponentially decaying

sim)

friction retardation function, Eq. (7.14), III: Left side: Power spectrum P]E of the undriven
system compared to the theoretical spectrum P(f), Eq. (3.23). Right side: Real part of the
active spectrum Re{f?ﬁf‘ >} of the driven system, calculated with Eq. (7.3), compared to the real
part of the theoretical spectrum Re{Rw(f)}, Eq. (4.48). (a),(b): Simulated spectrum (solid line)
and theoretical spectrum (dotted line) in a double-logarithmic plot. Aliasing for high frequencies
is visible. (c),(d): Simulated spectrum divided by theoretical spectrum (solid line). Aliasing
which becomes relevant at about 10kHz leads to two- to threefold exceeded values at the Nyquist
frequency. The results for the real part of the active spectrum are correlated for adjacent frequencies
which is due to zero-padding of the data, see paragraph 7.2.2. The plotted standard deviation of the
power spectrum and the statistical error estimate for the real part of the active spectrum (dotted
lines) are given in Eq.’s (7.38) and (7.45).
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Fig. 7.4 shows the results of the application of the calibration method. The trap stiffness values
/@,E/,Slm) have a bias for intermediate frequencies lower than about 40 kHz, they tend to be high. Due

to the large statistical error of mkSim), this bias is only identifiable when considering the blocked

data R,(flm), see Fig. 7.4(b). This bias is probably due to errors occurring at the numerical
propagation of the equation of motion in the initial phase of each window, when the bead
is accelerated very much due to its initially large relative displacement from the trap center.
Thus the bias is an artifact of the simulation which would not appear in real experiments. For
frequencies higher than 40kHz the results for /s;](:lm) and ™) do not deviate more from Kinput
than one would expect from the statistical error, however. Only for frequencies higher than about
80kHz the result for /{,E/,Slm) becomes too high due to aliasing. This shows that aliasing effects of
the power spectrum and of the real part of the active spectrum compensate for each other to a

large extent, also for frequencies higher than 10 kHz. When averaging according to Eq. (7.25),
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Figure 7.4: Simulation results for the case of non-sinusoidal laser driving, Eq. (7.1), with exponentially
decaying friction retardation function, Eq. (7.14), IV:Application of the calibration equation,
Eq. (7.23), to the results shown in Fig. 7.3. The statistical error estimates are given in

section 7.4. (a): /i,(:im) (solid line), obtained from the application of the calibration equation

Eq. (7.23). (b): Blocked results f?a,(fim). Biases due to numerical errors at the generation of
the raw data and due to aliasing are only visible when looking at the blocked data.

it is not a priori given which frequencies to include. One suggestion is to include frequencies in
an interval where one assumes the result to be reliable. Calculating the average over the interval
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[ fmins fmax] With fmin = 40Hz and fiax = 4kHz' yields

(o)

= 1.005 4 0.023. (7.33)

Rinput

Higher frequencies have not been included in the averaging procedure because of the above-
mentioned bias due to numerical errors at the propagation of the equation of motion. Further,
it would not be recommendable to include higher frequencies, since the statistical error of /1,(:”“)
increases fast with frequency.

Fig. 7.5 shows the result from application of the response function calibration equation, Eq. (7.27).
It can be seen that the response function can be determined with good precision for frequencies
lower than 10kHz. For higher frequencies, aliasing errors become very large, especially for the

real part Re{x,(:im)}.
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Figure 7.5: Simulation results for the case of non-sinusoidal laser driving, Eq. (7.1), with exponentially
decaying friction retardation function, Eq. (7.14), V: Application of the response function
calibration equation, Eq. (7.27). (a),(b): Absolute values for Re{x,(flm)} (solid line) and
Im{X,(flm)} (dashed line) and the theoretical curves, Eq. (4.4), for Re{x(f)} (dotted line) and
Im{x(f)} (dashed-dotted line). Aliasing is visible for high frequencies. (c),(d): Data/theory
plots for same data set. The relative errors for real part (dashed lines) and for the imaginary
part (dashed-dotted lines) are increasing with frequency, the absolute values are decreasing.
The correlation of the data for different frequencies due to zero-padding is apparent.

15 At these low frequencies, the above-mentioned bias due to numerical errors at the propagation of the equation
of motion is not present.
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Finally, the friction retardation spectrum can be found by application of Eq. (7.29), see Fig. 7.6.
For the real part Re{J(f)}, Fig. 7.6(left), one obtains good results for frequencies lower than
~ 10kHz. For higher frequencies, both aliasing errors and statistical errors become large. For the
imaginary part Im{7(f)}, Fig. 7.6(right), one obtains for all frequencies results with a statistical
error which is larger than 100%. Especially for low frequencies one obtains a very high statistical
error, since the absolute value of Im{%(f)} is close to zero. For frequencies larger than ~ 10kHz,
aliasing errors are high for the imaginary part, too.
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Figure 7.6: Simulation results for the case of laser driving, Eq. (7.1), with exponentially decaying friction
retardation function, Eq. (7.14), V: Application of Eq. (7.29) for the determination of the
friction retardation spectrum. For the real part, Re{5(f)} (left side), one obtains good
results for frequencies lower than ~ 10kHz. For the imaginary part, Im{%(f)}, one obtains
results with a statistical error which is larger than 100% for all frequencies. In (b) both
analytical expressions Im{%(w)} + iwm (dotted line) and Im{%(w)} (dashed-dotted line)
have been plotted. Apparently the difference between these two expressions is much smaller
than the error of the simulation imaginary part.
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7.3.2 Calibration with slow relocation of the stage (non-sinusoidal driving)

In this paragraph simulation results for non-sinusoidal stage driving with a relatively weak trap
with a stiffness of Kinpyt = 0.01 pN/nm are presented. A stage which is driven by piezo elements
can not be relocated as fast as the laser trap can be deflected by means of AOD/EOD. There-
fore, as stage driving profile xg(t), the smooth s-shaped function proposed in paragraph 7.1.2,
Eq. (7.4), is used. The friction retardation functions, Egs. (7.12)/(7.13) used in this simulation
correspond to simple Stokes friction. The results of this simulation are presented in Figs. 7.7 to
7.9.

In Fig. 7.7 the response of the trapped object to the stage deflection is shown. One can see that
for small times after the initiation of the stage deflection the trapped object follows the stage
motion, but for larger times, it feels the influence of the trap and relaxes back to the resting trap

center.
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Figure 7.7: Simulation results for the case of non-sinusoidal stage driving, Eq. (7.4), with simple Stokes
friction, Eqgs. (7.12)/(7.13), I: Averaged trajectory <55§-Slm)>wind of the trapped object of the
driven system (solid line) averaged over Nyina,p = 7500 windows of length Tyinap = 0.1s.
The stage position is indicated by a dashed line. The stage velocity reaches its maximum

at time ¢t = 0.
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Fig. 7.8 shows the results for the observables P,gSim) and Re{Résjgm)} as well as the results

(k — (27rf)2m),(:im). The statistical error of the power spectrum P,gSim), see Fig. 7.8(a), is fre-
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Figure 7.8: Simulation results for the case of non-sinusoidal stage driving, Eq. (7.4), with simple Stokes
friction, Eqs. (7.12)/(7.13), IT: (a): Power spectrum P*™ of the undriven system divided by
the theoretical spectrum P(f:), Eq. (3.23). (b): Real part of the active spectrum Re{RéS,i,fl)
of the driven system, calculated with Eq. (7.7), divided by the real part of the theoretical
spectrum Re{Rs(fx)}, Eq. (4.49). (c): Result of the application of the calibration equation,
Eq. (7.24), divided by the input trap stiffness Kinpus.

quency independent. The statistical error of the real part of the active spectrum Re{Résfkm)}, see

Fig. 7.8(b), increases fast with frequency, however. This is mainly due to the choice of the driv-

ing function. Since contributions to i27 fZg(f) are getting smaller with increasing frequency, the

thermal part of the motion becomes more relevant, thereby causing a higher relative statistical
error of Re{];?szm)}, see the error calculation in section 7.4. Based on this increase in statistical

(sim (sim)
k

error on Re{RS X )}, the upper limit fy,ay of the frequency interval over which (k— (27 f)%m)
is averaged according to Eq. (7.26), was chosen at a rather low value, fia.x = 150 Hz. One obtains

(@)

= 0.983 + 0.036. (7.34)
Rinput

This calibration result with a for most purposes acceptable relative statistical error of 3.6% has

been reached by choosing a very high number of windows Nyingp = 7500 at the driven system.

With a window time of Tyinqp = 0.1s this involves a large total measuring time of Tjyeas = 800,

however, which is clearly unfavorable'®. Since it has been calibrated only at low frequencies, the

1811 principle, one could imagine to reduce the total measuring time by moving the stage according to the same
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mass term — (27 f)?m is negligible, although the motion of a large particle in a weak trap was
simulated. The mass term would be relevant however, if frequencies higher than a few hundred
Hz would be taken into account.

Fig. 7.9 shows the simulation results for the response function X,(flm) and the friction retardation
spectrum ’y,(:lm). The analytical expression for x(w) was obtained by using the constant friction
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Figure 7.9: Simulation results for the case of non-sinusoidal stage driving, Eq. (7.4), with simple Stokes
friction, Eqgs. (7.12)/(7.13), III: (a),(b): Application of the response function calibration
equation, Eq. (7.28). Simulation results for real part (circles) and imaginary part (diamonds)
of x\*™ in absolute numbers (a) and as scatter plots for data/theory (b). The analytical
expression for the response function y(w), Eq. (4.4), is indicated by a dashed line (a).
(c): Determination of the friction retardation spectrum (real part), Eq. (7.30), as scatter
plot. Statistical error estimates are given for the real parts ((b),(c), dotted lines) and
the imaginary part ((b), dashed-dotted lines). All statistical errors are increasing with

(sim)

frequency. For Re{x,(fim)} and Im{y;™ } they are on order 10% for frequencies up to
50 Hz, for Re{4""™} the statistical error is on order 5%.

coefficient 7y as the theoretical value for 4(w). For frequencies below 50 Hz the statistical errors
are on order 5-10%, see Fig. 7.9(c,d).

error-function profile, but faster than in the given example, thereby reducing the window time Tyina,n. Then one
could also calibrate at higher frequencies. In practice, this is rather unrealistic, however, since a state-of-the-art
piezo stage can reliably perform motion according to given profiles only up to a time scale of sub-kHz. At the
presented example, the stage is performing motion which is on that time scale, see Fig. 7.7.
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7.3.3 Calibration with slow sinusoidal motion of laser/stage

Calibration with slow sinusoidal laser and stage driving have been simulated for a R = 1 um bead
in water. The friction retardation function is given by Egs. (7.12)/(7.13) which corresponds to
simple Stokes friction. A number of Kyax = 100 driving frequencies between 1 Hz and 100 Hz
have been used to drive the system. The results of such a simulation are shown in Figs. 7.10 to
7.12.

Fig. 7.10 shows the power spectrum and the real part of the active spectrum of the trapped
bead. The theoretical curves were obtained with Egs. (3.23) and (4.48)/(4.49), using the constant
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Figure 7.10: Simulation results for the case of slow sinusoidal laser/stage driving, Eq. (7.8), with simple
Stokes friction, Eqs. (7.12)/(7.13), I: Absolute results for power spectrum (a) and real part
of the active spectrum (b) for slow driving. (c¢) and (d): Scatter plots of data/theory for
the same data set. Simulation results for power spectrum (diamonds) and real part of the
active spectrum, the latter for laser (circles) and stage (squares) driving, are indicated by
symbols, analytical expressions are indicated by dashed lines. Statistical error estimates
are indicated by dotted lines ((c),(d)). The statistical error of the power spectrum is
frequency independent while the statistical error of the real part of the active spectrum
decreases fast with frequency.

friction coefficient g as the theoretical value for 4(w). The simulated values were calculated with
Egs. (7.20) and (7.21)/(7.22). When driving at low frequencies, the mass term is unimportant.
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The scatter plots of data/theory in Fig. 7.10(c,d) demonstrate that the statistical error for the
power spectrum is frequency independent while that of the active spectrum decreases fast with
frequency. The high error of ]A%S/lrsn)K at lower frequencies is due to the relatively short duration
per window Tying = 1s.

In Fig. 7.11, the results from the application of the calibration equations, Eqgs. (7.23)/(7.24) are

shown, for both laser (a) and stage (b) driving. From a comparison of the results and the error
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Figure 7.11: Simulation results for the case of slow sinusoidal laser/stage driving, Eq. (7.8), with simple
Stokes friction, Eqgs. (7.12)/(7.13), II: Application of calibration equation (circles) for slow
laser (a) and stage (b) driving. Statistical error estimates indicated by dottes lines show
that the calibration is more reliable at higher driving frequencies. By comparing (a) and
(b) one can see that laser and stage driving perform equally well with respect to the
calibration results and statistical error estimates. The dashed lines indicate the lower
boundary for the frequency range over which the calibration results mﬁ?m) were averaged
to obtain k(") (see text).

estimates in Fig. 7.11(a,b), we conclude that laser and stage driving perform equally well at
low driving frequencies'?. Like the statistical error of the real part of the active spectrum, the
statistical error of the values Rgm) decreases with frequency. This implies that calibrating at

lower frequencies is less reliable than calibrating at higher frequencies, if the driving amplitude

17Note that for a given driving amplitude A, /s and for a given driving frequency fr, the resulting amplitudes
of the oscillations of the trapped bead are in general different for laser and for stage driving. This can be of
relevance for the validity of the assumption of the FDT that the external perturbation is small. See paragraph
8.4.1.
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Ay,s is chosen constant for all frequencies, as done in the simulations'®. Since statistical errors
are high at low frequencies, it was chosen to include only driving frequencies fx higher than 15
Hz in the averaging procedure, Egs. (7.25)/(7.26). This results in average values of

r(av)
=0.996 + 0.01 (7.35)
Rinput
for laser driving and
(av)
N 0.995+0.01 (7.36)
Rinput

for stage driving. The relative statistical error of () of 1% shows that the calibration method
works well with slow driving. When driving the stage, the mass term (27 f)?m gives a systematic

error on k5™ of about —0. 0 abt fKy. = z which is negligible.
&) of about —0.003% at fry,, = 100 Hz which ligibl

18For experiments it is recommended however, to choose frequency-dependent driving amplitudes , as described
in paragraph 8.4.1.
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Figure 7.12 shows the results for the response function from Egs. (7.27)/(7.28), and for the
calculation of the friction retardation spectrum from Eqgs. (7.29)/(7.30). The theoretical curve
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Figure 7.12: Simulation results for the case of slow sinusoidal laser/stage driving, Eq. (7.8), with simple
Stokes friction, Eqgs. (7.12)/(7.13), III: Application of response function calibration equa-
tions ((a),(b)) and determination of the friction retardation spectrum (real part, (c)) for
slow laser (left) and stage (right) driving. Simulation results for real parts (circles) and

imaginary parts (diamonds) of x

(sim)
K

and Re{ﬁ}?lm)} (squares), respectively. Analytical
expressions are indicated by dashed lines. The vertical dashed-dotted line ((a), left) indi-
cates the upper boundary of the frequency interval over which the results of Eq. (7.32) were
averaged to obtain 3(®V). Statistical error estimates are given for the real parts (dotted
lines) and for the imaginary parts (dashed-dotted lines). For frequencies above a few tens
of Hz, the statistical errors are on the order of 5-10%.

for x(w) was calculated with Eq. (4.4). For laser driving, the conversion factor § was calculated by

using Egs. (6.18) and (7.32). The fifteen lowest driving frequencies fx were used for Re{xgm)}.
(0.993 + 0.02) [72] was found. The imaginary mass term
in Eq. (7.29) is negligible since it is driven at low frequencies. Fig. 7.12(b,c) displays also the

In this way the average value 5(&)

statistical errors (dotted lines)

on Xgm)

(sim

and Re{9

)}. These errors decrease with frequency.
For frequencies above a few tens of Hz, the statistical errors are on the order of 5-10%. Note that
the imaginary part of the response function can alternatively be obtained through its relation to
the power spectrum [10,54] with a frequency independent statistical error of 5%.
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7.3.4 Calibration with fast sinusoidal motion of laser

Fast laser driving for a simultaneous calibration of the trap stiffness and probing of the system’s
response function and the friction retardation spectrum at high frequencies has been simulated
for non-sinusoidal driving, see paragraph 7.3.1. In this paragraph, simulation results will be
presented where the laser has been driven fast and sinusoidal with Kyax = 50 frequencies
between 2.1 kHz and 106.9 kHz. The friction retardation function 1 (¢) chosen is again decaying
exponentially, according to Eq. (7.14). Figures 7.13 to 7.17 show the results of the simulation.

In Fig. 7.13 the trajectory of the object for driving with fg,,, = 106.9 Hz is shown. The thermal
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Figure 7.13: Simulation results for the case of fast sinusoidal laser driving, Eq. (7.8), with exponentially
decaying friction retardation function, Eq. (7.14), I: Trajectory (circles) i:g»sml) for laser
driving with fr,,. = 106.9 kHz, sampled at fsampie = 1 MHz. The laser position zr,(t)
is indicated by a solid line. The motion of the object is a superposition of thermal and
driven parts, with a large noise contribution from the former. The driven part of the
object’s motion follows the oscillating motion of the stage with an average phase lag of
order /2 which means that viscosity dominates over elasticity. The average amplitude of
the oscillations of the object is much smaller than the driving amplitude A. This implies
that even though Ay /g is chosen somewhat larger than the average amplitude of Brownian
motion fluctuations in the undriven system, the amplitudes of the driven fluctuations stay
well below and the condition of small disturbances for Onsager’s regression hypothesis is

automatically fulfilled.

part of the object’s motion gives a large contribution. The driven part of the trapped bead’s
motion follows the oscillating stage motion with an average phase lag of order 7/2. The average
amplitude of the object’s oscillations is much smaller than the driving amplitude Ay,.
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Figure 7.14 shows the power spectrum and the real part of the active spectrum of the trapped
bead, calculated from the simulated trajectories with Eqgs. (7.20) and (7.21). The theoretical
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Figure 7.14: Simulation results for the case of fast sinusoidal laser driving, Eq. (7.8), with exponentially
decaying friction retardation function, Eq. (7.14), II: Absolute results for power spectrum
(a) and real part of the active spectrum (b) at fast laser driving in log-log representation.
Simulation results for power spectrum (diamonds) and real part of the active spectrum (cir-
cles) are indicated by symbols, analytical expressions are indicated by dashed lines. Power
spectrum and real part of active spectrum are proportional to each other. (c),(d): Scatter
plots of data/theory for the same data set. Statistical error estimates are indicated by dot-
ted lines. The statistical error of the power spectrum is frequency independent while the
statistical error of the real part of the active spectrum decreases slightly with frequency.

curves were obtained by using Egs. (3.23) and (4.48). In Fig. 7.14(a,b) the proportionality
between power spectrum and real part of the active spectrum is clear. Fig. 7.14(c,d) shows that
the statistical error of the power spectrum is frequency independent while that of the real part
of the active spectrum is decreasing slightly with frequency.
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The relative statistical error of the power spectrum is higher and is therefore the dominating
contribution to the statistical error of the calibration result, as demonstrated by Fig. 7.15. In
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Figure 7.15: Simulation results for the case of fast sinusoidal laser driving, Eq. (7.8), with exponentially
decaying friction retardation function, Eq. (7.14), ITI: Application of calibration equation
(circles) for fast laser driving. Statistical error estimates are indicated by dotted lines. The
dashed line indicates the lower boundary for the frequency range over which the calibration

results mﬁ?m) were averaged to obtain x(*).

that figure, the results from the application of the calibration equation, Eq. (7.23) are shown.
Application of Eq. (7.25) yields an average

(V)

= 0.997 +0.011 (7.37)

Rinput

found for driving frequencies equal to or larger than 8.5kHz. This result confirms that the
proposed method works well also at high driving frequencies. Frequencies smaller than 8.5kHz
were excluded from the averaging because of the high statistical error on the real part of the
active spectrum for low frequencies.
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Figure 7.16 shows the result when applying the response function calibration equation, Eq. (7.27).
The result is compared to the theoretical expression, Eq. (4.4). Fig. 7.16(c,d) shows that the
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Figure 7.16: Simulation results for the case of fast sinusoidal laser driving, Eq. (7.8), with exponen-

tially decaying friction retardation function, Eq. (7.14), IV: Application of the response
function calibration equation for fast laser driving. Simulation results for real part (left)
and imaginary part (right) of Xg?m) are indicated by symbols. (a),(b): Absolute results.
Analytical expressions are indicated by dashed lines. (c),(d): Data/Theory plots. Statis-
tical error estimates are indicated by dotted lines. The statistical error is on the order

of 5% for Re{x&?m)} and somewhat lower for Im{xg?m)}. Note that the relative error of

Re{x(;m)} is not increasing with frequency though absolute values are approaching zero.
Those results demonstrates that the response function calibration yields precise results
also at high frequencies.

(sim

resulting real part, Re{x )}, has a slightly frequency-dependent statistical error of order 5%.
The imaginary part has a lower error of order 2% which is roughly frequency independent. If
the imaginary part of the response function Im{%(w)} was found through its relationship to the
power spectrum [10,54], the statistical error would be ~ 6%.
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Figure 7.17 shows our results from the calculation of the friction retardation spectrum, Eq. (6.16).
For the imaginary part (Fig. 7.17, right), both analytical expressions 4(w) and ¥(w) + iwm have
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Figure 7.17: Simulation results for the case of fast sinusoidal laser driving, Eq. (7.8), with exponentially
decaying friction retardation function, Eq. (7.14), V: Determination of the friction retarda-
tion spectrum with Eq. (6.16) for fast laser driving. Simulation results (symbols) for real
parts (left) and imaginary parts (right) of (§ + i27fm)&™ in absolute numbers ((a),(b))
and as scatter plot ((c),(d)). Analytical expressions are indicated by dashed lines, statis-
tical error estimates by dotted lines. The imaginary part includes the mass term. In (b)
both analytical expressions Im{%(w)} + iwm (dashed line) and Im{%(w)} (dashed-dotted
line) have been plotted. While the statistical error is relatively small for the real part, it is
very high for the imaginary part at lower frequencies where Im{%(w)} is close to zero. The
graph demonstrates that the method reproduces complex viscoelastic properties properly.

been plotted. This serves to demonstrate the importance of the imaginary mass term, even for
a small bead of R = 1um. In an experiment, the mass term should be fitted for. Further,

for Re{’?&?im)} we obtain a roughly frequency independent statistical error, while the results for
(Im{4} + 27 fm)glm) have frequency dependent statistical errors which decrease markedly with
frequency. For the highest frequencies around 100 kHz, the statistical errors for both the real
and the imaginary part are 2-3%.
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In table 7.1, the friction and driving characteristics for the presented simulations are summarized.
The numerical values for parameters of our simulations and of some characteristic quantities are
given in tables 7.2 and 7.3 for simulations with non-sinusoidal and sinusoidal driving, respectively.

Table 7.1: Friction types and driving characteristics for data sets shown in Figs. 7.3-7.6, 7.8-7.9, 7.10-
7.12 and 7.14-7.17.

Quantity Figs. 7.3-7.6 Figs. 7.8-7.9 Figs. 7.10-7.12 Fig. 7.14-7.17
Friction relaxation function v (t) Yo/ Ter - exp(—t/ T ) Y06(t) Y06 (t) Yo/ Ter - exp(—t/ T )
Friction relaxation function 3 (t) 0 0 0

Friction relaxation spectrum 7(w) Yo /(1 + 127 fr. /Ter) Yo Yo Yo /(1 + 127 fi /Ter)

Driving position @y, /5 (t)

Driving velocity &y, /5 ()

Driving vel. spctr. i27 f, @y, S.k

A0 (t)
—ALS(t)

—AL(1 — i27% 1. 8k0)

% (erf(t/ 20‘%) + 1)
As

27wo

As exp (~}o32nf)?)

wuN

exp (7t2/(2U§))

Apyssin(wr /s, kt)

ApL/swr/s, i cos(wr s Kt)

A jgmwg A "

Ay, sin(wy, g t)

Apwy, Kk cos(wr, Kkt)

Apmwg A ™

*TAg = [f(wtwi) + 0w —wg)]
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Table 7.2: Notation used and characteristic values of quantities used for data sets with non-sinusoidal
driving, shown in Figs. 7.3-7.6 and 7.8-7.9.

Quantity Notation Equal to Value (Figs. 7.3- 7.6)  Value (Figs. 7.8-7.9)
Prop. Time Step (Runge-Kutta) Atprop 50 ns 500 ns
Sampling frequency sample 300 kHz 100 kHz
Nyquist frequency fNyq fsample/2 150 kHz 50 kHz
Frequency spacing A 1/Twind 40 Hz 10 Hz
Corner frequency fe Kinput/(2770) (13.3 kHz)* 263 Hz
Time between measurements At ffl 4.95 us 10 ps
sample
Lowest frequency used for averaging fmin 40 Hz 10 Hz
Highest frequency used for averaging fmax 4 kHz 150 Hz
No. of data windows (undriven system) Nyind,U 3000 500
No. of data windows (driven system) Nyind,D 30000 7500
Duration of window (undr. syst.) wind NAt 25 ms 0.1s
Duration of window (driv. syst.) Twind,D 1 ms 0.1s
Total duration of measurements nsr Nwind,UTwind + Nwind,D Twind,D 105s 800 s
No. of data pts. (window, undr. syst.) N 750 10, 000
No. of frequencies in averaging interval Ny, (fmax — fmin)/Af 99 14
No. of points in one block Nplock 999 19
Diameter of bead 2R 0.8 pm 4 pm
Density of bead and water P 1.0 g/cm3 1.0 g/cm3
Mass of bead m 2.7x 10713 g 3.4x 1071 g
Temperature T 300 K 300 K
Thermal energy kT 4.1 pN nm 4.1 pN nm
Thermal velocity <v2(t))1/2 (kBT/m)1/2 3.8mm/s 0.35 mm/s
Dynamic viscosity n 0.001 Pas 0.001 Pas
Kinematic viscosity v n/p 1.0 um2/p,s 1.0 pm? /s
Reynolds number NRe R(v2>1/2/u 3.1073 1.4-1073
Drag/friction coefficient Yo 6mnR 7.5-10"%g/s 3.8-10 % g/s
Input trap stiffness Kinput 0.1 pN/nm 0.01 pN/nm
Relaxation time in trap tirap Y0/ Kinput = 1/(27 fc) (75 pus)™ 3.8 ms
Diffusion coefficient D kT /0 (0.55 nm2/us)* 0.11nm?/pus
Inertial time scale tinert m/vo (36 ns)™ 0.9 s
Half-width of trap (x2(t))1/2 (kBT /Kinput) /2 6.4nm 20.2nm
Decay time of friction relaxation funct. Ter 1ps P
Laser or stage deflection AL/s 10nm (laser) 0.2 pm (stage)
‘Width of the stage deflection function og - 1 ms
Input conversion factor [72] Binput 1 1

*: fey ttrap, tinert @and D are not well-defined, since ~g is not the friction coefficient of instantaneous friction

*k

: simple Stokes friction is instantaneous
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Table 7.3: Notation used and characteristic values of quantities encountered for data sets with sinusoidal
driving, shown in Figs. 7.10-7.12 and 7.14-7.17 .

Quantity Notation Equal to Value (Figs. 7.10 to 7.12)  Value (Figs. 7.14 to 7.17)
Prop. Time Step (Runge-Kutta) Atprop 100 ns 25 ns
Sampling frequency fsample 5 kHz 1 MHz
Nyquist frequency INyq fsample/2 2.5 kHz 500 kHz
Frequency spacing wind 1 Hz 85 Hz
Corner frequency fe Kinput/(2770) 210 Hz 2.1 kHz*
Time between measurements At fs_arlnple 0.2ms 1 us
No. of data windows (undriven system) Nyind,U 400*** 300
No. of driving frequencies Kntax 100 50
Lowest driving frequency fi 1 Hz 2.1 kHz
Highest driving frequency fKMax 100 Hz 106.9kHz
Duration of one data window Twind 1ls 11.7 ms
Total duration of measurements Tmsr (Nwind + Knmax) * Twind 500 *** 4.1s
Diameter of bead 2R 2 pm 2 pm
Density of bead and water P 1.0 g/cm3 1.0 g/cm3
Mass of trapped object m 4/37R3p 42x 10712 g 42x 10712 g
Temperature T 300 K 300 K
Thermal energy kT 4.1 pN nm 4.1 pN nm
Thermal velocity (v2>1/2 (kBT/m)1/2 0.99mm/s 0.99mm/s
Dynamic viscosity n 0.001 Pas 0.001 Pas
Kinematic viscosity v n/p 1.0 pm? /s 1.0 pm? /s
Reynolds number NRe R<v2>1/2/u 1.1073 1.1073
Drag/friction coefficient Yo 6mnR 1.9-10"%g/s 1.9-10" % g/s
Input trap stiffness Kinput 0.025 pN/nm 0.25 pN/nm
Relaxation time in trap™ trap Y0/ Kinput = 1/(27 fc) 0.76 ms 76 us™
Diffusion coefficient D kBT /~v0 0.22nm?/us 0.22 nm2/p,s
Inertial time scale tinert m/vo 223 ns 223 ns*
Half-width of trap (x2)1/2 (kB T/Kinput)'/? 12.8 nm 4nm
Decay time of memory fct. 1 (7) Ter a 1pus
Laser or stage deflection Ar/s 50 nm (L/S) 50 nm (L)
Input conversion factor [72] Binput 1 1

*: fe, ttrap and tinert are not well-defined, since g is not the friction coefficient of instantaneous friction

ok,

: simple Stokes friction is instantaneous

***: A high number of data windows at the undriven system Nyinq,u Was chosen resulting in a relatively long total measuring

time Timsr. In that way a low relative statistical error of x(®) of 1% has been reached. If less precision is required, Nyind,u

may be chosen lower in favor of a shorter measuring time.
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7.4 Statistical errors of simulation results

If one neglects systematic and statistical errors due to electronic noise or numeric or experimental
imperfections, like leaking, aliasing, inaccuracies of the stage/laser positioning and detection or
inaccuracies of the detection of the particle, one is left with the statistical error of the particle
motion due to thermal noise. Calculations of the statistical errors of the measured and calibrated
spectral quantities P(Slm) ml(fim), ]%(LS ir;L, X,(:im) and 4™ are bulky. In this section it is
demonstrated how to calculate the most relevant statistical errors for the results of the simulations
with non-sinusoidal driving. The errors found in the following are plotted in the figures of sections

7.3.1 and 7.3.2.

The standard deviation a[P,ESim)] = <(P,§Sim) — P(fi))?)/? of the simulated power spectrum rel-

ative to the theoretical value is simply determined by the number of windows for the undriven

System, .

O_[P]Emm)] B 1
P(fk) Nyind,U

€rel [P]ESim)] = (738)

The estimate of the relative statistical error of Re {f%f l,zn)} is more complicated. It is given by
e[Re{ R}
UL /s k
RG{RL/S (wk)} ’

where e[Re{R;}glk}] Re{R(LS/”Snk} Re{RL/S(wk)} is the absolute error. Using Eq. (4.24)/(4.25),

one can write the relative error as

era[Re{ RIS} = (7.39)

eRe (0™ )wina}]

erel[Re{ RE™) )
lRe(R S = R (740
The theoretical value Re{(Z(w))} in the denominator of Eq. (8.35) is given by
Re{(Z(w))} = ALy (W) X)), (w #0) (L), (7.41)
Re{(Z(w))} = Asexp(—303w?)(k — w?m)¥ (w)|x(w)[? (S), (7.42)

where Eqgs. (4.48)/(4. 49), (4.24)/(4.25) and (7.2)/(7.6) have been used. We use here the shorter
notation 4'(w) and 4”(w) for the real and imaginary part of the active spectrum.

The statistical error of the simulated value e[Re{(z (Slm)>}] in the numerator of Eq. (8. 35) is given

51m ] _

by the standard deviation of the real part of the thermal part of the motion U[Re{:vth A

<(Re{:1:tilr,il 12)1/2 | averaged over windows. The thermal part of the driven motion is given by

A (sim) A(sim) 2kpTY (Wk) ~(sim)
=F WE) = . 7.43
xth,k random,kX( k) P k;}}( k) ]% Mk ( )

By windowing with a number of Nyinqp windows for the driven system, the statistical error due
to the standard deviation U[RG{I‘EEIE)}] is decreased by a factor of \/Nyind,D;

1

/Nuindp

eRe{(#5 Ywina}] = & [Re {xﬁhr,‘;)}] : (7.44)
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Combining all prior equations one obtains for the relative statistical error of the simulated real
part

culRe{ )] = ) {14 2T =T )] w’%m} ® (745

2

calRe (R )] = exp(odi) - st {14 2T ED TN, ) (1.4
k

for laser and stage driving, respectively, whereby the dimensionless function Cy,/g(w) is given by

B \/2kBT Twina,D (7.47)
v/ 2Nwind, 07 (wi) AL s

We have used here that (9;7r) = Twind, DOk k- Note that the relative errors, Eqs. (7.45)/(7.46),
scale like the square root of the measuring time Tyinq p which is due to diffusion!®. Therefore
one obtains results with lower statistical error, if one cuts the raw data into many small windows
instead of using only few larger data windows. In fact, that kind of behavior was found in the
simulations.

Crs(w)

The relative error of m,gSim) (laser driving) and of (k — w?m) stage driving) is then given by

the sum of the relative error of the power spectrum of the undriven system, Eq. (7.38), and of
the relative error of the active spectrum of the driven system, Egs. (7.45)/(7.46). One obtains

I(fmm) (

alkiy™] = el BE™ ]+ ea[Re{ BTN (L), (7.48)
—_— —/
Eq. (7.38) Eq. (7.45)
fal(s — w?m)™] = 6al P+ qa[Re(RSEVH (9), (7.49)
Eq. (7.38) Eq. (7.46)

respectively. From these errors one obtains the relative error of k(") by averaging,

61fezl["<v(av)] =4/ Trﬁ—rﬁ ‘ NLk >k (€re[rik])? (L), (7.50)
6rel[“(aw)] =/ Ti}:—ﬁ : NLk\/Zk(Erel[(“ — w?m)y])? (S), (7.51)

with Nj being the number of frequencies within the interval over which one has averaged. The
first root factor in Egs. (7.50)/(7.51) accounts for correlations due to zero padding, see paragraph

7.2.2. The relative error of the real part of the response function x,(:im), which is calculated as

'9Note that at sinusoidal driving, the corresponding error scales like 1/v/Timeas, see Eq. (8.40). There, diffusion
produces noise, too, and this as well increases as the square root of the measuring time. But simultaneously one
has a peak signal of the driven part of the motion which is growing proportionally to the measuring time. So the
relative error which basically is the noise-to-signal ratio goes as 1/v/Tmeas. That is an important advantage of
sinusoidal driving,.
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described in paragraph 7.2.3, is given by

Y
[Re {x(wr)} |

2
e 8X(wk) Eli',(av) ? e 8X(wk) clRe A>(sim)
<R {&@GW) } | ]> " (R {8Re{ﬁL/s(wk)}} " {RL/S’kH>

97 1/2

(efmpeom)] " o

where the partial derivatives are to be calculated by using Eqgs. (6.10)/(6.11) and the individual
error contributions are given by

€rel [Re{X](gSim) }] =

e[r@)] = eral[k ]k, (7.53)
eRe{R{)SY = era[Re{ RIS HRe{ Ry s (wi)}, (7.54)
m{RFE Y] = ealIm{ RS HIm{ Ry js(wr)}, (7.55)

of which the first two are given in Eqs. (7.50)/(7.51) and Egs. (7.45)/(7.46). The relative errors

of the imaginary part of x,(flm) and of the real and imaginary parts of ’y,iSim) can be obtained
from error calculations similar to that of Eq. (7.52).

In the simulations, only data relative to their theoretical values and the results of the discrete cal-
ibration equations, Egs. (7.23)/(7.24), have been blocked, see paragraph 7.2.2. The relative error
of blocked spectra was in each case obtained by multiplying the relative error of the unblocked
data with 1/v/Npjock, Wwhere Npjoek is the number of points in one block.

7.5 Discussion of the simulation results and comparison between
non-sinusoidal and sinusoidal driving

The big advantage of calibration with non-sinusoidal driving and actually the reason why this
possibility has been taken into consideration is that calibration results are obtained for many
frequencies simultaneously from driving with only one profile of active motion, see, e.g., Fig. 7.5.
The results found in the two examples in paragraphs 7.3.1 and 7.3.2 are for the most part
acceptable, except for that Im{4,} has a huge statistical error in Fig. (7.6) and that the total
measuring time in the case of slow non-sinusoidal stage driving has to be chosen very high,
Timeas = 800, in order to obtain a result for (&) on order of a few procent, Eq. (7.34). However,
some severe disadvantages of non-sinusoidal driving with respect to sinusoidal driving must be
stated.

One problem is the high-frequency behavior. For non-sinusoidal driving, the statistical error
of the active spectrum Re{Rf;rsnL} diverges with increasing frequency, especially in the case
of stage driving, see Figs. 7.3 and 7.8 and Egs. (7.45)/(7.46). Hence the statistical errors of
(sim) _ (sim)

all frequency-dependent quantities obtained from the calibration, namely these of ;. , x;.
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and @,iSim), diverge for high frequencies, too. This implies that the results are reliable only for
relatively small frequencies and only these small frequencies can be taken into account to obtain
the average value k(). For sinusoidal driving however, the spectral density of the laser/stage

A(sim)

velocity diverges at the driving frequency fr. Therefore, the spectral density of Re{R; 1S K
diverges at fx, too, and all statistical errors remain limited for high fx, see Figs. (7.10) and
(7.14) and Eq. (7.46)%°. In both cases, aliasing due to the finite sampling frequency sets an upper
frequency limit for the applicability of the calibration method, however.

Another disadvantage of non-sinusoidal driving is the experimental effort. First, it would be
difficult to move the piezo stage fast and precisely with the error-function (s-shape) profile,
given by Eq. (7.4)%!. Second, the non-sinusoidal motion has to be repeated many times in order
to reduce the statistical error. Then it would further be rather difficult to temporally align
laser/stage motion and sampling of particle motion for each trial/window with a length of only
fractions of a second??.

Sinusoidal driving with frequency fx gives calibration results only at one frequency which is fx.
But it yields very good signal-to-noise ratios. Further it is very easy to implement experimentally.
Therefore it is clearly recommended to apply sinusoidal driving in the experiment.

20Tn other words, at sinusoidal driving the signal at frequency fx becomes very large for large measuring times,
so that the noise from diffusion is negligible. At non-sinusoidal driving, however, diffusion creates large noise
at high frequencies and the signal-to-noise ratio, which is given by the ratio between the spectral densities of
diffusion and driven motion, becomes small for high frequencies.

2! Moving the piezo stage precisely with the chosen profile is necessary for a correct determination of the active
spectrum. Potential deviations of the stage motion from that profile and their impact on the calibration result
would probably be difficult to quantify.

22For the example of the fast relocated laser, the particle position detection should ideally start exactly in the
moment of the laser deflection.
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Major prerequisites for the FDT method to work are that the particle motion can be described
by three independent degrees of freedom within linear response theory in continuous media. Fur-
thermore, the FDT must hold for the frequencies with which the system is driven at the active
part. Whether these prerequisites are fulfilled for a chosen system can not be examined by simu-
lations, but only experimentally. Ideas for testing the method in different experimental situations
are presented in paragraph 8.1. In the optical tweezers lab at the Niels Bohr Institute, experi-
ments have been performed in which a trapped bead was immersed in water. These experiments
are described in sections 8.2-8.5. The application of the FDT method to the measured data is
shown in section 8.6. In section 8.7 statistical errors for the obtained results are calculated. The
experimental results are finally discussed in section 8.8.

8.1 Suggestions for experimental tests of the FDT method

Only sinusoidal driving should be applied in the experiments, since the simulations presented
in chapter 7 have shown that this is a better choice than non-sinusoidal driving. As argued
in paragraph 7.1.2, the calibration method should be tested with a broad spectrum of driving
frequencies fi, /S,K - An experimental verification of the calibration method can be performed for
different trapped objects, e.g.,

e spherical beads of different size and material,

e cylindrical nano-rods

e lipid granules, or

e bacteria,
in different media or for certain hydrodynamic conditions, e.g.,

e in water at a given distance [ to the microscope coverslip,
e in an actin solution,
e in an actin-myosin solution,

e in a living cell,
and for different driving forces, arising from

e stage driving, or

e laser driving.
In the following paragraphs, some suggestions will be given for a progression of tests.
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8.1.1 Phase 1: Viscous media

A first check is the calibration for the most simple case which is trapping of a spherical bead
with known radius which is immersed in water at a given distance [ to the microscope coverslip.
For this case, all three prerequisites of the proposed calibration method can safely be assumed to
hold. Therefore, this check is mainly intended for testing the performance and precision of the
used equipment. In water, the trap stiffness value obtained with the novel calibration method
can be compared with that one obtained from the well-tried power spectrum method [40]. Also
the friction retardation spectrum #(w) obtained from the new calibration method can be checked
for consistency with expectations from the model for friction in the proximity to a hard wall, see
paragraph 3.2.3. In the optical tweezers lab at the Niels Bohr Institute it has been worked on
that first check so far and the results will be presented in the sections 8.2-8.8.

8.1.2 Phase 2: Viscoelastic media

The next check would be calibration with spherical beads trapped in a viscoelastic medium with
known refractive index. For viscoelastic media, there is not any other in-situ method which
gives a trap stiffness value to compare with. Therefore, one could calibrate with the same laser
power for two beads from one batch, but one immersed in water and the other in the viscoelastic
medium. The trap stiffness values obtained for the two trapped beads can now be checked for
consistency with theoretical expectations due to the difference in the refractive indexes, see the
discussion of the impact of the refractive index on in-vivo measurements with optical tweezers by
Gross [73]. Further, the obtained friction retardation spectrum 7(w) can be compared to results
from microrheology literature. E.g., for an actin solution, one could compare both the frequency
dependence and the density dependence of §(w) with the results obtained by Gardel et al. [63].

8.1.3 Phase 3: Bio-active media

As next, measurements in bio-active systems should be performed. It has recently been found
by Mizuno et al. [49] that in actin-myosin solutions the FDT is broken for low frequencies. Due
to molecular motor activity, the power spectrum is enhanced at frequencies below ~ 20 Hz, see
section 5.2. In the basic equations of the FDT method, Egs. (6.4)/(6.5), the trap stiffness is
proportional to the inverse of the power spectrum. Therefore one expects a reduced trap stiffness
due to the breaking of the FDT'. The goal of testing in bio-active media would be to examine, if
the spectrum of calibrated trap stiffness values ng(:x) clearly exhibits plateau regions where ng(:x)
is nearly constant and where one can assume the FDT to hold. If one can find such plateau

regions, one can average over their values /@gix) in order to find a reliable value x(®) with low

statistical error?.

!The power spectrum can also be enhanced due to instrumental noise. Of course, also this would lead to a
reduction of the obtained trap stiffness. Since the noise sources exhibit a certain frequency dependence, it is
important to keep track of the frequency dependence of the trap stiffness values HE;X), obtained from sinusoidal
driving with frequencies fx.

*mass term ignored.
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8.2 Brief description of the experiments

In the following sections, calibration experiments are presented which have been performed in
the optical tweezers lab at the Niels Bohr Institute with my experimental colleagues Prof. S. N.
S. Reihani, A. Richardson and Prof. L. Oddershede. Prof. Reihani installed the hardware and
software which was required by these experiments at one of the available optical tweezers setups.
The hardware enables simultaneous acquisition of bead and stage positions, which is necessary
for determining the phase shift A¢(w) between bead and stage. The software allows convenient
data acquisition and driving of the stage. The experiments were performed by A. Richardson
and Prof. Reihani. In the data evaluation, Prof. Reihani has performed image analysis and pixel
calibration for the independent positional calibration.

For the experiments, a sample chamber was prepared, with polystyrene beads of radius 825 nm
immersed in water. Then one bead was trapped with the optical tweezers at a distance of
I = 5 pum to the microscope coverslip. The bead motion has been recorded with the quadrant
photo diode. The power of the laser has been kept constant during the course of the calibration.

At the passive part of the calibration, the Brownian motion of the trapped bead was observed
Nyinda = 10 times?, each time for 35, with a sampling frequency of 22kHz. The power spectrum
of the 10 data windows was calculated. By windowing and blocking, power spectrum estimates
with lower statistical error were obtained. More details about the passive part are given in section
8.3.

To drive the system at the active part, the piezo stage has been oscillated into the z—direction
sinusoidally with 7 different frequencies between 10Hz and 70Hz, each time for 10s, and the
bead motion was recorded with a sampling frequency of 10kHz. The driving amplitudes have
been chosen as described in paragraph 8.4.1. The stage motion has been recorded with the
inbuilt stage position monitoring system. Bead and stage positions were acquired with a fast
data acquisition card*. The measurements on the driven system are explained in more detail in
section 8.4.

Finally, an independent positional calibration with sinusoidal motion of the piezo stage with
large amplitudes has been performed, too, as portrayed in section 8.5.

8.3 Measurements on the undriven system

From the undriven Fourier transformed data :i:,ivou) recorded with the QPD, one obtains the power

spectrum PIE,VOM). From windowing by averaging over the Nyi,q = 10 data sets and blocking by
averaging over Ny, = 20 adjacent frequencies, one obtains the windowed and blocked power
spectruin,

N 1
(25 12) ina

P(volt) wind =
< k > d T 5

(8.1)

30f the Nyina = 10 data sets of the passive part of the calibration, 5 have been recorded before and 5 after
the active measurements.
“data acquisition card: NI PCI-MIO-16E-4 (old model designation), NI PCI-6040E (new model designation).
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which will be applied in the FDT method®. The undriven data from the bead immersed in
water can be evaluated with the power spectrum (PSD) method [40], too, see Fig. 8.1. The PSD

Final Fit, X

P(f) (arbitrary units)

Frequency (Hz)

1, (Hz) = 480.8 + 18.1

D (arb. units)?/s = 0.262 + 0.014 Cov(f,0)  =0.020
o4 g100e (HZ) = 4330451.4 £ 250342949667.3 oVl 1 4y,) = ~79017829.808

2 per degree of freedom = 0.98 Cov(Dfy,,,) =-2941223.922
Backing =60 %

Figure 8.1: Fitting of the experimental power spectrum with the PSD method [40], using the
MATLAB® program Tweezercalib 2.1 [74]. Here, the fitting result for one of the Nying = 10
data sets is shown. The experimental power spectrum values are indicated by symbols, the
fit is indicated by a solid line. Aliasing, filtering by the QPD and the finite distance between
bead and microscope coverslip alter the power spectrum of the trapped bead. These effects
have been taken into account in the fitting procedure.

D)

method basically gives two fit values, the corner frequency fC(PS and the diffusion coefficient

DPSDvolt)§ " The trap stiffness is then obtained according to

K(PSD) — 7my £{FSD) (52
with the friction coefficient oR
= 1+ — .
Y = 6mnR ( + 16l> ; (8.3)

where it has been accounted for the finite distance [ = 5pum between bead and microscope
coverslip®. With n(¢¥ = 24.5°C) = 0.0009 Pas, one obtains from averaging over the Nyi,q = 20

*Windowing and blocking are explained in paragraph 7.2.2.

$The fitted diffusion coefficient D("SPv°Y) has units (volt unit)?/s. The exact magnitude of the volt unit
depends on the amplification factor set by the QPD electronics and is not relevant.

In first order, the presence of a hard wall only results in an increase of the constant friction coefficient
~vo = 67N R to the value ~;. See Eq. (3.14).
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data sets,

(PSD,av) _
K (46.1 + 0.5 + 1.0 ) pN/pm, (8.4)

statistical error,1.1%  error from temperature uncertainity, 2.2%

The temperature is entering this result indirectly, because of the temperature dependence of the
viscosity. The error of 2.2% from the temperature uncertainity has been obtained by assuming
that the temperature at the bead position is known with an uncertainity of ~ 1 K5. At 9 = 25°C,
the viscosity changes by ~ 20 uPas per Kelvin which corresponds to a relative error of 2.2%.
The conversion factor 3 is determined with the PSD method from the relation

(PSD) _ \/m ’ (8.5)

with the theoretical value for the diffusion coefficient D = kgT'/~;. We obtain

(PSD,av) _ .
g (1087 + 17 + 27 )nm/(volt unit), (8.6)

statistical error,1.6%  error from temperature uncertainity, 2.5%

where it has been used that the relative error of the square root of a quantity is equal to the
relative error of that quantity itself.

8.4 Measurements on the driven system

8.4.1 Choice of the driving amplitude

Before addressing our measurement results, the question of choice of the deflection amplitude
Ay, g is discussed for both cases of laser and stage driving®. The larger the deflection of the
laser/stage is chosen, the larger is the deflection of the trapped particle and the better is the
signal-noise ratio after averaging. On the other hand, the deflection A g has to be chosen
relatively small, due to several constraints. Firstly, the bead should stay in the harmonic trapping
region, while the laser or the stage is deflected to ensure a linear response of the trap. Secondly,
the center of the bead must remain within the linear detection range of the QPD7. Thirdly, since
the method is based on the FDT, the stage/laser motion should generate a small perturbation
of the equilibrium system, i.e., the amplitude Aj g should be as low as possible. This third
constraint is apparently the most stringent one. Since one has to choose some finite value, a
reasonable choice would be to set Agy, so that the bead amplitude Ag would be equal to the

half width of the trap, (kgT/)'/2. That choice should still ensure a linear response. We can now
use the response function x(w) to calculate the required stage/laser amplitudes for sinusoidal
driving with angular frequency wx according to the laser/stage trajectory

rys(t) = Ay g sin(wgt). (8.7)

$Tn prinicple, the temperature can be measured in proximity to the bead, which requires additional experi-
mental effort. Laser-induced heating is discussed by Peterman et al. [75].

$In our experiments, only stage driving has been applied.

"For the first and second constraints one should take into account that the motion is a superposition of driven
motion and diffusion in a harmonic potential.



8.4 Measurements on the driven system 87

One has Eq. (4.2), with the external force from the laser/stage being

() = %iwi;L(w), (8.8)
Fy(w) = §(w)iwis(w), (8.9)

cf. Eq. (4.15). By taking the norm of Eq. (4.2), inserting the laser/stage velocity spectrum
for sinusoidal driving, Eq. (7.10), and requiring for the bead amplitude Ap(wg) = [(Z(wk))| =

(kgT/k)'/?, one obtains
1 k
Ag(wi) = —~
s@K) = N o] V

5T
1 kpT
AL(wg) = |X(MK)‘K,/ . (8.11)

Those two results are plotted over the frequency fx = wg/(27) for different spring constants s
in Fig. (8.2) for a polystyrene bead with radius R = 500nm and density p = 1.05g/cm? in a
simple viscous medium of viscosity n = 0.0009 Pas. Note that the curves plotted in Figure 8.2

(8.10)
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Figure 8.2: Required stage (solid lines) and laser (dashed lines) amplitudes for obtaining particle oscil-
lations with an amplitude equal to the half-width of the trap (dotted lines) for two different
spring constants x. The particle is assumed to be a spherical bead of radius R = 500 nm and
density p = 1.05 g/cm? which moves in water with viscosity 7 = 0.0009 Pas. Hydrodynamic
interactions beyond simple Stokes friction are neglected.

are from analytical considerations. In reality, state-of-the-art stages can be oscillated only up to
frequencies of order 100 Hz. For laser driving one must keep in mind that the harmonic trapping
region has a finite extension, so for a linear response the laser oscillation amplitude should not
exceed a value which is half of that extension. Note further the difference between stage and
laser driving in Figure 8.2: While high stage position amplitudes are necessary at low stage
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driving frequencies, high laser position amplitudes are required at high laser driving frequencies.
The physical reason for that is that the interaction between the particle and the laser trap is
proportional to their relative positions, but the coupling between particle and medium is only
via their relative wvelocities. Thus at low frequencies when the stage is moving only slowly, one
needs a high stage amplitude to deflect the bead from its equilibrium position. Vice versa, at
high frequencies, when the laser is moved fast, the bead interacts strongly with the medium and
one needs high laser amplitudes to deflect the bead. Note further that the cross-over frequency
between the curves for required stage and laser amplitudes in Figure 8.2 is very close to the
corner frequency f. = x/(27).

To find driving amplitudes Ag(wg ) required for our experiments with stage oscillations, Eq. (8.10)
has been applied by using estimates for the parameters k, ¥(w) and x(w). In experiments
in general viscoelastic media, these parameters are unknown before the calibration. Then,
Egs. (8.10)/(8.11) can not be applied a priori for the calculation of the required stage/laser
amplitude Ag/,(wi). These amplitudes have rather to be adjusted in a way that the response
of the particle exhibits an amplitude which is equal to the observed half-width of the trap.

8.4.2 Stage and bead amplitudes and profiles at the driven system

From our experimental data, both the stage and the bead oscillation amplitudes Ag and Ap
have to be determined for the calibration. This has been done by fitting with the least-squares
method to the time line data®. The fitting routine gives not only the amplitudes of the sinusoidal
motion, but also phase shifts, offsets and all errors. For a reliable calibration it is required that
the piezo stage performs precise sinusoidal motion with a known small amplitude at a chosen
frequency. Therefore one may ask, how precise the sinusoidal motion of our stage actually is,
especially for high frequencies, and if the stage really oscillates with the desired amplitude and
frequency?

8Fitting of the driven data for the parameters As, Ap and A¢ is performed by a custom-written MATLAB®)
program. Furthermore, alternatively to fitting, the three parameters can be obtained from the Fourier transforms
of the bead and stage trajectories. This method is implemented in the MATLAB(®) program, too.
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Firstly, the detected stage positions which have been recorded are not continuous values. They are
binned, i.e. they are projected onto discrete position levels corresponding to voltages generated
by the stage monitoring system, see Fig. 8.3. However, this is no problem for the determination
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=

-200

-400
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600 078 08 082 084 08 088 0.9
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Figure 8.3: Detected stage (squares) and bead (circles) positions and sinusoidal fits (solid lines) obtained
from the least squares method. The stage positions are projected on discrete levels. This
causes no problem for the fitting routine to determine a reliable fit value Aéﬁt’ex). The
obtained value Aéﬁt’ex) = 498nm is significantly lower than the desired value of A(Sset) =

600 nm which was entered during the experiment at the stage controlling interface. For

higher frequencies and smaller amplitudes, the discrepancy between chosen amplitude and

actually performed amplitude becomes even larger, see Fig. 8.4. The bead positions in meter
units were obtained by using the conversion factor 3 obtained from the power spectrum
method.

of the stage amplitude Ag, as long as these continuous levels are not separated by a distance
comparable to Ag. The reason for that is that Ag is determined by a fitting procedure which
is based on the least squares method. That fitting procedure determines the most probable
amplitude with very high precision for our binned data®.

9The relative error of the fitted stage amplitude A(Sﬁt’ex) is on order 0.01%. The fitted value has further been
checked for consistency with the amplitude of the Fourier transform of the stage motion, see Fig. 8.5.
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It must be noted that the obtained amplitude values A(Sﬁt’ex) are significantly lower than the

desired values A(Sset) which have been determined by using plots like this one of Fig. 8.2. The
discrepancy between chosen amplitude and actually performed amplitude becomes larger for
higher frequencies and smaller amplitudes, see Fig. 8.4.
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Figure 8.4: Whereas for the lowest frequency the chosen (circles) and the actually performed (squares)

stage amplitudes nearly agree, there is an increasing discrepancy between A(Sset) and Aéﬁt7ex)
for higher frequencies and lower amplitudes. The statistical error of the fitted stage ampli-
tudes is negligible, it is on the order of 0.01% for all frequencies.

Secondly, having now established that the stage amplitude can be obtained with high precision by
fitting to the stage position time line, the next step is to ask, if the motion is precisely sinusoidal
at all, especially if it is a fast motion. It could be that the actual motion deviates slightly from
a sinusoidal profile when the stage is driven with a frequency of order 100 Hz, which is fast
for a heavy mechanical device. One could expect some inertia or overshooting effects similar
to those reported by the piezo stage manufacturer for fast changes of the stage position. Such
deviations of the stage motion from a sinusoidal profile can possibly not be seen in the time
line, but they should be visible in the Fourier transform of the stage trajectory. The sinusoidal
function xg(t) = Agsin(wspt) has a Fourier transform which is proportional to the sum of two
delta functions, one at the driving frequency ws o and one at the negative driving frequency,

Tg(w) = Agmi[d(w + wS,o) —d(w — ws70)], (8.12)

On the computer, a discrete Fourier transform with rectangular windows has been applied to
the data set of finite measuring time Tieas- Then, the absolute value of the Fourier transform
becomes for frequencies f which are close to the driving frequency fs o [76]

Sin(ﬂ'Tmeas fS,O

ﬂTmeas(fk - fS,O) 7 (813)

|Zs kx| = As
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with fso = wso/(2m)!%. In Fig. 8.5 the Fourier transform of the motion of the piezo stage
which has been oscillated with frequency fso = 100Hz and observed for Tj,cas = 100s has been
plotted for frequencies around fg . Also Eq. (8.13) has been plotted in Fig. 8.5, with the value
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Figure 8.5: Shape of the peak of the numerical Fourier transform of the sinusoidal stage motion of

stage (blue) and trapped bead (red) with frequency fso = 100Hz in a log-lin plot. The

experimental spectra iéez) and 55](36,)2 are indicated by symbols. The analytical stage position
spectrum Zgs(w) (solid line) is obtained from Eq. (8.13), the analytical bead position spec-
trum Zg(w) (dashed line) from Eq. (8.14). Note that the peak amplitude &g max = 47.8 nm
of the Fourier transform of the stage motion is in general not equal with the amplitude
Aéﬁt’ex) = 65.3nms obtained from sinusoidal fitting to the time series, see Fig. 8.4. &g max
is somewhat lower. Therefore, it is recommended to determine Ag from fitting to the time

series. Note that the full spectra also contain side peaks which are not shown in the figure.

= 65.3nm from the time line fit. It can be seen that the curve describes the data well

for frequencies close to fso = 100Hz which indicates that the stage indeed performs precise
A(ﬁt,ex)
S

A(Sﬁt,ex)

sinusoidal motion. Furthermore, this shows that the stage amplitude obtained from
time line fitting and the Fourier spectrum of the stage position data are consistent with each
other. For frequencies more distant to fso, the measured stage position spectrum lies above
the analytical curve which is probably due to electronic noise in the stage detection system.
The peak amplitude g max = 47.8nm of the Fourier transform is not equal with the amplitude
A(Sﬁt’ex) = 65.3nm obtained from sinusoidal fitting to the time series. &g max and A(Sﬁt’ex) would
only be equal, if the measuring time of Tiycas = 100s would precisely be a multiple of the driving
periode Ts o = 1/fs0 = 0.01s'!. In general &g max is somewhat lower than Aéﬁt’ex). To avoid any
complications with the choices of driving frequency, sampling frequency and measuring time, it

is not recommended to determine Ag from the Fourier transform, but rather by fitting to the

ONote that the general spectrum is a superposition of main peak and side peaks, see [76]. Eq. 8.13 gives only
the magnitude of the main peak which is the only non-negligible contribution around fso.

" This is not exactly the case, since actually the measuring time is slightly lower than 100, Tmeas = 99.9945s
and the driving frequency is slightly higher than 100 Hz, fs o = 100.0008 Hz.
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time series.

The trapped bead performs sinusoidal motion in response to the stage oscillations. This response
is characterized by the response function, Eq. (4.4). The mass m of the small bead can safely be
neglected at frequencies in the order of 100kHz. From Eq. (4.2) one obtains for the magnitude
of the bead position spectrum

. . fx .
1ZB.k| = Ixk|27 fkyolEs k| = B e |1Zs k|,
\VIE+ T

Eq. (8.14) is plotted in Fig. 8.5 as a dashed line. It can be seen that it agrees well with the
measured bead position data for frequencies close to fso = 100 Hz. The corner frequency used in
Eq. (8.14) and the voltage conversion factor for finding 5:](38),? from the measured QPD voltages,

have both been obtained with the power spectrum method. It can further be seen in Fig. 8.5

(8.14)

that for frequencies more distant to fs g, the spectrum |§;](§),?\ is dominated by contributions from
the thermal motion of the bead.

8.4.3 Phase difference between stage and bead

For the calibration, not only the stage and bead amplitudes are required, also the phase differ-
ences A¢p = ¢g— ¢p between stage and bead oscillations have to be measured. As the amplitudes,
A¢ is obtained from fitting of the time line data with a sinusoidal function. However, at each
sampling interval, stage positions are acquired a little later than bead positions by the data
acquisition card. The delay time between bead and stage position measurements appears to
give an extra phase difference which must be taken into account. This can be seen in Fig. 8.6.
The fitted phase difference values Aqbg?t), indicated by black error bars'?, lie all far above the
analytical curve which is according to Egs. (4.40) and (4.59) given by

A¢ = arctan (%) , (8.15)

and which is indicated by a red line in Fig. 8.6!3. Correcting each phase difference by an extra,
constant phase difference according to

AGC™ = AP — Atgeray fic (8.16)

with a constant delay time of Atgelay ~ 256 us appears to yield much better results, since the

values for Acbggorr) are much closer to the analytical curve, Eq. (8.15). The constant delay time of

Algelay ~ 256 ps is very large though, it is larger than the sampling time step of Atgample = 100 pus.
The data acquisition card should actually perform much faster, rather with a delay time of only
~ 4 us for each of its eight channels. Possible reasons for the obtained large delay could be

12The black and blue error bars have the measured value in their midpoints and indicate the statistical error
obtained from fitting of the time-line data. Fourier transformation of the data yields very similar phase differences
and errors (data not shown).

13Note that the bead mass has been neglected in Eq. (8.15) which can safely be done at frequencies of order
100 Hz or lower.
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Figure 8.6: Appearance of an extra phase difference: The phase differences A¢§§“ (black error bars) do
not match the analytical curve Eq. (8.15) (red line). Only by correcting the phase according

(corr)

to Eq. (8.16) using a very large delay time of Atgelay ~ 256 us one obtains values Ag¢),
(blue error bars) which roughly match the analytical curve.

data-processing in between measurements at consecutive channels'* or re-adjustment of signal
amplification factors'®.

8.5 Independent positional calibration

An independent positional calibration has been tried initially by triangular stage motion. The
idea of this technique is that the bead alternately assumes two different equilibrium position
due to the positive and negative flow generated by the triangular stage motion. The histogram
of bead positions is recorded i) with video microscopy and ii) with the QPD. The ratio of the
distances between the two histogram peaks gives then the position calibration factor 8. A severe
problem of this approach is the low repetition rate of the video microscopy, however. Only few
images could be taken at each equilibrium position and several images showed the bead on its
way between the equilibrium positions. This resulted in an unreliable value for the conversion
factor (.

We have therefore tried an approach with sinusoidal stage motion. Here, the piezo stage has been
oscillated in the y—direction with a large amplitude Ag = 11 ym at a low frequency fg = 2Hz.
In Fig. 8.7, the responding bead motion is shown as obtained from video microscopy and image
analysis. From fitting of that motion to a sinusoidal function, by using the same fitting routines

YFor example, both channels 1 and 2 acquire the x-component of the bead position. The two obtained values
are then averaged.
5The voltage signals from bead and stage positions are on different orders of magnitude.
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video signal / pixel
°
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Figure 8.7: Bead motion (circles) in response to slow stage driving obtained from video microscopy
and image analysis and sinusoidal fit (solid line). Binning of the data due to the spatial
video resolution of ~ 11 nm is visible. Also one can see that due to the low temporal video
resolution of Atsample,video = 25 Hz, only about 12 data points are recorded per cycle. Note
that despite both the spatial and the temporal resolution limits, the fitting routine gives a

reliable value for the bead amplitude 14](3V ) with a statistical error of only 0.6%.

as for the driven part of the calibration, one obtains the amplitude

AV — (439 4+ pixel, 8.17
B

0.03
=~

statistical error, 0.6%

which has a very low statistical error. In Fig. 8.8 the bead motion in response to the 2kHz
oscillations is plotted as obtained from detection with the QPD.

From fitting of that motion to a sinusoidal function, one obtains the amplitude

AQD) — (0.03691 = 0.00002 )volt units. (8.18)

statistical error, 0.05%

Also in this case, the statistical error is very low. The pixel calibration gives a pixel-distance
conversion factor of

o =(11.39 + ) nm/pixel. (8.19)

0.03
=~

statistical error,0.25%

From the results, Eqs. (8.17), (8.18) and (8.19), the conversion factor for the independent posi-
tional calibration with sinusoidal driving 3™) is found. One obtains

A(vid)
BOIN) = o A(SPD) = (1355 + 12 )nm/(volt unit). (8.20)

B statistical error,0.9%
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Figure 8.8: Bead motion (small symbols) in response to slow stage driving obtained from detection
with the QPD and sinusoidal fit (solid line). Binning of the data is visible. Furthermore,
a considerable amount of thermal noise is present. Nevertheless, the fitting routine gives a
very precise result for the amplitude AEQPD) with a statistical error of only 0.05%.
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8.6 Application of the FDT method

8.6.1 Trap stiffness

For calibration with the FDT method, the discretized version of the basic equation in terms of
amplitudes and angles, Eq. (6.7) is applied,

fit,volt
 (FDT volt) 2kgT A1(3,KVO :

<P[({V()1t) >Wind QWfKA(S{,i;éeX)

& = sin(Ag\C™), (8.21)

where the capital K is the index of the driving frequency fx of the laser/stage and the mass
term has been neglected. This result has units pN/(volt unit). For obtaining a result ﬁ&?x) which

0.06 I I
| __  (PSDav)
- K
g — DTy
2 i
©.0.05f
> i
| D S S 1
O
= I 1
=
‘= 0.04-
m -
= |
= i
0,03t | |

\ \ \
0 10 20 30 40 50 60 70 80
driving frequency f, / Hz

Figure 8.9: Trap stiffness values obtained with two different calibration methods. The value x(FSP-av)
obtained with the PSD method as described in section 8.3 is indicated by a blue dashed line
over a part of its fitting range which extends up to 2kHz. It has a relative error of 3.3 %. The
frequency-dependent values ngDT’ex) from calibration with the FDT method are indicated
by orange error bars, their relative errors are ~ 8.5%, when taking into account statistical
errors, errors from the positional calibration and the uncertainity of the temperature. The
seven values for ngDTﬁ") exhibit roughly overlapping error bars. Thus, all these values are
taken into account for averaging in order to obtain x(FPT:2¥) which is indicated by a red
line. The average x(FPT2¥) has a relative error of 4.0%.

has units pN/nm, it has to be divided by the conversion factor BEIN)

(FDT,ex) (K — (27Tf)2m)(KVOIt)
KK = 3(SIN)

(8.22)
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Experimental spectra display statistical noise. Therefore it is appropriate to average those results
to obtain a value with lower statistical error, see Eq. (6.9),

FPT.av) — (ngT’eX) VK- (8.23)

The results for ngT’ex) and kFPT.av)

PSD method, Eq. (8.4).

are plotted in Fig. 8.9 together with the result from the

For k(FPT:av) gne obtains

EPTA) — (436 + 1.2 - 0.1 (8.24)
~~ ~~
statistical error,2.8%  error from temperature uncertainity, 0.3%
+ 0.4 )pN/pum, , (8.25)

error from uncertainty in ﬁ(SIN), 0.9%

a result with a total relative error of 4%. Thus, within their error bars, the calibration results
from the PSD method and the FDT method agree.

8.6.2 Response function

The response function at frequency fx is obtained from the discretized version of Eq. (6.11),

(FDT,ex) 1 —i2nfx Rée}?

K ~ ,(FDT,av) (8.26)

The real and imaginary parts of the active spectrum which are necessary for that computation
are obtained by using the relations

(fit,volt)
Re{R™)} = B,K sin(Ag(om), (8.27)
SETT o i AT ST
A(ﬁt,volt)
Im{]%(ex) =— bR cos(Ag™)), (8.28)
SR 2 frc AL gsIN)

cf. Egs. (4.42) and (4.44). The result for the response function is shown in Fig. 9.7 in which also
the expected response function

1
x(f) = Kk(FDT.av) 4 jor fry

(8.29)

has been plotted, cf. Eq. (4.4).
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Figure 8.10: Calibration result for the response function XﬁfDT’e") obtained with the FDT method. The

real part Re{ngT’ex)} is indicated by black error bars, the imaginary part Im{ngT’ex)}

by magenta error bars. The main contribution to the error is the error of the before
obtained trap stiffness x(FPT2¥)_ The real part (solid line) and the imaginary part (dashed
line) of the expected response function, Eq. (8.29), are shown in the figure, too.

8.6.3 Friction retardation spectrum

As next step, the friction retardation spectrum is determined from the discretized version of
Eq. (6.17),

’AygDTﬁx) _ ]%ée}? XgDT,eX)7 (8.30)

by using the results from the calculation of the response function from the last paragraph. The
result for the real part is plotted in Fig. 8.11. The data values lie roughly on a constant line
given by 7g. Thus, good agreement is achieved with the model for friction in the proximity of
a hard wall'®. However, for the imaginary part which is small compared to the real part and
which represents the elastic contributions to the friction force, results are obtained which are not
consistent with the model for friction close to a hard wall, see Fig. 8.12.

For simple Stokes friction, the friction retardation spectrum 7(w) is frequency-independent and equal to
Yo = 67 R. In first order, the model for friction close to a hard wall, only modifies this constant to ~g.
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Figure 8.11: Calibration result for the real part of the friction retardation spectrum Re{@gDT’ex)}. The
data points (circles) lie above the value of vy = 14.0ng/s (dotted line) which has a 2% error
due to the uncertainity in temperature. However, this can be explained with the increase
of friction due to finite distance [ = 5 um between bead and the microscope coverslip. In
first order, the friction is increased by a factor of 9R/(161), see Eq. (3.14). The corrected
value Re{Anw,r/}(f) = 75 = 15.3ng/s is indicated by a dashed line. One can see that
this value lies within the error bars of most of the data points. This demonstrates that the
FDT method correctly reproduces the effect of increased viscosity due to the proximity of
the microscope coverslip.
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Figure 8.12: Calibration result for the imaginary part of the friction retardation spectrum
Im{&gDT’ex)}. The data points (circles) do not agree with the expected function
Im{¥nw,r/1(f) from Eq. (3.14). This problem has remained unsolved at the time of sub-
mitting this thesis.
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8.6.4 Positional calibration

Since it has been measured in water at low frequencies, the discretized version of the equation

for positional calibration, Eq. (6.19) can be used,

ﬁ (FDT,ex) QkBT ) Cot(Aasggorr)) (8 31)
K N W (FDT,av,volt) * .
27I'f < >Wind K
A value with lower statistical error is then obtained from by averaging,
ﬁ(FDT,aV) _ < gDT,ex)> (832)

The results for B(FDT sex)

and SEFPTaY) are plotted in Fig. 8.13, together with the results from

the PSD method, Eq. (8.6), and from the independent method, Eq. (8.20). We obtain good

agreement between the results from the FDT method, 3FPT:av)

, and the independent method,

BN whereas the PSD method yields a significantly lower result, g(FSP:av)

2
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Figure 8.13: Voltage-position conversion factor values obtained with three different methods. The value

B(PSD.av) ghtained with the PSD method as described in section 8.3 is indicated by a blue
dashed line over a part of its fitting range which extends up to 2kHz. It has a relative
error of 4.1 %. The frequency-dependent values ﬁgDT’ex) from calibration with the FDT
method are indicated by orange error bars, their relative errors are ~ 14%, when taking
into account statistical errors and errors from the uncertainity of the temperature. We take
all seven values for ﬁ (FDT.eX) into account for averaging in order to obtain 3FPT:a) which
is indicated by a red line. The average 3(FPT2) has a relative error of 5.5%. Moreover,
the conversion factor 55™) as obtained by the independent positional calibration shown
in section 8.5 is marked as a green error bar over the oscillation frequency of 2 Hz. Within
their error bars, the results from the independent method, S™), and from the FDT
method, S(FPTaV) " are consistent with each other. The conversion factor obtained with
the PSD method, 3(PSP2V) is significantly lower, however.
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8.7 Statistical errors of experimental results

In this section I will demonstrate how to calculate the most relevant statistical errors for the

experiment presented in the previous sections. These errors are the relative errors of (P}(<V 01t)>wind,
fit,volt) . fit fit FDT,volt

A](37KVO ), sm(Aqﬁg{ )), Aqﬁg{) and Hg{ volt)

For the passive part of the experiment, the standard deviation

o[(PE™ ) ina] = (PE™)wina — P(fi))?)"? (8.33)

of the experimental power spectrum relative to the theoretical value is simply determined by the
number of data sets/windows Nyinq and blocks Nyjock,

- L ovolt)y
P(VOlt) a[<P[({ t)>wind] o 1

Gall(Pr ™ winal = =P ST = U

(8.34)

For the active part of the experiment, the estimate of the relative statistical error of the particle

amplitude Ag tl’(VOlt) = |(Zx)|/Tmeas is a bit more complicated. The relative error is given by

fit,ex
A5
Ap(wg)’

if errors from the voltage-position conversion are neglected. The theoretical value Ag(wg) in the
denominator of Eq. (8.35) is given by

Ap(wk) = [X(wk)|lwk¥(wk)[As(wk), (8.36)

el A Y] = (8.35)

where Egs. (4.2) and (8.9) have been used. The motion of the trapped particle in the driven
system is a superposition of thermal and driven motion,

T = i"th,K + fﬁdr,K' (8.37)
The statistical error of the experimental value €. [Al(gﬁ tf’(vom] arises since at finite measurement

time Tineas, the ratio between the thermal part of the motion %y, x and the measured driven
part of the motion #q, x = (Zx) is nonzero. In the calculation of the thermal average (Zg),
the thermal part therefore contributes the noise!”. Hence the error is given by the standard
deviation of the thermal part of the motion U[:%EEX}{] = <(£EEX}{)2>1/ 2 divided by Tineas because
the spectral peak from the driven part of the motion increases in height with measurement time.

In the active part of the experiment, the thermal part of the particle’s motion is given by

859 = E 0 ox(wr) = V2T (wr)ie) v(wr), (8.38)

with the abbreviation 7' (wx) = Re{¥(wg)}. With <ﬁ§§x)*ﬁ,(€ex)> = TineasO Kk One obtains

Aoy _ p ¥ (wk) ' 8.39
€ 1[ B,K ] (WK) |’7((A)K)| . \/TmeasAS(wK) ( )

'"Basically, the thermal averaging is performed by the fitting procedure who yields the most probable fit values
for Ap and A¢.
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with the frequency-dependent dimensionless number

kT
B(w) = B (8.40)
vV 2Tmeas’7,(w)AS (w)w
In a simple viscous medium where Re{J(w)} = v and Im{j(w)} = 0, the relative error
erel[A](Sﬁ tgom] is equal to B(wg). In the experiments, errors were found which agree very well

with such predictions, see Figure 8.14.
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Figure 8.14: Relative errors of bead amplitudes A (fit Vom (circles) and phase differences A¢ i (squares)

in the active part of the experlment descrlbed in section 8.4. The analytical values of
relative errors obtained from Egs. (8.39) and (8.48) are indicated by a solid line for the
bead amplitude and by a dotted line for the phase difference, respectively. One can see
that the errors found in the experiments are always somewhat higher than the analytical
errors. This is reasonable as only thermal noise from the bead motion has been considered
in the analytical error calculation.

For the calculation of the relative error of the sine of the phase difference €, [sin(Ad)g?t))],

Re{Rs(wi)} = | Rs(wi)|sin(Ad(wi™)) (8.41)
is used which implies
eral[sin(AGEN] = e [Re{Rs x }] — evell| Rs. x| . (8.42)
~—_———

=eral[ A ] (Eq. (8.39))

The relative error €,q [Re{f%s i }] can be found from the ratio of the standard deviation of the real
(ex)

part of the thermal part of the motion o[Re{Z;, K | divided by Tineas and the analytical value for

the real part of the average bead trajectory Re{(Z(wx))}. The former is found as U[Re{mEEXK | =
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(Re{d;") })?)1/2, and the latter is given by Re{(#(wk))} = As(wr)wi|x(wr) > (k—wim)Re{7 (i)}
One obtains

colRe( s ] = Bla) {1+ 2 ) S Tl (8.43

By inserting Eq. (8.43) into Eq. (8.42) one finds

: (fit) V() | wl¥(wi) = 7" (wk)] } 1
€rel[Sin(Ag = B(wg {1 — = + x 8.44
e S 77 | 21 VToenAs(or) o4
In the limit of a light particle in a simple viscous medium this expression reduces to
eral[sin(AE)] = B(wg) - 2K, (8.45)

We

where w. = £/ is the angular corner frequency. From that result, one can calculate the error of
the phase difference A¢g itself which allows for a straight-forward comparison to experimentally
found errors. One has

€rel [SIH(A(églt) )]

(fit)
rel| Ay '] = (8.46)
B wfeos(Ao(w))]
which gives together with
real B
cos(Aqﬁ(w}?t))) = M (8.47)
| Rs(wr)|
the error expression
_ Awr) | wkF'(wk)=A" (wk)]
(), _ Blwrk) l-feort = eaZm
erel [Ny | = - - @l (- (8.48)
IX(wk)| - |—w|¥(wk)| + (k — me) 17(@)]
For a light particle in a simple viscous medium at low frequencies this simplifies to
B
€rel [A¢g§t)] = (:K) . (849)

Again, our experimental findings agree well with such predictions, see Figure 8.14. The good
agreement of experimental and analytical errors indicates that the statistical error from the
thermal motion of the bead is the most relevant error contribution in the driven part of the
motion. Further it indicates that our method of sinusoidal driving and fitting of the bead
response to a sinusoidal function are reliable approaches. The relative error of the calibration

result ngT’VOM is now simply given by the sum of the relative errors calculated previously,
FDT,vol vol fit,vol . fi
califc ] = cal(PE Ywina] + ral AR 5] + eralsin(Ag )] (8.50)
~—_———
Eq. (8.34) Eq. (8.39) Eq. (8.44)

Note that in Eq. (8.50) only the statistical errors arising from averaging over the particle motion
for a finite time T},cas have been taken into account.
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8.8 Conclusion and outlook

The results of the experiments show that the FDT method works well in water. The spring
constants obtained from calibration with the FDT method and with the PSD method are in
agreement with each other within their error margins. Furthermore, the real part of the fric-
tion retardation spectrum determined with the FDT method is in agreement with the friction
coefficient which is expected for the bead motion at a distance of | = 5 ym from the coverslip.
A problem which has to be investigated, is, that the imaginary part of the friction retardation
spectrum gives inconsistent results. This could be a problem of data evaluation, however.

The results from the FDT method and from the independent method for positional calibration
are consistent with each other within their error margins. The conversion factor obtained with
the PSD method is significantly lower than the values from the two other methods, however.
Moreover, reasonable relative errors have been obtained with the FDT method which are in the
order of a few percent for all quantities.

The phase 1 test of the FDT method in water represents a proof of the method’s principle. It also
serves as a test of the performance of the equipment, since it is clear that the FDT must hold. It
has been shown that the piezo stage used performs reliably sinusoidal motion at frequencies as
high as 100 Hz. In future experiments, it should be tried to drive with frequencies higher than
100 Hz, in order to investigate in which frequency range the limit of a reliable sinusoidal stage
motion lies.

Fitting to sinusoidal functions has been utilized in both the FDT method and at the independent
positional calibration. It is a reliable procedure which enables to find amplitudes and phase
angles with very small statistical errors even from binned data or from data with small temporal
resolution. The agreement of the errors obtained from fitting with theoretical predictions has
been shown.

The influence of the temperature uncertainty is much lower for the FDT method than for the
PSD method. The reason for that is that the temperature dependence of the viscosity is not
relevant for the FDT method, since the viscosity does not appear in its basic equations. The
main error contribution in the FDT method is the statistical error arising from the thermal
motion of the trapped particle. This error can be reduced to lower values by increasing the
measuring time which has been only 30s at the undriven system and 70s at the driven system
in our measurements.

The next step for testing the performance of the FDT method would be phase 2 as described in
section 8.1.



9 The trapped bead in proximity to a phagocyte cell

membrane

In optical tweezers experiments, the trapped particle is frequently situated close to a biological
surface, like the cell membrane. Biological surfaces are often soft, in most cases liquid and
thermally fluctuating. So far there is no theoretical model which describes the friction which
the particle feels close to such a complicated structure. In this chapter an analysis of data is
presented which has been suggested by Prof. Dr. Alexander Rohrbach from the University of
Freiburg (Germany). The data, which is a courtesy of Dr. Holger Kress from Yale University,
is from an experiment in which a trapped bead was moved stepwise towards the membrane of
a living phagocyte. The actual goal of that experiment was to study the process of binding of
beads to the phagocyte membrane [2]. Here I investigate only the motion of the trapped bead
prior to binding. The position data which was analyzed is shown in Fig. 9.1, where the initiation
of the binding process at t ~ 52 is clearly visible.

The underlying biological question of this microrheological study is, how the frictional force
close to the phagocyte membrane is altered, to enable an efficient binding of nearby particles.
In particular, one might ask about the nature of this frictional force. Is it mainly a viscous drag
which is enhanced due to the proximity of the membrane, similarly to the increase of viscosity
close to a hard wall? Or are there rather major elastic contributions in the frictional force? In
linear response theory, the frictional force is given by

Fhic(w) = —A(w)d(w), (9.1)

see Eq. (3.6). Thus the problem is reduced to determine %(w).

In section 9.1, the microrheology approach is introduced, which will be applied in the data
evaluation. A central quantity for the data evaluation is the response function y(w) which is
derived analytically for simple models in section 9.2. In the data evaluation, the real part of
the response function has to be computed numerically from the imaginary part. I report about
problems related to that in section 9.3. In section 9.4 the evaluation of the experimental data is
presented. The results are discussed in section 9.5.

9.1 Model and method

There is no theoretical model to describe the bead motion in the proximity of a cell membrane.
Due to this lack of an appropriate model I will resort to the model of friction close to a hard wall,
which is given in paragraph 3.2.3. This means that the question to be answered is if the bead
motion close to the phagocyte membrane can be described by that model. In order to answer
that question, the friction retardation spectrum 5(**) (w) from the experimental data is extracted
in dependence of the distance ! from the membrane. For that, an established microrheology
approach is used. Then it is checked, if the observed spectrum is consistent with the model,
Eq. (3.14).

105
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Figure 9.1: Position data (x,y,z component in the three upper panels, stage position in lower panel) of a
trapped bead close to a phagocytic membrane, by courtesy of Dr. Holger Kress. The bead
was moved stepwise closer to the membrane by moving the microscope piezo stage, until it
was bound to the membrane, at about ¢t = 52s.
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By moving the stage, the bead was stepwise brought closer to the phagocyte membrane. The
motion of the bead is then a superposition of the driven part of the motion and the thermal part
of the motion. At the frequency spectrum of the motion, the driven part is only relevant at low
frequencies, since the stage was not moved very fast. The driven part will be neglected in the
following?.

The thermal motion can then be evaluated according to the passive one-point microrheology
approach of Schnurr, Gittes et al. [10, 11] which results in an expression for §(w). For that
approach, the trap stiffness x has to be known and one has to evaluate one of the two Kramer-
Kronig relations numerically, which involves numerical errors, as I will demonstrate in section
9.3. By application of the FDT, Eq. (4.12), the imaginary part? of the response function x(w)
is immediately obtained from the power spectrum P(w). The real part of the response function,
X'(w), is obtained from the imaginary part x”(w) by applying the Kramers-Kronig relation
(KKR), Eq. (4.9). From both components of the response function, the friction retardation
spectrum can be easily extracted, since it is assumed that the trap stiffness « is determined by
prior calibration. One has

iw
Moreover, microrheology would involve the determination of the viscoelastic modulus G(w). It
can be determined from the friction retardation spectrum by the generalized Stokes law, Eq. (2.6).
In the following, G(w) will not be calculated, however, since it is a pure material property. Here
the main interest is in the friction retardation spectrum #(w) which describes the interaction
between bead and surrounding. Therefore the microrheology method will only be applied until
the determination of the friction retardation spectrum according to Eq. (9.2).

(9.2)

9.2 Analytical expressions for the response function

The response function is an inverse effective spring constant of the whole system, consisting
of trap, medium and massive particle. It contains information about the elastic (real part)
and viscous (imaginary part) response of the system to external forces. The Kramers-Kronig
relations connect the real and the imaginary part of the response function. In this section the
KKR, Eq. (4.9), is solved analytically for the special case of simple Stokes friction. Further, the
response function is given for the special case in which the bead is situated in the proximity of
a hard wall.

For the case of a light particle immersed in water far from any surface, it is easy to calculate the
sine- and the cosine transform in Eq. (4.9) analytically: For the case of simple Stokes friction
the friction retardation spectrum is constant,

’7((0) = "0, (93)
and the response function for a particle of negligible mass becomes
1
. = - 9.4
X0,light (w) K+ iW’}/o ) ( )

!The driven part can not be determined anyway, since the exact stage trajectory is not known.
2The real and imaginary parts of a complex number z will be indicated by Re{z} and Im{z}, or, equivalently,
by 2’ and 2", respectively.
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cf. Eq. (4.4). One has for the imaginary part of the response function

W
Xg,light(w) = _F, T w2 (9.5)
Inserting Eq. (9.5) into the sine transform of Eq. (4.9) gives
2 [ ¢
\/7/ X0,1ight () sin(¢t)d¢ = —\/j/ ngg sin((t)d(¢
2
— \/7 7 Cz sin(¢t)d¢
= —/=— exp( t)s (9.6)

2’Yo

where w. = K/ is the corner frequency. This result can now be inserted into the cosine transform
in Eq. (4.9) which gives,

2 [ w1 1 we K
\/;/0 { \/gyo exp(—w )} cos(w?) Yow? 4+ w? K2+ wqyd (9-7)

It is easy to check that this is really the real part of the response function,

K

, 9.8
/{2 + w2,yg ( )

X6,1ight (w) =

For a particle of non-negligible mass, the response function x( jignt(w) of the trapped bead far
from any surface, Eq. (9.4), must be modified to

1

Xolw) = K+ iwyy — w?m’ (9.9)

For a trapped bead in the proximity of a hard wall, one has the response function

1

K+ 1wy, r/ (W) — w?m

th,R/z(w) = (9.10)

with Jpy r/1(w) given by Eq. (3.14). The response functions given in Egs. (9.9) and (9.10), the
latter for the ratio, R/l = 0.837, are shown in Fig. 9.2.
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Figure 9.2: Analytically found response functions for a trapped bead, assuming simple Stokes friction,
Egs. (9.9) (violet lines), and at a distance [ = 615nm to a hard wall, Eq. (9.10) (black lines).
The real parts are indicated by full lines, the imaginary parts by dotted lines. The response
functions are calculated for a trapped polystyrene bead of radius R = 515nm immersed in
a viscous medium with viscosity n = 0.0071 Pas. The stiffness of the optical trap is given
by x = 0.0032pN/nm. The imaginary part is plotted with a negative sign in front, since it
is always negative.

9.3 Numerical evaluation of the Kramers-Kronig relation

If the friction retardation spectrum 4(w) is unknown, the response function x(w) can not be
obtained analytically like in Eq. (9.10). It has to be measured. The imaginary part x”(w) is
easily obtained from the FDT, Eq. (4.12). In passive microrheology approaches one uses the
KKR to derive the real part from the imaginary part of the response function®. The numerical
evaluation of the KKR involves aliasing errors due to the cut-off of the sine transform, however.
That error has already been discussed by Buchanan et al. [45] and it will appear in each analysis
of experimental data from a purely passive experiment?.

A large aliasing error involves an unreliable determination of x’(w) which gives unreliable values
especially for the elastic part of the friction retardation spectrum, 5" (w), see Eq. (9.2). Before
working on the data, in this section I investigate the dependence of the aliasing error on the
cut-off frequency for the special case of friction close to a hard wall. It will turn out that the
aliasing error of both 4/(w) and 4”(w) is very large for a low cut-off frequency. For a high cut-off
frequency, the relative error due to aliasing is very large only for 7" (w).

The real part of the response function is determined from numerical evaluation of the KKR,

3See discussion on passive approaches in section 6.2 of [77].
4Purely passive experiments are experiments where only the Brownian motion of a particle trapped by optical
tweezers is observed.
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Eq. (4.9),
Re{ X, /1 (fio) } P Fme) = =) D cos2mfiti) At > Xiw,ry1(fir) sin@m frrti) Af,  (9.11)
i=0 k=0

whereby Xﬁw, R /l(w) from Eq. (9.10) (imaginary part) has been taken into account at the discrete
frequencies fi = wy/(2m), with k' = 0,..., Npax, so that the sine transform integration is cut-
off at frequency fmax/2 = fN.... °- The cosine transform is taken over the same number of data
points Npyax. The discrete frequencies have a spacing of Af = frax/(2Nmax). Then the time
spacing is given by At = 1/ fiax-

In this section, the dependence of the result of Eq. (9.11) on the cut-off frequency fiax/2 will be
examined®. In Fig. 9.3(a,b), the real and imaginary parts of the response function Xhw,0.837(w)
are plotted as full lines for a bead of radius R = 515 nm which is situated only [ = 615 nm away
from a hard wall”. The dashed and dotted lines in Fig. 9.3 have been obtained from numerical
evaluation of the KKR, according to Eq. (9.11), for two different cut-off frequencies fiax/2.
Note that in Eq. (9.11), the analytical expression for x”(f), Eq. (9.10) (imaginary part), has
been used®. In Fig. 9.3 it can be seen that Re{xhw’o,gy(w)}(num’fmax) exhibits aliasing due to
the cut-off of the sine transform integral at the Nyquist frequency. This numerical error is much
larger for the smaller cut-off frequency fiax/2 = HkHz than for the larger cut-off frequency
fmax/2 = 320kHz.

Fig. 9.4 shows the corresponding results from extracting the friction retardation spectrum ypy, g/ (w)-
From the response function obtained from evaluation of the KKR, one has with Eq. (9.2)

[XLW,R/l(fk)(numeaX) + iXﬁva/l(fk)]_l — R

(numvfmax) —
(fx) DT

Vow, R/l (9.12)
For the lower cut-off frequency fiax/2 = 5kHz (dotted lines), both the real and the imaginary
parts of Yy, r/i( fr)(umsfmax) exhibit very large aliasing errors. For the higher cut-off frequency
fmax/2 = 320kHz (dashed lines), the aliasing error is small (< 0.4%Vfy) for the real part
Re{Ynw,r/i( fr) s fmax) 1l (black), but still very large (> 100% for most frequencies) for the
imaginary part Im{ 7, r/( fr) s fmax) 1 (magenta). Note that the imaginary part itself is much
smaller than the real part.

The results of this section indicate how large aliasing errors have to be expected for the evaluation
of the experimental data in the next section. The experimental results, e.g. Re{xnw.r /i fk)}(ex’f max)
will not have to be compared with the analytical expressions, e.g. Re{xnw r/(fx)} (full lines
in Figs. 9.3 and 9.4), but instead with the numerical expression, e.g. Re{xhw’R/l(fk)}(num’fmx)
(dotted/dashed lines in Figs. 9.3 and 9.4).

5 At the evaluation of experimental data, fmax/2 will be identified with the Nyquist frequency fuyq, while fimax
will be identified with the sampling frequency fsample-

5The cut-cut-off of the time integration at the cosine transform is irrelevant, since the sine transform decays
rapidly, see Eq. (9.6).

"Since the distance  is taken from the bead center to the wall, the distance between bead surface and wall is
then only 100nm. One has R/l = 0.837.

8At the data evaluation x”(fx) will be obtained from the FDT. This would involve additional aliasing errors
due to the Fourier transform performed for the calculation of the power spectrum. That error is not discussed in
this section, but it will additionally show up in the experimental results.
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Figure 9.3: Response functions for a trapped bead close to a hard wall, analytical from Eq. (9.10)
(solid lines) and by numerical evaluation of the Kramers-Kronig-relation, Eq. (9.11) for two
different cut-off frequencies, fiax/2 = 5kHz (dotted lines) and fiax/2 = 320kHz (dashed

lines).

The response functions are calculated for a trapped polystyrene bead of radius R = 515 nm
immersed in a viscous medium with viscosity n = 0.0071 Pas for a bead situated | = 615 nm
away from a hard wall in lin-lin (a) and log-log (b) representation. The stiffness of the optical
trap is given by x = 0.0032 pN/nm. The real part (black lines) and imaginary part (magenta
lines) are shown in the plot. For high frequencies, Re{th,o,gw(w)}(““m’f max) deviates from
the analytical expression Re{xnw,0.837(w)}, due to the cut-off of the sine transform integral
(aliasing). Note that the numerical curves become even negative for high frequencies. The
ratio between Re{XhW,o,gy(w)}(“um’fmax) and Re{xnw,0.837(w)} is plotted in panel (c). One
can see that the aliasing error is much larger for the lower cut-off frequency fiax/2 = 5kHz.
The figure indicates how large aliasing errors have to be expected at the data evaluation.
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Figure 9.4: Friction retardation functions for a trapped bead close to a hard wall, analytical from
Eq. (3.14) (solid lines) and by numerical evaluation of the Kramers-Kronig-relation,
Eq. (9.11) and extraction of Ay, g/i(fx) ™™ fmx) with Eq. (9.12) for R/l = 0.837 and for
two different cut-off frequencies fmax/2. The full lines indicate the analytical curves v
(violet), Re{Fnw,r/1(w)} (black) and Im{Fp,g/1(w)} (magenta). Re{Yny, gy (fi)mmfme)}
is indicated by black lines, for fi.x/2 = 5kHz (dotted) and for fi.x/2 = 320kHz
(dashed). Im{pw,r/( fr)(rum:fmax)1 g indicated by magenta lines, for fiax/2 = 5kHz
(dotted) and for fiax/2 = 320kHz (dashed). Note that aliasing errors are much higher for
fmax/2 = 5kHz than for f;,.x/2 = 320 kHz.
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9.4 Evaluation of experimental data

The z-component of the experimental data shown in Fig. 9.1 has been analyzed for two time
intervals which both have a length of ~ 6s. Data set 1 covers the time interval I; = [0s,6.03s]
when the bead was about 10 pm away from the phagocyte membrane. Data set 2 covers the time
interval I = [42.21s,48.24s] short before binding, when the bead was already very close to the
membrane. The trap stiffness £ = 0.0032 pN/nm is known from prior calibration.

9.4.1 Modification of data with low sampling frequency

In section 9.3 it was shown that the aliasing error on the real part of the response function
obtained with the KKR becomes very high for low cut-off frequencies fiax/2. In the experiment,
the cut-off frequency corresponds to the Nyquist frequency of fnyq = fsample/2 = 5kHz. Since
this frequency is very low, the data has to be modified in order to reduce the aliasing error. For
that purpose, Buchanan et al. evaluated the KKR integral by assuming that the imaginary part
of the response function continues to infinity with a slope of —1, i.e., as for a simple viscous
liquid. From that continuation, the correction of the real part of the response function could be
calculated, see Eq. (4) in Ref. [45].

This continuation approach for data modification introduces a point of discontinuity in the
derivative of the imaginary part of the response function, however, since the slope changes
to —1 at fxyq- Moreover, also the imaginary part of the response function exhibits aliasing
at frequencies close to fnyq due to the numerical Fourier transform performed to obtain the
power spectrum®. To obtain a more smooth behavior of Im{y(w)} and to avoid errors from
aliasing of the power spectrum, I will use another technique which implements the continuation
to higher frequencies already in the time domain, i.e., on the experimental data itself. This is
the technique of random walk interpolation (RWI) which introduces simulated data points in
between measured data points and therefore acts as "simulation supersampling", see Fig. 9.5.
By RWI, an effective sampling frequency of fsample, kw1 = N1fsample = 640kHz is obtained, with
N1 — 1 = 63 interpolated data points between two experimental data points. Hence aliasing due
to the Fourier transform at the power spectrum calculation becomes irrelevant for frequencies
up to fnyq = 5kHz. The convergence of the RWI method is demonstrated in Fig. 9.6. Further,
aliasing due to the frequency cut-off of the KKR integral as described in section 9.3 is also
"shifted" to higher frequencies, but remains still relevant, see dashed lines in Figs. 9.3 and 9.4.
An additional error is introduced by the RWI method, however, since not all hydrodynamic
interactions according to the model, Eq. (3.14), are taken into account and it is not clear if the
model, Eq. (3.14), describes the high frequency motion at all.

9This aliasing error has not been discussed in section 9.3, but it is typically as high as ~ 300% at fxyq, if the
data is not supersampled.
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Figure 9.5: The technique of random walk interpolation (RWI). Between two data points (black circles)
sampled in the experiment with low sampling frequency, N1 — 1 simulated data points (red
squares) are placed, whereby N; = 2" with an integer n. The simulated data points mimic a
random walk in a harmonic trap. The parameters of that confined diffusion are temperature
¥ = 37°, trap stiffness x = 0.0032 pN/nm and friction coefficient v = vo(1+9!/(16R)) with
Yo = 6mnR = 6.89 pNus/nm. The viscosity n = 0.0071 Pas and the distance to the wall [
have been estimated from the experimental data. In the figure, random walk interpolation
with N1 = 8 is shown. For the evaluation of the experimental data, a higher value of N1 = 64
has been used. One must keep in mind that the method of random walk interpolation
introduces an error due to the neglecting of hydrodynamic interactions at the interpolated
random walk.

9.4.2 Result for the response function

The imaginary part of the response function is obtained experimentally from the FDT,

T
X//(eX,fsample) (fe) = — k;; plexfsample) (fr), (9.13)

whereby the experimental power spectrum P(ex7fsample)( fx) has been found by numerical Fourier
transform of a time series of N data points, sampled with frequency fsample. The imaginary part
of the response function is inserted into the KKR

N/2 N/2
1 .
Re{x(f),) } (e fsampte) — - D " cos(2m frti) At Y tsampie) (£ sin (27 foti) A S, (9.14)
=0 k'=0

whereby X/(ex,fsample)( fr) from Eq. (9.13) has been taken into account at the discrete frequencies
fr, K =0,...,N/2, so that the sine transform integration is cut-off at frequency fiample/2 =
fny2- The cosine transform is taken over the same number of data points N/2. The discrete
frequencies have a spacing of Af = fsample/IN. Then the time spacing is given by At = 1/ foample-
The results from the determination of the response function from the experimental data according
to Egs. (9.13) and (9.14) are shown in Fig. 9.7. It can be seen that for both data sets the negative
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Figure 9.6: Demonstration of the convergence of the RWI method. Here it is shown for data set 1,
how aliasing errors of the imaginary part of the response function decrease with increasing
number of interpolated data points Ny — 1. The imaginary part of the response function
becomes more similar to the theoretical expression for a distance of 10 um to a hard wall,

if N1 is high. Hence the curves converge to
Im{xhw,o,om(fk)}(ex’fsamplm"vl)/Im{xhw70,052(f)} = 1. For data set 1, the bead was still
located relatively far from the phagocyte membrane. Thus it can be assumed that the
friction, which the bead feels is very similar to simple Stokes friction. Thus the error, which
is introduced by the RWI method, can be expected to be small.

imaginary part (right side) —Im{x(fx)}(©040kH2) gives slightly too low values, compared to
the analytical curves from the hard wall model —Im{ Xy r/1(w)} for certain values for R/I. For
frequencies higher than a few hundred Hz, the real part (left side) Re{x((fx)}(©040kH2) deviates
from the expected curve Re{xnw r((f ) }(num,640kH2) 1 gwever. Aliasing has been accounted for
at the expected curve, and the deviation shows up in both data sets, i.e., far away and close to
the membrane. Therefore, the deviation is most probable due to errors introduced by the RWI

method.

9.4.3 Result for the friction retardation spectrum

The friction retardation spectrum can now be extracted from the response function found from
the experimental data, according to the relation

5 ! (exvfsample) _|_1 ”(exvfsample) -1 _ K
f}/(fk)(exvfsample) — [X (fk) lg;-fk (fk’)] , (915)

see Eq. (9.2). The result is shown in Fig. 9.8. It can be seen in Fig. 9.8(a) that the experimental
results for the real part, Re{7( fk)}(ex’ﬁ‘lo kHz) agrees well with the curve for the friction retarda-
tion spectrum from the hard wall model, Re{Jyy, g/ (w)} for R/l = 0.052 ym and R/l = 0.912nm
for data set 1 (blue) and data set 2 (red), respectively. This indicates that in the considered
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Figure 9.7: Response function obtained from the experimental data modified with the RWI method,
the real part is shown on the left, the imaginary part on the right.
(a,b): Results for data set 1 (squares) are shown in blue/cyan color and are compared
to the hard wall model with R/l = 0.052 (dashed line) which corresponds to a bead-
membrane distance of 10 ym. Results for data set 2 (circles) are shown in red /magenta color
and compared to the hard wall model with R/l = 0.912 (dashed line) which corresponds
to a bead-membrane distance of 565nm. The viscosity n = 0.0071 Pas which is another
parameter in the hard wall model, has been estimated from the experimental data. (c,d):
Corresponding data/theory scatter plots, in which the value 1 is indicated by a dotted line.
Left: The real part obtained from the experimental data Re{x(fx)}(©040kH2) agrees only
for frequencies up to ~ 300 Hz with the expected curve Re{xny,r/1(fx)}mum640kHz) - Thig
is probably due to errors introduced by the RWI method. Right: The negative imaginary
part obtained from the experimental data —Im{x(fx)}(©*040kH2) seems to give slightly too
low results for low frequencies.

frequency range [0kHz, 5 kHz] the viscous part of the friction force on the bead agrees with the
hard wall model for distances of [ ~ 10 um for data set 1 and [ ~ 565nm for data set 2. Note
that the value of [ ~ 565nm corresponds to a separation of only 50nm between bead surface
and membrane. For the imaginary part of the friction retardation function which describes
elastic interactions, the interpretation of the results is more difficult. The expected numerical

curves Im {0,052 () }MO40KH2) and Im{Fhy 0.012( fi) } 0640 KH2) from Eq. (9.12) lie closely
together compared to the spread of the data points. For both data sets, the data points tend to
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Figure 9.8: Friction retardation spectrum obtained from the experimental data modified with the RWI
method, the real part is shown on the left, the imaginary part on the right.
(a,b): Results for data set 1 (squares) are shown in blue/cyan color and are compared to
the hard wall model with R/l = 0.052 (dashed line) which corresponds to a bead-membrane
distance of 10 um. Results for data set 2 (circles) are shown in red/magenta color and
compared to the hard wall model with R/l = 0.912 (dashed line) which corresponds to a
bead-membrane distance of 565 nm. In (a) the friction coefficient ~, is indicated by a violet
line. (c,d): Corresponding data/Theory scatter plots, in which the value 1 is indicated by
a dotted line.
Left: The real part from the experimental data Re{7(fy)}(©640kH2) agrees well with the
hard wall model for distances of ! = 10 um (data set 1, blue) and | = 565nm (data set
2, red). Right: For the imaginary part the expected curves from Eq. (9.12) (dashed lines)
lie closely together for the two different distances [, compared to the spread of the data.
Further, the data points tend to lie below the expected curves.

lie below the expected curves. As for the imaginary part of the response function, see Fig. 9.7,
the reason for that are probably errors introduced by the RWI method.
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9.5 Discussion

The final result of this investigation is that the obtained real part of the friction retardation
spectrum, Re{7(fy)} (< fsampie) which gives the wviscous part of the friction force exerted on the
trapped bead in the proximity of the phagocyte membrane is consistent with the hard wall model.
The imaginary part of the friction retardation spectrum from the hard wall model, Im{y,, g/i1(w)},
which gives the elastic part of the friction force, is small compared to the real part, see Fig. 9.4(a)
(magenta and black solid lines). If obtained from numerical evaluation of the Kramers-Kronig
relation, it has a large aliasing error, even at a high sampling frequency, see Fig. 9.4 (magenta
dashed lines). The experimental result Im{#(f})}(®*-/sampie) additionally exhibits large statistical
errors, see Fig. 9.8(d). The conclusion from that is that no clear statement can be made about
the elastic contribution from the given data and with the applied microrheology method. This
involves that no statement about a deviation of the elastic part from the hard wall model can
be made.

For this investigation, data has been evaluated which was available from an experiment which
had another main goal than examining the friction felt by the bead close to the cell membrane.
Only short time series could be evaluated which resulted in a high statistical error. Systematic
errors due to piezo stage motion in this experiment have been neglected in the data evaluation,
but could have influenced the results. Furthermore, the distance [ between bead and membrane
was not kept constant during the evaluated time intervals, which gives another error source.

As data evaluation method, the passive microrheology approach established by Schnurr, Gittes et
al has been applied. It employs the Kramers-Kronig relation to determine the elastic (real) part
from the measured viscous (imaginary) part of the response function. One problem about that
approach is that it involves aliasing errors of the elastic part of the friction retardation spectrum,
Im{%(w)} due to the cut-off of the sine transform integral which can be of same order or larger
than Im{%(w)}. That problem is especially severe for media in which the elastic contribution is
small compared to the viscous contribution, as it has been the case in this investigation. The
aliasing error is still high for data taken with high sampling frequencies. Supersampling of data
by simulations as applied here or continuation of y”(w) as done by Buchanan et al. suppresses
aliasing but introduces new errors which are difficult to assess.

Another problem of the passive microrheology approach is that it "mixes frequencies" through
the determination of x'(w) by the Kramers Kronig relation. In principle, x'(w) depends on the
power spectrum P(({) at all frequencies (. Experimental data usually exhibits errors in certain
frequency ranges, e.g., drift at low frequencies of order 1 Hz. These errors which are local in the
frequency domain at P({) are outspread to other frequencies at x'(w).

An approach to determine §(w) without these shortcomings is given by the novel combined
optical tweezers calibration and microrheology method presented in chapter 6. This method
involves an additional active measurement, where the stage or laser position is oscillated. For
the investigation of the elastic contribution of the friction force close to a cell membrane, I suggest
to perform new measurements according to this method, with high sampling frequency and with
measuring times in the order of 100s for both the passive and the active part of the experiment.
A challenge at the experimental implementation of such an experiment would be the realization
of sinusoidal bead motion which happens in a plane which is parallel to the membrane plane.



10 Networks of semiflexible solymers

10.1 Introduction

The complex phenomenon of viscoelasticity introduced in section 2.2 is exhibited by many
biopolymers. Experimental investigations of viscoelastic properties are performed by rheology
techniques as optical tweezers microrheology, which has been portrayed in section 2.3 and ap-
plied in chapter 9 of this thesis. Further, the novel calibration method introduced in chapter 6
includes a methodological contribution to the technique of optical tweezers microrheology.
Theoretical studies on viscoelasticity on the other hand are performed by both modelling and
simulation approaches. In this chapter a simulation study on the microscopic origin of viscoelas-
ticity is presented, which has been performed under supervision of Dr. Jan Kierfeld during my
3 months abroad project at the Max Planck Institute of Colloids and Interfaces in Golm (Ger-
many) in 2005/2006. In this investigation the mechanical behavior of a network of crosslinked
semiflexible filaments has been studied by Monte-Carlo Simulations. For simulating the individ-
ual filaments I have used the semiflexible harmonic chain (SHC) model published by Dr. Kierfeld
before [78]. In the simulations, the thermally fluctuating network was exposed to shear stress
in a way that imitates a macrorheological experiment with a twin plate shear cell. We have
determined global and local bending energies of the sheared network and we have observed how
the network architecture changes with varying shear angle.

After introducing semiflexible polymers in section 10.2, the SHC model will be presented in
section 10.3. In section 10.4 a short review of research on semiflexible polymer networks will be
given. The Monte-Carlo simulation technique is explained in section 10.5 and in section 10.6
simulation results from two example networks are presented. A discussion is given in section

10.7.

10.2 Semiflexible polymers

A polymer is a substance composed of large molecules composed of repeating structural units,
or monomers, connected by covalent chemical bonds. Well known examples of polymers include
plastics and DNA. Polymers typically exhibit viscoelasticity, a phenomena introduced in section
2.2. In the following I will shortly introduce some basic terms and models of polymer theory. A
comprehensive account of the theory for the dynamical properties of polymer solutions is given
for example in the book of Doi and Edwards [79].

An ideal chain or freely-jointed chain is the simplest model to describe a polymer. It assumes a
polymer as a random walk and neglects any kind of interactions among monomers. Although it
is simple, its generality gives some insights about the physics of polymers.

The Kratky-Porod or worm-like chain (WLC) model is used to describe stiffer polymers. The
WLC model envisions an inextensible isotropic rod that is continuously flexible. It can be shown

119
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that the mean square end-to-end distance of a polymer chain with contour length L is given by

([r () — x(0)]%) = 2LpL {1 - exp(—L/Lpn} , (10.1)

where Lp is called the polymer’s persistence length which describes the stiffness of the filament.
While for stiff filaments the persistence length is much larger than the contour length, Lp > L,
it is much smaller than the contour length for flexible filaments, Lp < L. For semiflexible
filaments, the persistence length is on the same order like the contour length, Lp ~ L. Many
bio-polymers consist of semi-flexible filaments.

The worm-like chain model has been successfully applied to single-molecule stretching experi-
ments in order to interpret force-extension relations for polymer chains like DNA, titin or actin
filaments, see, e.g., the references given in [78]. In many of these experiments performed with
atomic force microscopy or optical tweezers, the force-extension relation obtained by Marko and
Siggia for the wormlike chain has been used to interpret the results. The main characteristic of
this relation for an inextensible worm-like chain of contour length L is an end-to-end extension
Ly in the direction of the stretching force f that is saturating as 1 — Ly/L o 1/+/f for large
stretching forces f = |f| [80].

In the limit of large stretching forces, the extensibility of the chain due to stretchable bonds has
to be taken into account, however. This means that the result of Marko and Siggia for the overall
relative extension L /L has to be corrected by an additional term which contains the stretching
modulus k of the polymer.

10.3 The semiflexible harmonic chain (SHC) model

A discrete description of extensible semiflexible polymers is given by the semiflexible harmonic
chain (SHC) model established by Kierfeld et al. For that model, force-extension relations have
been analytically obtained for strong and weak stretching regimes which include the effect of
extensible bonds, discrete chain structure, and finite polymer length [78].

In the SHC model, a semiflexible filament can be modeled by a discrete chain of N bonds of
length by with directions described by tangent vectors t(n) with |t(n)] = 1 that are indexed
by the integer bond number n = 1,..., N, see Fig. 10.1. The contour length of the polymer is
L = Nby. The bonds can represent either actual chemical bonds in a polymer or larger segments
of a filament, for example a helical repeat unit in F-actin. The bonds or segments can be tilted
against each other and eventually stretched. The bond vectors connect N + 1 "beads" indexed
by the integer bead number i = 0, ..., N at positions r(i) = r(0) + 3" _, bot(n), where r(0) is
the position of the bead at the fixed end of the polymer.

In order to describe an extensible semiflexible chain, harmonic bonds of variable length b(n) are
introduced with a stretching energy

N N
Eo=>_ k(n) (b(n) —bo)® = > k()b A%(n). (10.2)
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Figure 10.1: The semiflexible harmonic chain (SHC) model. t(n) are bond directions with [t(n)| = 1,
b(n) the bond lengths, and f the external force applied to one end of the filament. The
other end is fixed. (Graph taken from Kierfeld et al., The European Physical Journal E,
2004, Ref. [78])

Each bond has the equilibrium length by and

A(n) = (b(n) = bo)/bo (10.3)

are the relative bond extensions. The bonds act as harmonic elastic springs characterized by
bond stretching moduli k(n) which are allowed to depend on the bond index n to model spatial
heterogeneity.

For an extensible chain, the work done by the external force f applied to one end r(N) of the
chain with the other end fixed is

N

Ep=—f-(x(N)—r(0) =—=> bo(1+ A(n))f - t(n). (10.4)

n=1

In a semiflexible chain, the tilting of neighbouring bonds costs a bending energy

N-1 K
B, = ) 2—b0(t(n—|—1) —t(n))?
e
= bi(l —cosf(n,n+1)) (10.5)
0

I
—

n

which only depends on the angles 6(n,n + 1) = arccos(t(n) - t(n + 1)) enclosed by unit tangent
vectors, see Fig. 10.1, and one material parameter, the bending rigidity x. The sum of bending
and stretching energies, Egs. (10.5) and (10.2), together with the work, Eq. (10.4), of the external
force gives the Hamiltonian for the discrete semiflexible harmonic chain,

H{t(n), A(n)} = By, + Es + Ef
N-1

K N n 2
ZZ—bO (n41) — t(n))? +Zk(Q)bOAQ(n)—Zbo(l—irA(n))f-t(n). (10.6)
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From the Hamiltonian, Eq. (10.6), force-extension relations have been found in [78] for strong
and weak stretching regimes. Therefore, the dependence of the free energy F(f) = —T'InZ(f)
on the force f = |f| has been used together with the thermodynamic relation

Ly = (1) ~1(0) - 1) = ~05F (1), (10.7)

10.4 Semiflexible networks

The understanding of properties of individual semiflexible filaments is today quite highly devel-
oped. If solutions of semiflexible biopolymers such as F-actin contain cross-linked or sterically
entangled filaments, they form semiflexible networks. The remaining problem of understand-
ing the rheology of the biologically important semiflexible networks, has proved quite subtle,
however.

In 1995 MacKintosh et al. proposed a mechanism for the elasticity of semiflexible networks
which is entropic in its origin and closely related to rubber elasticity [81]. The non-linear force-
extension relation of that model has been successfully applied by Storm et al. in biological
gels to describe strain-stiffening [82]. Strain stiffening is an important mechanical property of
biological materials which prevents large deformations that could threaten tissue integrity. In
another model the plateau modulus G® has been derived from the force-extension relation of
the wormlike chain and also transverse filament fluctuations and buckling have been taken into
account [83]. In the analytical approaches [81, 83|, the deformation of the network has been
assumed to be affine, however, which means that the strain distribution is homogeneous over the
entire network.

Also numerical methods have been applied to investigate polymer networks. Wilhelm and Frey
[84], Head et al. [85-87], Onck et al. [88] and DiDonna and Levine [89,90] applied two-dimensional
discrete mechanical models for crosslinked networks to calculate the viscoelastic moduli of the
networks. In semiflexible networks, Head et al. and Onck et al. found at large strains non-
affine network deformations in semiflexible networks, i.e., the network re-arranges its architecture
under a large shear strain in a non-trivial way, i.e., not in each point aligned with the shear
deformation of the simulation box. This result indicates that beyond the non-linear elasticity of
the individual filaments, non-affine network deformations represent another mechanism of strain
stiffening. Some crosslinker proteins like the F-actin cross-linker filamin exhibit domain unfolding
under applied tension. Didonna and Levine took that effect of domain unfolding additionally
into account in their simulations [89,90]. They found viscoelastic behavior which reminds on the
soft glassy rheology observed in the cytoplasm.

All numerical work mentioned in the last paragraph is based on purely mechanical models and
energy minimization. In effect, these models consider zero-temperature systems in which filament
undulations do not exist and consequently free energies can not be determined. This means that
the effect of entropy on the network elasticity which is essential for rubber elasticity of flexible
polymers, can not be taken into account. However, for networks made of flexible polymers
the effect of entropy has been included by another numerical approach, which is Monte Carlo
simulations [91,92]. In the following I will present a Monte Carlo Simulation of a semiflexible
network under shear stress.
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10.5 Monte Carlo simulation approach

In this section the Monte Carlo approach is presented which has been applied to the simulation
of rheological experiments on a semiflexible polymer network. At the Monte Carlo simulation,
the thermal motion of the polymer network and its deformation due to externally applied shear
forces have been simulated. Global and local energies are determined at the sheared network and
the change of network architecture under shear can be observed. From the results, conclusions
on the microscopic origin of the observed mechanical behavior can be drawn.

For performing Monte Carlo simulations of filament networks, a model is needed which describes
the individual filaments. The model used here is the semiflexible harmonic chain (SHC) which
has been introduced in section 10.3. In this section, the simulation of the thermal motion of the
SHC filaments by means of the famous Metropolis is presented (paragraph 10.5.1). Further, in
paragraph 10.5.2 the construction of a random network from many filaments is described. The
application of a shear deformation and the measurement of energies at the sheared network are
explained in paragraphs 10.5.3 and 10.5.4.

10.5.1 Simulation of the thermal motion of a single SHC filament

The discrete SHC consists of N 4+ 1 "beads" connected by N bonds. The thermal motion of
the chain is simulated by displacing a randomly chosen bead ¢ by way of trial from its original
position r(i) to position r’'(i) which lies within a small quadratic box around r(z). The internal
energy U({r(i)}) of the system which is given through the Hamiltonian, Eq. (10.6), would then
be changed to U({r'(i)}).

The probability of the system to be in some state is according to Boltzmann statistics propor-

tional to .
P({x(i)}) o exp {—M} | (108)

kT
with the internal energy U({r(i)}) of the system in state {r(i)}. From the Boltzmann statis-
tics, Eq. (10.8), an acceptance criterion for the trial displacement is formulated which decides
on whether the bead i stays at position r(i) or whether it is moved to r’(7). For the accep-
tance criterion the ratio p between the probability of the trial state {r(:)'} = {r(0),...,r(i —
1),r'(i),r(i + 1),...,r(n)} and the probability of the original state {r(i)} = {r(0),...,r(i —
1),r(i),r(i +1),...,r(n)} is used,

_PUYOY _ [ U ON - Ur))
P= P} p{ kT }

(10.9)

A very high value of U({r/(7)}) will then lead to a small p whereas a small U({r'(i)}) will lead
to a high p. The acceptance criterion imposes automatic acceptance if p > 1 (going downhill
in energy), otherwise, acceptance if a random number r between 0 and 1 happens to be smaller

than p. This acceptance criterion guarantees that the system stays in equilibrium®.

!The acceptance criterion ensures that the condition of detailed balance is fulfilled which guarantees equilib-
rium.
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Repeating such displacement trials a large number of times forms the Metropolis algorithm which
generates a Markov chain® of systems which mimics the thermal fluctuations of the entire fila-
ment. Any average quantity thus sampled is then, by construction, the statistical average that
is sought
21 Ak

A== — 10.10

(4) = =2, (10.10)
where Ay, is the value of A at system k of the Markov chain, and Ny is the large total number of
systems simulated?.

10.5.2 Construction of a random network

Np polymer chains described by the SHC model with equal bond number N and bond length
by are placed in two-dimensional quadratic box with area A = L2box, see Fig. 10.2. The box
has periodic boundary conditions on its horizontal and vertical boundaries, so that the space
in which the polymer chains are placed can be imagined as being the surface of a torus. The

position of bead number i of polymer chain j is indicated by r(i, 7).

The system is then thermalized by applying a large number of Monte-Carlo steps as described in
the previous paragraph on all chains. During the thermalisation, polymer chains diffuse freely* in
the box and across its periodic boundary conditions and after a while the distribution of filament
positions and orientations is completely random. To accelerate the randomization process, also
other another kind of Monte Carlo trials is used®.

After thermalisation, the filaments are crosslinked. This is done by distributing a chosen number
of crosslinks N, over the network in the following way: All pairs of two beads from different
chains, i.e., the pairs ((i,7); (¢, 7’)) with j # 5, are considered, and the distances |r (i, j)—r(i, j')|
between the beads of each pair are determined. Those NV, pairs with the smallest distances
Ir(i,7) —r(i,j")| are now crosslinked, by shifting both bead positions of each chosen pair to the
midpoint between the two original positions,

x () (7. 5) = "D 2T, (10.11)

where x ((4,7); (¢/,;')) indicates the position of the constructed crosslink ((z,7);(i’,75")). All
crosslinks are permanent, i.e., both beads (,j) and (i’,j’) can only move as one from now
on. This involves that both beads are displaced simultaneously under a trial step and the ac-
ceptance criterion stated below Eq. (10.9) must then impose acceptance for both deflections in
order to move the crosslink to a new position.

2A Markov chain is a "memoryless" chain of states: no given state has any causal connection with a previous
state. To ensure that "memorylessness", the Metropolis algorithm runs between two systems k of the generated
Markov chain with a number of Ns sweeps through the entire system, i.e., each bead is tried to be displaced in
average Ny times.

3The Markov chain system index k is similar to a time, but it is not clear how to relate k to a real time scale.
In general, Monte Carlo simulations can not yield information about time scales.

“Free diffusion involves that the polymers do not interact with each other.

5Since thermalisation would take a very long time, if only single beads would be replaced, also "kink moves"
have been allowed, at which the entire filament is bend around one bead.
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-15 -10 - 0 5 10 15

Figure 10.2: Initial placement of N straight filaments (black lines) in a periodic box with side length
Lpox = 20. The margins of the box are indicated by solid blue lines. The periodic
continuations of the original volume are indicated by blue shaded areas. The shown initial
state is this one of example network 1 of section 10.6.
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In this way a random crosslinked network has been generated which performs fluctuations in
thermal equilibrium. Any local quantity A(é,j), i.e. a quantity which characterizes A at bond ¢
of chain j, can then be averaged over the network

i Aling)

A = 10.12
A NNy (10.12)

10.5.3 Shear deformations

To simulate a rheology experiment with a twin plate shear cell, a shear deformation respect-
ing the periodic boundary conditions is enforced by demanding that corresponding points on
the left and right boundary of the simulation cell undergo equal displacement while the dis-
placements of the corresponding points on the upper and lower boundary of the cell must
agree vertically but differ horizontally by a distance I'L where I' is the shear angle. Shear
angles of I' = 0.16, 0.31, 0.47, 0.63 (in radian) have been imposed, corresponding to I' =
9.2°,17.8°, 26.9°, 36.1° (in degree).

10.5.4 Energy and bond length measurements

According to Eq. (10.12), the stretching and bending energies and bond lengths per bead at
a given Markov chain state k and at a given shear angle I', averaged over the entire network,
& x(D), &.x(T) and bg(T), are determined by summing up the results of Egs. (10.2) and (10.5)
over all Np chains of the network® and then dividing the result by NNp, see Figs. 10.4 and
10.8. The thermal averages of the stretching and bending energies are then obtained according
to Eq. (10.10) by summing up € x(I") and &, ,(I") over a large number Ny of Markov chain states
k and dividing by Ns. This yields (€, (I")), see Figs. 10.5 and 10.9. Note that after the shear
deformation has been enforced, one may only start the summation over the Markov chain states
k after some "thermalisation time", since measurements have to be performed at equilibrium
systems.

Similarly, the thermal averages have been calculated not as averages over all beads and chains, but
for each bead i on each chain j individually. One obtains (€1, (i, j; I')) which enables recognition
of spatially inhomogeneous distributions of bending and stretching energies, see Figs. 10.6 and
10.10.

10.6 Results

In this section, simulation results from two differently behaving random networks are presented.
The parameters of these two example networks are given in table 10.1. At both example networks,
the bond stretching modulus K is much higher than the bending rigidity « as it is the case for
semiflexible biopolymers like F-actin. The parameters of the two simulated example networks
are similar, but due to the different architecture of the networks, different behaviour is observed.

5The bar symbol " ~ " indicates averaging over all beads on all chains.
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Table 10.1: Parameters of the two simulated example networks.

Quantity Notation Example Network 1 Example Network 2
Bond stretching Modulus K 1000 2000
Bending rigidity K 30 40
Equilibrium bond length bo 1 1
Number of bonds on a polymer chain N 12 12
Number of polymer chains Ny, 100 60
Number of crosslinks Nx 150 120
Side length of simulation box Lyox 20 16
Temperature T 1 1
System sweeps between systems of Markov chain Nesw 10 10
Total number of simulated systems N tot 12000 16000
Program running time* 36h 37h

*: The simulation program has been run on a single PC at the Max Planck Institute of Colloids and Interfaces.
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10.6.1 Example network 1

A snapshot of the undeformed example network 1 is shown in Fig. 10.3. One can see that there
is an area with an increased density of crosslinks slightly left from the center of the simulation
volume, which has formed spontaneously” .

Figure 10.3: Snapshot of example network 1 after crosslinking and subsequent thermalisation at zero
shear angle. Crosslinks between filaments are indicated by red crosses.

Example network 1: Global average energies and bond lengths

The spatially averaged stretching energy € ('), bending energy &, x(I') and bond length by (T")
of the network are shown in Fig. 10.4. One can see that while the stretching energy and the
bond length seem to remain largely unchanged at strain angles I' > 0, the bending energy is
somewhat increased, especially at bonds which share in a crosslink. That the overall energies do

"It has been taken care that cross linking is carried out only after sufficient thermalisation time of the un-
crosslinked filaments of the initial state in Fig. 10.2 so that the distribution of uncrosslinked filaments was really
random.



10.6 Results 129

T | T l T [ T ] T ] T
0.6 = I=0 ' I=0.16 i1=0.31 :=0.47 : '=0.63
E:ﬁ“ B ; ' r 1 (a)
lew § : : : §
04— écrosslinked network N
| | | l | l | ] | ] |
-6000 : -3000 0 3000 6000 9000 12000
i Markov chain systemk :
T | T l T i T ] T
~ 06— ym | iy "H‘\‘ih,u‘-‘leM'ﬂ'h
= mwm \"“MIWH bkt gl hi | lyy iyl MNM FPESTRRTCTRN, | O A R
- \U [ M il hm 4 M !
|w§ wm,‘(u. m M,‘. "W"‘“‘W”I“WW* ”W’“ MW"I" MWWWNWM'
04 : : : m
I | I l I [ I ] I ] I
-6000 . -3000 0 3000 6000 9000 12000
: Markov chdin systemk :
1.02 T T
F |
0.98 | | | [ | l | I | I |
-6000 -3000 0 3000 6000 9000 12000

Markov chain system k

Figure 10.4: Example network 1: Spatially averaged stretching energy & x(I") (a), bending energy
& .x(I) (b) and bond length b, (T) (c). The initial state in Fig 10.2 corresponds to
the Markov chain system k& = —6000, crosslinking happens at £k = —4000. At k =
0, 3000, 6000, 9000 the shear angle of the system is changed to I" = 0.16,0.31,0.47,0.63,
respectively. In (b) the bending energy averaged over all chain bonds is indicated in blue
colour. The bending energy averaged over all chain bonds except for those which a part of
a crosslink is shown in black. The difference between these two indicates that under strain
the bending energy is more increased at the crosslinks than away from the crosslinks. Note
that each time just after changing the shear angle, the energies and the bond length de-
crease which indicates that the network reacts to the new strain situation by rearranging
its structure to find a new energy minimum.
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not change much with increased shear can also be seen in Fig. 10.5 which shows the statistical
averages of the globally averaged stretching energy (¢,(T)) and bending energy (&,(T"))8. The

0.55 ‘ L
| <€, (I)>

0.541 <€ (D)>
0.531 -

0.521 -

0.51F -

0.5

L | L | L | L | L | L |
04901 02 03 04 05 06

r

Figure 10.5: Example network 1: Global stretching energy (€5(I')) and bending energy (&,(I')) depen-
dence on shear angle I'. The stretching energy (&5(I')) increases only very little while the
bending energy (&, (I")) is increased by about 8 % at a large shear angle of T" = 0.63.

stretching energy (€(I")) increases only very little while the bending energy (é,(I")) is increased
moderately by about 8 % at a large strain angle of I' = 0.63. One can conclude that for all shear
angles the network is in the bending dominated regime.

Example network 1: Local energies

Fig. 10.6 shows the local distributions of stretching and bending energies. From comparing panels
(a) and (b) of Fig. 10.6 it is apparent that the network is in the bending dominated regime for
all four shear angles. Further it is clearly visible that the network changes its architecture under
deformation. Bundles of parallel horizontal filaments and filaments tilted by an angle of ~ T"
appear. While at I' = 0 the orientation of filaments with increased bending energy is completely
random, see Fig. 10.3, at I' > 0 preferably individual filaments of the newly-formed bundles
exhibit increased bending energy.

8Note that ((T")) and (&,(T")) is equal to 0.5 for uncrosslinked filaments at equilibrium due to equipartition.
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Figure 10.6: Local stretching energies (€5(7,j;I")) (a) and bending energies (€, (4,4;T")) (b) of example

network 1 under shear. Only the original volume is shown. The positions of the bonds
are no snapshots, but they show the average configuration at the respective shear angle I'.
This allows for identification of preferred filament orientations. The colors blue-silver-
yellow-red-brown indicate the average local energy from lowest energies to highest energies
within the network. While the stretching energy is hardly increased, the bending energy
of individual filaments is increased. Such filaments with increased bending energy are
frequently part of bundles which are formed in response to the shear deformation and
which have horizontal orientation or align with the shear angle T".
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10.6.2 Example network 2

An snapshot of the undeformed example network 2 is shown in Fig. 10.7. Note that slightly
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Figure 10.7: Snapshot of example network 2 after crosslinking and subsequent thermalisation at zero
shear angle.

down to the right from the center of the simulation box is an area where filament density and
cross link density is low.

Example network 2

Global average energies and bond lengths

The spatially averaged stretching energy € ('), bending energy &, x(I') and bond length by (")
of the network are shown in Fig. 10.8. One can see that the energies and the bond length increase
remarkably with increased shear. The bending energy is mainly increased around the crosslinks,
see Fig. 10.8(b). Fig. 10.9 shows the statistical averages of the global stretching (é(I")) and
bending energy (é,(I")). The stretching energy (é5(I')) does not increase very much at the shear
angles of I' = 0.16 and I' = 0.31, but it becomes very large for I' = 0.47 and I' = 0.63. The
bending energy increases for small shear angles faster than the stretching energy, but for large
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Figure 10.8: Example network 2: Spatially averaged stretching energy & x(I") (a), bending energy
é&.x(I') (b) and bond length bx(I') (c). The initial state in Fig 10.2 corresponds to
the Markov chain system & = —6000, crosslinking happens at £k = —4000. At k =
0, 4000, 8000, 12000 the shear angle of the system is changed to I' = 0.16,0.31,0.47,0.63,
respectively. In (b) the bending energy averaged over all chain bonds is indicated in blue
colour, while the bending energy averaged over all chain bonds except for those which
a part of a crosslink is shown in black. The difference between these two indicates that
under strain the bending energy is much more increased at the crosslinks than away from
the crosslinks. Note that each time just after changing the shear angle, the stretching
energy and the bond length decrease while the bending energy increases. This indicates
that the network reacts to the new strain situation by rearranging its structure in a way
that filaments are less stretched, but more bent which leads to a lower total energy. This
might be a sign of the emergence of floppy modes, see the discussion in section 10.7.
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Figure 10.9: Example network 2: Global stretching energy (&5(T")) and bending energy (€,(I')) depen-
dence on shear angle I'. Both the stretching and the bending energy increase very much
with growing strain. A crossover from a bending dominated to a stretching dominated
strain response happens between I' = 0.31 and I = 0.47.

shear angles it increases slower. Consequently there is a crossover from a bending dominated to
a stretching dominated strain response between I' = 0.31 and I = 0.47.

Example network 2: Local energies

Fig. 10.10 shows the local distributions of stretching and bending energies. One can see that
the network progressively changes its architecture with increasing shear strain. The formation
of four preferred filament orientations is visible. Remarkably, at high strain highly stretched
filaments tilted by an angle of ~ 45° appear.
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Figure 10.10: Local stretching energies (€s(¢, j;T')) (a) and bending energies (&, (7, j;T")) (b) of example
network 2 under shear. Formation of four preferred orientations of filaments is visible
under growing shear strain: (i) Horizontal filaments with low stretching energy and
partially high bending energy. Bundle formation appears not as distinct as in example
network 1. (ii) Filaments tilted by an angle of ~ I', some with high stretching and
bending energies. (iii) Filaments tilted by an angle of ~ 45° with increased stretching
energy. (iv) Filaments with an angle of ~ 135°, going from the upper left to the bottom
right corner. These filament orientations appear at a shear angle of I' = 0.31, but the

filaments bend at I' = 0.63.
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10.7 Summary and discussion

10.7.1 Summary of the Results

The response of semiflexible random networks to moderate and large shear strain has been sim-
ulated by Monte Carlo simulations. The behavior of two example networks has been presented.
These two example networks exhibit very different behavior in response to the imposed strain de-
formation. By rearranging its structure, example network 1 manages to exhibit only a moderate
increase in internal energy even at high strain angle. Stretching of bonds due to the deforma-
tion hardly happens, for all probed shear angles the energy increase is mainly due to bending
of filaments. Architectural constraints of example network 2 on the other hand do not allow
an efficient energy minimization. Both stretching and bending energies are strongly enhanced.
The strain response changes from a bending-dominated regime to a stretching-dominated regime
between I' = 0.31 and I' = 0.47. After each increase of the shear angle, the system rearranges
its architecture so that stretching is decreased and bending is increased.

10.7.2 Discussion and comparison to literature

The response of a random network to shear strain by increasing its bending energy seems to
arise from a rearrangement of the network architecture to a state at which individual filaments
carry load, while other filaments are less strained. This reminds to the concept of floppy modes
which have been suggested by Heussinger and Frey [93]. Floppy modes are localized low energy
excitations of the network which not only involve displacements of filaments, but also crosslink
deflections. A floppy mode is constructed by displacing a filament axially by dz and subsequently
displacing all crosslinks on that filament transversally in order to restore segment lengths on
the crossing fibers. As a result all segment lengths remain unchanged in first order in dz, see
Fig. 10.11. Stretching of filaments is avoided, instead filaments are bent which costs less energy.
Floppy modes could also be an explanation of strain stiffening. It is difficult, to infer from the
presented simulation results, if strain stiffening is exhibited by the two example networks. Strain
stiffening means that at high strain, the network exhibits a shear modulus which is higher than
the linear shear modulus G° which describes the network response at low strain. G° is given by

2(€ot (1))

0 _
G" = e

for small T, (10.13)
where (€0 (I")) is the sum of stretching and bending energy. The low strain behavior of the
networks has not been investigated with our simulations, since thermal fluctuations have been
too large to obtain reliable average values for the energies.

Onck et al. state that strain-stiffening happens due to non-affine network rearrangements. Non-
affine network structure rearrangements have clearly been observed in our simulations. Further,
Onck et al. found in their simulations percolations of stretched filaments that connect the top
and bottom of the cell along a ~ 45° see Fig. 10.12. Filaments tilted at an angle of ~ 45°
have been found with the simulations presented here, too, at example network 2. Moreover,
the transition of example network 2 from bending-dominated response to stretching-dominated
response agrees with similar observations by Onck et al. [88].
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Figure 10.11: Construction of a floppy mode by axial displacement ¢z of the primary fiber (drawn
horizontally) and subsequent transverse deflection § = —dzcot of the cross-links to
restore the segment lengths on the secondary fibers (dashed lines, possible to first order
in 0z). Initial cross-link positions are marked as black squares, final configurations as
green circles. (Graph taken from Heussinger and Frey, Physical Review Letters, 2006,
Ref. [93])

Figure 10.12: Network configuration at strain angle I' = 0.24 from a finite element simulation(?).
Percolations of stretched filaments appear that connect the top and the bottom of the
cell along a 45° direction. (Figure taken from Onck et al., Physical Review Letters, 2005,
Ref. [88]).

10.7.3 Perspectives

With the Monte Carlo simulations, the parameter space can in principle be systematically in-
vestigated. From this, phase diagrams can be obtained which separate the bending-dominated
from the stretching-dominated regime and the affine from the non-affine deformation regime, in
dependence of the shear angle I, the filament parameters K, x, by and the filament and crosslink
density. Further interesting quantities to investigate with the Monte Carlo simulation would be
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the stretching and bending forces at interfaces within the network. In contrast to purely mechan-
ical approaches, Monte Carlo simulations include thermal effects. This would allow to determine
the free energy instead of only the mechanical energy. An idea to obtain the free energy is to
include a Monte Carlo trial step at which not individual beads are displaced, but the shear angle
I of the entire network is changed. From the distribution of shear angles one could infer the free
energy. Furthermore, in reality networks could rupture. Rupturing of networks was not included
in the presented simulation approach, but could be included.

The Monte Carlo simulation approach suffers from long computing times. It takes long to
thermalise systems, i.e., to bring them to equilibrium. After thermalisation it takes again long
to calculate thermal averages. Also due to the problem with large computation times, the
simulated systems of the shown example networks have been chosen relatively small. Hence finite
size effects could be present which would have to be investigated systematically. The differences
in the behavior of the two example networks are mainly due to their random architecture. For
investigating average properties of random networks, it has to be averaged over a large number
of random networks with the same parameters®. This would be difficult, again because of the
long computation times.

Recently it has come to the author’s knowledge that another group is performing similar simu-
lations like these presented here [94].

9E.g., in the simulations of Onck et al. it has been averaged over ten realisations of random networks with
the same parameters to obtain stress-strain relations. The errors of these relations are still large, see Fig.1 in
Ref. [88].



A Appendix

A.1 Re-parameterization of memory integrals

The common notation of memory integrals involving the boundaries (—oo, t) can be re-parameterized
by the substitution 7 =t — t/, e.g.,

t 0 [e%e)
/ oy (= o)t = / 1 (P)o(t — 7)(—dr) = /0 (Pt —Dydr. (A1)

— o0 —00

A.2 Fourier transform

The Fourier transform of a time-dependent function z(t) is given by

Z(w) = /OO x(t) exp(—iwt)dt. (A.2)

—0o0

x(t) = — /00 Z(w) exp(iwt)dw. (A.3)

A.3 Fourier transform of the equation of motion

To obtain the Fourier transformed version, Eq. (3.6), of the equation of motion, Eq. (3.5), one
Fourier-analyzes kxz(t), , mZ(t) and Fr(t) according to the inverse Fourier transform, Eq. (A.3).
For the velocity memory term one has

- /000 n(Mv(t —1)dr = — _Z dr /_Z dw /_Z dw'y1 (w)D(W") exp(i(w — w")7) exp(i(w't))

= /_ dwiyr (w)o(w) exp(iwt). (A.4)

One obtains the inverse Fourier transform of the product 4;(w)v(w). The Fourier transformed
O(w) of the velocity v(t) = #(t) can be written as iwz(w), since we assume limy. z(t) = 0.
Accordingly, the Fourier transformed of the acceleration memory term is given by —w?(w)¥s (w)-
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A.4 Fourier series

When a time-dependent trajectory x(t) is observed over a finite time interval 0 < ¢ < Ty, x(t)
can be expanded in a Fourier series as

x(t):% S dexplivt), (A.5)

k=—o00

with discrete frequencies wy = 2wk /Ty, (k = 0,+1,42,...). The Fourier coefficient &, is given by

Ty = /OO x(t) exp(—iwgt)dt. (A.6)

—00
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