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Abstract

This thesis uses optical tweezers to investigate the mechanical properties of two closely
related RNA molecules. The aim is to better understand a class of messenger RNA
which contain so-called pseudoknot structures through examination of their mechanical
properties. In particular, the correlation of their mechanical strength to their frameshifting
interaction with translating ribosomes is investigated.

Pseudoknots are structures on messenger RNA (mRNA) that have been found in organisms
as diverse as bacteria and humans. In viruses such as SARS and Infectious Bronchitis
Virus they appear to play an important role in protein synthesis because they can
cause frameshifting of ribosomal translation on the piece of mRNA in which they occur.
Frameshifting allows the synthesis of two different types of protein product from the same
mRNA.

The thesis is part of a larger project examining both function and mechanical properties of
a range of pseudoknots; together these investigations may help show how RNA sequences
fold into pseudoknots and how the pseudoknots affect ribosomal function and thus
translation of messenger RNA into protein products.

The results indicate that pseudoknot-containing RNA sequences may dynamically take on
many different structural conformations, some of which are strong and brittle pseudoknots,
some weaker pseudoknots, and some not really pseudoknot-resembling at all. Instead the
RNA sequence may form hairpins or other complex but unstable structures. The likelihood
that a pseudoknot-containing mRNA sequence forms a strong pseudoknot does appear to
be correlated to its frameshifting efficiency.

v





Dansk opsummering

Denne specialeafhandling benytter en forsøgsopstilling med to optiske pincetter til at
undersøge de mekaniske egenskaber af to nært beslægtede RNA-molekyler. Målet er
at opnå en forbedret forståelse af en hel gruppe af messenger-RNA, der indeholder en
sekvens, som kan folde sig som en såkaldt pseudoknude. Undersøgelsen drejer sig i
særdeleshed om at studere, om der er overensstemmesle mellem den mekaniske styrke
af de undersøgte pseudoknuder og deres evne til at forårsage ændringer af læserammen af
translaterende ribosomer.

Pseudoknudesekvenser på messenger-RNA (mRNA) er observeret i alle mulige former
for organismer lige fra bakterier til mennesker. I virusser såsom SARS og bronchitis har
pseudoknuder øjensynlig en vigtig rolle at spille i proteinsyntese, idet de kan forårsage
skift af ribosomets læseramme på mRNA’et og dermed muliggør syntese af to forskellige
proteinprodukter fra samme mRNA.

Nærværende speciale er del af et større projekt, som undersøger en række pseudoknuders
mekaniske og biologiske funktioner og karakteristika. Tilsammen kan disse undersøgelser
være med til at vise, hvordan og hvornår pseudoknuder folder udfra en given RNA-
sekvens, og hvordan pseudoknuder påvirker ribosomfunktion og proteinproduktion i vira
og celler.

Resultaterne peger på, at RNA-sekvenser, som indeholder mulighed for at folde som
pseudoknuder, ikke altid gør det. I stedet tyder det på, at RNA-sekvenser, som de, der
er undersøgt her, dynamisk kan ændre struktur fra eet foldemønster til et andet. Nogle
gange opstår en stærk pseudoknude, andre gange måske en svagere pseudoknude eller
slet ingen pseudoknude afhængig af sekvens. Ofte ser det ud til at sekvensen folder som
en simpel hårnålestruktur eller anden relativt ustabil struktur. Det virker sandsynligt, at
jo mere tilbøjelig strukturen er til at antage en stærk pseudoknudestruktur, jo større er
chancen for at den skaber ændringer i den ribosomale læseramme.
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1 Introduction

Using a tightly focused laser beam it is possible to trap particles of micrometer dimension
and move them with precision of nanometers [1]. Parts of living cells or whole cells can be
captured and manipulated, as can artificial beads with functional proteins attached [2, 3].
Among numerous biological applications, optical trapping has made it possible to unzip
single DNA molecules and RNA hairpins, measure the step size of molecular motors,
and monitor diffusion rates of molecules inside living cells and single proteins within cell
membranes [4, 5, 6, 3].

In this work, messenger RNA (mRNA) pseudoknots are unfolded and refolded using a
setup with two steerable optical traps. The aim is to investigate the mechanical properties
of two structurally different pseudoknots and in the context of similar investigations made
by others to look for correlations between structure, mechanical strength, and frameshift
efficiency of the pseudoknots, as will be explained in detail below.

First of all, this chapter will introduce optical traps, messenger RNA and RNA pseudo-
knots, protein translation, programmed frameshifting and other general background for
the project. The questions that led to this thesis and the methods used to investigate them
will follow, and finally the structure of the remainder of the thesis report will be presented.

1.1 Pulling molecules with optical traps - historical context

Laser trapping of small particles was developed by Arthur Ashkin and colleagues at AT&T
Bell Laboratories in the 1970’s and 80’s; the history of the development is described by
Ashkin in his 1997 inagural article in PNAS upon his election to the US National Academy
of Sciences [7]. The group first reported trapping of silica beads of micrometer size by a
single laser in 1986 [8] and soon afterwards they and others started using this technique,
which they called optical tweezers or optical traps, for investigating biological systems,
starting with viruses and bacteria. The first bacteria to be trapped were killed by what
Ashkin called opticution - overheating due to the green laser being used - but in 1987 the
group was able to trap live E. coli using an infrared laser which heated the cells and their
environment much less [9].

Other groups began to use optical traps to investigate the forces and movements of
molecular motors in the following years. Examples of new areas of study were the protein
complexes that drive the rotation of flagellae propelling the movement of bacteria, the
myosin molecules that move on actin making muscle cells work, and the kinesin molecules
moving cell compartments along microtubuli (part of the cytosceleton). Some of these early
applications are surveyed in an easily accessible Nature overview of optical trapping and
its applications from 1992 by Stephen Block [2]. A recent and highly readable review of
optical trapping applications and methods by Thomas Perkins was published in Laser &
Photonics Reviews in 2009 [3]. It focuses especially on single molecule and nucleic acid
applications which are highly relevant in the context of this thesis.
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2 Introduction

In the early and mid-nineties, groups started investigating the strength and elasticity of
long chain-like molecules such as DNA, RNA and protein polymers using optical tweezers
and other new instruments, for instance atomic force microscopes, AFMs. The results of the
first experiments using optical tweezers to stretch DNA were published in 1996 by Smith
et al. [10], and theory of single- and double-stranded DNA stretching was developed in the
same period while additional DNA stretching experiments were carried out. An article by
Wang et al. from 1997 [11] contains careful description of the experimental procedure and
the theoretical fit to stretching data. Unzipping and melting of DNA due to stretching
was investigated in other studies, and in 2001 the unzipping of an RNA hairpin with
optical tweezers was first documented [4]. A review of many of these DNA/RNA force
investigations up to 2002 is found in [5]. The goal was often both to learn more about DNA
and RNA in mechanical terms and to learn how enzymes such as polymerases interact with
and modify them. Already in 1998, Wang et al. [6] was able to describe the movement of a
single RNA polymerase molecule on DNA. Measuring molecular motors moving on RNA
proved more difficult, and only in the last five years great advances have been made in
using the technique to investigate how ribosomes translate mRNA [12, 13, 14].

RNA pseudoknots are one type of RNA structure that has also been investigated using
optical trapping in recent years. Their folding energy landscapes are highly complex
with many different possible tertiary interactions influencing the stability of intermediate
states; see, e.g., [15]. Therefore the 3D structures that pseudoknots may fold into are more
numerous and difficult to predict than the structure of a hairpin [16]. Pulling a pseudoknot
open to a single strand of RNA is consequently less predictable, as it can occur in several
steps [17, 18, and others]. The main focus of this thesis will be to examine the unfolding
and refolding transitions for a two types of RNA pseudoknots. What an RNA pseudoknot
is and what role it plays in biology will be described in the next section. The aims and
results of other experiments using optical trapping to investigate RNA pseudoknots and
ribosomal action will be summarized also. How optical tweezers work will be described
in 2.

1.2 Biology of RNA pseudoknots

Pseudoknots are tertiary structures of RNA that when they occur in mRNA and are
preceded by a so-called slippery sequence of RNA nucleotides can induce minus one
nucleotide frameshifting of translating ribosomes. They are important for protein synthesis
since mRNA contain molecular copies of the information in the genes on DNA that are
used by ribosomes to assemble amino acid chains. Thus mRNA molecules ensure that
the correct sequences of amino acids are made into the protein products encoded by the
genes. Frameshifting alters how ribosomes translate the three-nucleotide codons of mRNA
to the amino acid chain of the protein and can therefore cause vital changes in the protein
product made from a particular gene. See cartoon of a ribosome encountering an mRNA
pseudoknot in Figure 1.1.

Occasionally ribosomal frameshifting happens by chance; frameshifting at higher rates is
called programmed frameshifting. Programmed frameshifting by pseudoknots has been
observed in viruses including retrovirusus such as HIV, in bacteria, e.g. E. coli, in yeast
and in mammalian mRNA [19]. In minus one frameshifting the ribosomal reading frame
is shifted one nucleotide backwards. Plus one frameshifting can also occur at pseudoknots
[20] and plus two frameshifting has been observed at other mRNA structures [19].

How exactly ribosomes translate mRNA and how minus one frameshifting occurs is
not well understood in detail, but some steps in the process have been established
[19]. Programmed minus one frameshifting is usually observed at the occurrence of a
pseudoknot when the pseudoknot is preceded by a slippery sequence and a spacer about
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FIGURE 1.1: Cartoon of mRNA pseudoknot interfering with ribosomal
translation (conceptual, not to scale). The ribosome is represented in
orange as a small and a large subunit. The pseudoknot contains two
stems and two loops. Frameshifting of the ribosomal reading frame by -1
nucleotide may be observed when a pseudoknot is preceded by a slippery
sequence of nucleotides. This corresponds to a shift from the dark green
reading frame to the light green reading frame in the figure. A slippery
sequence is a series of nucleotides X XXY YYZ, where X, Y and Z stand
for some or all of the ribonucleotide bases A, U, G or C. See text.

5-10 nucleotides long [21]. The basic steps involved in their interaction is explained by
Giedroc and Cornish in their 2009 Viral Research review [19] and may be summarized as
follows: The movement of the ribosome along the mRNA is interrupted by the pseudoknot,
which must open for translation to continue. This interruption occurs when the 5’ end of
the pseudoknot (stem1 and/or loop2) interferes with the front of the ribosome. Thus the
codon-reading A and P sites of the ribosome are still some distance (the 5-10 nucleotide
space) from the pseudoknot. If a slippery sequence occurs just where the A and P sites
are located when the ribosome is stalled, it may slide back by one nucleotide before the
pseudoknot is opened and translation continues, now in a new reading frame.

A slippery sequence is a series of nucleotides X XXY YYZ, where X can stand for any of
the ribonucleotide bases A, U, G or C, Y must stand for A or U, and Z must stand for A,
U, or C [22]. The letters X, Y and Z may stand for different nucleotides or they may be the
same. The sequence is believed to be slippery because transfer RNA’s bind best to the first
two nucleotides in each codon. Transfer RNA’s located in the A and P sites of the ribosome
bind the ribosome to the mRNA during translation. Therefore, if the last nucleotide of
the previous codon is the same as the two first nucleotides of the next codon, the transfer
RNA’s will bind the ribosome almost as well to the mRNA after a one nucleotide backward
shift the ribosome as they did in the original reading frame.

Though RNA pseudoknots are present in organisms from bacteria to mammals and
frameshifting mRNA pseudoknots are known to be vital to the survival of vira such as
HIV and Infectious Bronchitis Virus, pseudoknot structure and in particular differences in
frameshift efficiency due to pseudoknots of varying structure are not yet well understood
[23, 19]. Frameshift efficiency is the percentage of ribosomes that are frameshifted by
an encounter with a frameshift-inducing structure such as a slippery sequence and a
pseudoknot. The fact that not all ribosomes are frameshifted but only a certain percentage,
means that in principle two different vital proteins can be encoded by the same piece of
mRNA, reducing the amount of space that the genome needs to take up.

A pseudoknot is made up of stems of RNA basepairs with loops of unpaired bases in
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between. Stems and loops in naturally occurring pseudoknots vary widely in length
and base composition [24]. Though the sequence of bases can be readily determined and
possible pseudoknot formation can also be predicted, the 3D structure of the pseudoknot
and thus its overall stability are difficult to predict. Small variations in stem length
and base pair composition of artificial pseudoknots have been observed to result in
surprisingly large differences in both mechanical strength and frameshift efficiency [17].
The differences cannot be explained simply by calculating the free energy change of
unpairing the basepairs of the stems [15]; however, frameshift efficiency has been found
to correlate with the mechanical strength of the pseudoknots in some instances [17, 21]

Recently Tholstrup et al. [20] showed a third possible outcome from an encounter
between a ribosome and a pseudoknot: apart from assembling a frameshifted or non-
frameshifted protein product, the ribosome may also get stuck within the pseudoknot.
This ribosome blocking appeared to correlate with predicted pseudoknot strength. Thus
although stronger pseudoknots may more often cause frameshifting, they may also cause
ribosomes to stall if they become too strong, and the pseudoknots that appear to give rise
to most frameshifted protein products probably reflect a balance between these two effects.

A number of previous studies [17, 18, 25, 21] all use optical trapping to investigate how
the mechanical properties of pseudoknots may reflect the interaction between ribosome
and pseudoknot. In each, a series of artificial pseudoknots with systematically varied
structures are produced. The designed pseudoknot structures have some similarities to
naturally occurring ones, but are seldom wild type. The effect of the structural variation
on observables such as unfolding force, evidence of intermediate states, the Gibbs free
energy of unfolding and the molecule’s brittleness are investigated. These parameters will
be presented in more detail below.

Other optical trapping studies have examined ribosome-mRNA interaction. In 2007,
Uemura et al. [12] measured the force required to pull a ribosome away from mRNA
at the start of translation. They discovered that the bond was strongest during the first
part of protein synthesis and weakened in a subsequent step which might correspond to
the moment where the ribosome moves along the mRNA to read the next codon. The
following year Wen et al. [13] measured the translation of mRNA hairpin structures by
single ribosomes using optical trapping. They were able to detect distinct steps of hairpin
opening corresponding to one codon each with pauses between steps.

In 2011 the same group demonstrated variation in the rate with which the ribosome opened
an mRNA hairpin depending on the force with which the hairpin was pulled by the
optical traps and depending on the strength of the bonds in the hairpin (GC base pairs
are stronger than AU base pairs, so by substituting GC for AU, the strength can be varied
without changing the overall geometry much). The group saw evidence that ribosomes
open the hairpin through two mechanisms: 1) by creating a passive enzymatic bias for the
open conformation; and 2) by using mechanical force to pry the hairpin open in a step
that requires energy [14]. This matches the two mechanical models highlighted in [19]
of how frameshifting pseudoknots may open when encountered by a ribosome: that the
pseudoknot acts as a barrier to the ribosome, tension builds up as the ribosome “attempts”
to move during translocation, and the tension is released when the ribosome frameshifts
by minus one nucleotide. The build-up of tension would create force on the pseudoknot.

1.3 Thermodynamics and kinetics

As in previous studies of pseudoknots by optical trapping, in this work pseudoknots are
attached to artificial beads by linkers and the beads are held and moved by two optical
traps to coerce the pseudoknots to open and close. The basic layout of the single molecule
experiment carried out is shown in Figure 1.2. The forces on the beads and their positions in
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the traps are measured as one trap is moved, extending the molecule so that the pseudoknot
opens. The resulting signal is converted into a graph of force versus extension in which
sudden openings and closings of the pseudoknot can be clearly seen as ”rips” and ”zips”.

FIGURE 1.2: Experimental layout - not to scale. An RNA pseudoknot
is caught between two polystyrene beads held in optical traps. The
pseudoknot is attached to DNA strands so that it is flanked by DNA-RNA
hybrid handles. One handle is bound by a digoxigenin-antidigoxigenin
complex to a small polystyrene bead, the other is bound by biotin-
streptavidin bonds to a slightly larger bead. One trap is moved laterally
away from the other, pulling the pseudoknot open by shear force.

The observations that can be extracted directly from these measurements include the
unfolding force and length of unfolding, the number of steps that the unfolding occurs
in and thus possible observation of intermediate states or alternatively folded states. The
transition from the folded to the unfolded state may take place in a single clear step,
in several steps or gradually. The lengths of the unfolding rips can be measured and
compared to values calculated from theories of elasticity and molecular conformation,
using the expected lengths of the stems and loops that unfold. Observations of the
unfolding/folding pathway and the distributions of unfolding and refolding forces and
lengths were in [18] and [21] used as clues that folded states were observed which were not
the expected “native” pseudoknot and that in some cases the mRNA hopped between one
partially folded state and another partially folded state before fully unfolding or folding.

From the distribution of unfolding forces, kinetic parameters of the pseudoknot may be
extracted that help characterize these states, namely the transition rate and the distance
to the transition state, called x‡, which quantifies the brittleness of the molecule. These
parameters tell us about the energy landscape of the pseudoknot: how high and how steep
are the energy barriers between different conformations when, e.g., the extension of the
molecule or its thermal energy are varied.

Finally, the Gibbs free energy difference between the folded and unfolded state may be
determined. In pseudoknot unfoldings, the transition may not be reversible and some
energy will be dissipated as heat [17], but the Gibbs free energy change can still be
determined from the distribution of unfolding and refolding energies using either the
Crooks’ fluctuation theorem [26] or Jarzynski’s equality [27]. The energies are found
from the areas under the clear transitions that occur on the graph of force applied versus
molecular extension. The energy difference again can tell us about the size of the barrier
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that the ribosome must overcome to open the pseudoknot and continue translation. These
concepts will be explored in much more detail in Chapter 3.4 and Chapter 3.3.

1.4 Focus of investigation and hypotheses

As outlined in this chapter, optical tweezers have in this thesis been used to characterize
two RNA pseudoknots. The aim was to find the distributions of unfolding and refolding
forces, the structural brittleness and the Gibbs free energy of pseudoknot formation from
a single strand. Through these data the goal was to learn how the frameshifting and
stalling effect that these pseudoknots have on ribosomes may be correlated to the structure,
mechanical strength, and kinetic characteristics of the pseudoknots.

The main hypotheses are:

• That the pseudoknot will transition from closed to open state during elongation of
the molecular construct and back again from open to closed state during relaxation

• That these transitions can be used to quantify the mechanical force needed to open
the pseudoknot, the Gibbs free energy of the transition and the rate of opening of the
pseudoknot at zero force.

• That the transition from open to closed pseudoknot occurs either in one step
corresponding to complete dissociation or formation of the pseudoknot or in two
steps corresponding to the unfolding/refolding of first one stem, then the other.

• That the mechanical strength of the pseudoknots will be correlated to their frameshift
efficiency as suggested by other studies [17, 21].

1.5 Structure of the report

The coming chapters will describe the optical trapping and molecular transition theory
used in this work as well as the experimental methods and results. The results will
be discussed and finally conclusions will be drawn and suggestions for improvements
and further work presented. In Chapter 2, the principles behind optical trapping and
calibration are outlined. Chapter 3 provides other necessary theoretical background
including a description of the molecular transitions expected in the single molecule
experiments and explanation of the theory of polymer stretching, energy landscapes, and
kinetic and thermodynamic principles used later on. Chapter 4 covers the experimental
procedures in detail and also briefly covers the data processing routines. Chapter 5
presents the molecular transition data that was measured. Chapter 6 discusses some
initial observations made from the data and Chapter 7 presents further results from data
treatment, namely the calculations of transition energies and kinetic parameters. Chapter
8 discusses the overall picture shown by the data and Chapter 9, the conclusion, gathers all
the information in a final synthesis.



2 Optical trapping - theory and calibration

This chapter introduces optical trapping theory and optical trap calibration. It will also
describe the optical trapping setup used in this work and some of the particularities
encountered in working with the setup, in particular those encountered during calibration.

2.1 Optical trapping theory

An optical trap captures objects of micrometer scale such as cells or tiny manufactured
beads through a balance between the scattering and gradient forces exerted by a highly
focused laser beam. Essentially, variation in the electric field of the laser light causes a flux
of energy across the object which gives rise to force. Reflection from the object’s surface
creates a scattering force which pushes the object in the direction of the light’s propagation.
Refraction of the light creates a gradient force which pulls the object towards the light’s
focus.

A full analysis of the balancing of the gradient and scattering forces requires complicated
calculations using Maxwell’s equations which take into account the exact shape and size of
the object [1]. However, we can gain some understanding of the trapping from the optical
theory for objects much smaller or larger than the wavelength of the light (the Rayleigh
and Mie regimes respectively). We will look briefly at both explanations with inspiration
from the approach and figures in [1].

2.1.0.1 The Rayleigh regime

The Rayleigh regime applies to objects much smaller than the wavelength of light, such as
a sphere with a radius of 20 nm or less captured by an infrared laser with λ = 1064 nm.
The laser light induces a dipole in the object, d̄ = αĒ, with potential energy U = −d̄ · Ē.
A gradient in the intensity of the light will create a gradient in the electric field and thus in
the potential energy. This energy gradient creates a force which acts on the object:

F̄grad = −∇U = −∇(d̄Ē) = α∇E2

Since the square of the electric field is proportional to the intensity, F̄grad grows with the
gradient of the intensity of the field and points to the area of highest intensity. Thus if the
gradient is sharp the object is pulled towards the focus of the laser.

2.1.0.2 The Mie regime

The Mie regime applies to objects much larger than the wavelength of light - tens if
not hundreds of micrometers in diameter compared to a laser in the visible spectrum
(λ = 400 − 700 nm). Here, classical ray optics apply and a spherical object can be treated
as a lens that reflects and refracts light according to Snell’s law. The total momentum

7
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change of the light due to its interaction with the sphere is parallelled by an opposite
momentum change of the sphere towards the focus of the laser. To simplify the optical
analysis, the forces due to the momentum change arising from refraction and reflection are
shown separately in Figures 2.1 and 2.2 respectively.

Note that the force towards the focus is far stronger between the source of the light and the
focus than beyond the focus away from the light source. This is because the reflective force
always pushes the bead away from the light source while the refractive force always pulls
it towards the focus, as may be seen in Figures 2.1 and 2.2. If the bead strays too far from
the focus away from the light source, the scattering force from reflection dominates and the
bead is pushed away. This was seen practice in this thesis where polystyrene beads with
diameters of a few micrometers readily flew off through the sample chamber if displaced
just a little from the focus in the direction away from the light source.

FIGURE 2.1: Ray optics explanation of laser trapping: Refractive
(scattering) forces pull the bead towards the laser focus. Black arrows
emerging from the objective and encountering the bead indicate the path
of the laser light. Wider arrows indicate greater light intensity. At the
bottom of the images, the momentum changes of the ligth and the bead
are shown by vector addition. Black vectors represent light momentum;
their length reflects the relative light intensity and thus the magnitude of the
momentum change. Green vectors with black triangular heads represent
the opposing change of momentum of the bead. Left: The bead is below
the objective focus and scattering forces pull it up towards the focus, even
though the example rays shown here balance out to create only a rather
weak pull towards the focus. Right: The bead is above the focus and
scattering forces push it down towards the focus.
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FIGURE 2.2: Ray optics explanation of laser trapping: Reflective forces
push the bead away from the source of the light. Black arrows emerging
from the objective and encountering the bead indicate the path of the
laser light. Wider arrows indicate greater light intensity. At the bottom
of the images, the momentum changes of the ligth and the bead are
shown by vector addition. Black vectors represent light momentum; their
length reflects the relative light intensity and thus the magnitude of the
momentum change. Green vectors with black triangular heads represent
the opposing change of momentum of the bead.

2.2 Optical trap setup

Usually the setup for optical trapping is an inverted microscope with a built-in laser. The
laser light passes from the bottom of the microscope up through the objective and the
sample chamber and is collected above the condenser by a quadrant photo diode (QPD),
which is used to detect the position of the object in the trap. The specimen can be observed
through the objective with a camera (or through the microscope eye-piece if the laser is
off). Often the laser may be steered with some independence from the movement of the
objective and sometimes the beam is split to provide multiple traps.
In this thesis, a double trap prototype commercial instrument called a NanoTracker from
JPK Instruments was used for pulling experiments. The traps are made by a 1064 nm laser
split by a beamsplitter. Each laser trap can be controlled by a galvanic mirror. The layout of
the dual trap NanoTracker setup is shown in Figure 2.3. Some particularities of this system
will be described below in Chapter 4.4.2. The experimental routine employed to capture
beads and measure molecular transitions will be described in Chapter 4.4
The detection unit consists of four QPDs, two for each trap, whose centers are aligned
to optimally capture changes in light intensity and interference patterns of the trapping
laser beams. Each of the four quadrants in the QPDs generates a voltage proportional to
the amount of light impinging on it. When an object is caught in the laser trap it casts
an interference pattern onto the QPD which is symmetrical if the object is spherical and
the laser and QPD are properly aligned. From the interference pattern, the movement of
the bead in the x, y and z direction can be approximated by simple sums and differences
between the voltage outputs of the four diodes. However, "crosstalk" (contamination of the
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FIGURE 2.3: NanoTracker setup showing the system for detailed detection
of trap movement by photodiodes and the steering system for the traps
(right). Beads are placed in a chamber in the inverted microscope (left)
and viewed with the camera or through the eyepieces. Figure from [28].

signal for the movement in one direction or another) can occur and is seen, e.g., as a signal
for movement in the x-direction though movement should only occur in the y-direction.
Crosstalk may occur if the laser intensity profile is not completely symmetrical or if the
quadrants are not equally sensitive to light [29]. In the case of a dual laser trapping system,
it can also occur if laser light from one trap is detected by the QPDs for the other. The
latter appears from experience with the NanoTracker to be highly likely if the two traps are
operated close to each other.
There are two QPDs per trap for optimal measurement of both axial (z-direction) and lateral
(x-y-direction) displacement of the beads. This is necessary because the optimal angle for
detecting the laser beam as it exits the condenser is different for measuring axial and lateral
displacement [30].

2.3 Calibration

To translate the voltage output of the QPD into a measure of both the distance moved by
a spherical particle in the trap and of the force exerted on it, it is necessary to calibrate the
trap. The alternative would be to measure displacement directly and to calculate the force
exerted on the particle at each position theoretically, but this is in practice more or less
impossible. In the following, the calibration theory used in this work will be described.
The most important assumption underlying the calibration and subsequent extraction of
data for force on and movement of the particle is that the optical trap creates a harmonic
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potential equivalent to that of a Newtonian spring. Under this assumption, the force on the
particle due to the trap is:

Ftrap = −κxtrap (2.1)
where xtrap is the displacement of the particle from the trap center and κ is the stiffness of
the trap. This relationship is valid up to a certain distance from the trap center, the linear
regime, which is limited by the QPD and whose size depends additionally on the particle
diameter, the strength of the trap, and the direction in which movement is measured.
For the distances involved in the experiments in this work, the linear regime was rarely
exceeded. The linear relationship between force and distance close to the trap center was
originally found experimentally (in [31] and others cited in [32]) but is also predicted to
some extent by the theory of ray optics [33].
The conversion factors, α and β, that convert the QPD signal, XQPD, which is measured in
volts, into force and distance will be defined as follows:

Ftrap = −αXQPD (2.2)

xtrap = βXQPD (2.3)
so that κ = α

β . Note that the trap stiffness must be found for the particular direction in
which force and movement is to be measured. It is usually much stronger in the lateral
plane perpendicular to the laser than in the axial direction of laser propagation. Due to
polarization of the laser it is also somewhat asymmetric in the lateral plane. This is certainly
the case for the NanoTracker traps.

2.3.1 Stokes calibration of force

To find the conversion factor, α, between voltage output, XQPD, and force, a Stokes
calibration may be performed. Stokes’ law states that the force on a small spherical particle
being moved in a viscous media far from any surfaces is a constant given by:

Fdrag = −γv

where v is the velocity that the media is moved with and γ is the drag coefficient given by
γ = 6πηr, r is the diameter of the sphere, and η is the dynamical viscosity of the media.
“Far” from the surfaces in our case meant a distance of at least about 10 µm.
During the Stokes calibrations carried out in this thesis, the measurement chamber was
moved at constant velocity relative to the trap and the displacement of the bead from the
trap center was measured. The theoretical drag force was calculated on the assumption that
the viscosity of the media (η) was that of water at room temperature and that the radius of
the sphere was correctly given by the manufacturer. Assuming also that the voltage output
of the QPD mostly arises while the bead is in constant motion (constant v), the conversion
factor was calculated from:

〈Fdrag〈= −〈Ftrap〉 = −α〈XQPD〉 = −γv =⇒ α =
γv

〈XQPD〉
. (2.4)

Data for a Stokes calibration made with the NanoTracker is shown in Figure 2.4. The
sample chamber was moved back and forth a number of times with a piezoelectric stage
that could be controlled with high accuracy. The smoothed data was fitted to a double
Gaussian distribution (Figure 2.4(c)) and the average displacement, 〈XQPD〉, from the
central value was found. The calibration was performed for each set of beads at four
different speeds and since 〈XQPD〉 = γv

α , α was found from the slope of the plot of 〈XQPD〉
vs γv as shown in Figure 2.4(d).
Since the Stokes calibration only gives a value for the conversion from voltage to force,
another calibration is needed to convert voltage to distance. Two methods, namely
Brownian motion calibration and power spectrum calibration, will be explained in the
following sections.
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FIGURE 2.4: Stokes calibration: (a) raw data collected at 10 kHz during
a particular Stokes Calibration - the piezo here moves 95 µm at 50 µm/s
in each direction. (b) Data smoothed by a moving average window of
201 datapoints. (c) Data for bead 1 in (b) is fitted to a double Gaussian
distribution (the same is done for the data for bead 2, not shown). (d)
Fits to Equation (2.4) for each bead. The distance between the peaks of
the Gaussian fits to the position data is halved and used as the value of
〈XQPD〉 for the corresponding piezo speed.

2.3.2 Brownian motion calibration

The motion of the particle in the trap is constrained Brownian motion. Maintaining the
assumption of a harmonic potential, the particle will display a Gaussian distribution of
positions around the center of the trap. If the noise and drift of the trap is negligible, the
variance of the positions will be determined by [1]:

σ2
x = 〈x2〉 =

kBT

κx

where σ2
x is the variance of the position measurements, kB is Boltzmann’s constant and T

is the temperature in Kelvin.
This equality derives from the equipartition theorem,

1
2
m〈v2〉 =

1
2
kBT

because the average potential energy of the particle in the trap given by U = 1
2κx〈x

2〉 is
equal to the average kinetic energy, 1

2m〈v
2〉.
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Due to this relationship, measuring the width of the distribution of positions in volts as the
particle moves randomly in the trap makes it theoretically possible to find the relationship
between the spring constant κ and the conversion factor β between QPD signal and
distance. Since κ = α

β it is possible to find β from the distribution of position measurements
if α is known:

σ2
QPD =

〈x2〉
β2

=
kBT

κxβ2
⇐⇒ β =

kBT

ασ2
QPD

Unfortunately, any noise in the system will add to the motion of the particle beyond its
intrinsic thermal motion, so that the equipartition theorem no longer describes the full
distribution of the particle’s positions. This is the case for the NanoTracker, in which the
noise of the system adds significantly to the random motion of the particle and the width
of the distribution of particle positions is much too wide to be used for calibration. See
Figure 2.5 where the real position distribution for a bead in each trap is compared to that
which would be predicted just based on thermal motions using values of β found with
power spectrum calibration (next section, Chapter 2.3.3). For this experiment, the real
distribution of positions is three times as wide as expected for trap 1 and seven times as
wide as expected for trap 2. This means that the magnitude of the total noise experienced
by a molecule attached to both beads is on the order of the expected unfolding lenght of
the pseudoknots. The calculations made to quantify this level of noise are presented in
Appendix A.3.1.

−1 −0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Bead 1 y−signal

R
el

at
iv

e 
co

un
ts

QPD signal [V]

 

 

Y1 data
Gaussian fit to data
Predicted Gaussian

(a)

−1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

Bead 2 y−signal

R
el

at
iv

e 
C

ou
nt

s

QPD signal [V]

 

 

Y2 data
Gaussian fit to data
Predicted Gaussian

(b)

FIGURE 2.5: Histograms of bead positions for (a) Trap 1 (rbead ≈ 1µm)
and (b) Trap 2 (rbead ≈ 1.5µm) with Gaussian fits to position distribution
(full lines) and predicted Gaussian distribution based on values for β found
using power spectra (dashed lines) (see Chapter 2.3.3).

2.3.3 Power spectrum calibration

An alternative approach often used to calibrate for both force and distance is through the
plotting of a power spectrum of the motion of the particle in the trap. A power spectrum
is the square of the Fourier transform of a series of position measurements. It has a highly
characteristic shape for a particle trapped by a harmonic potential. Fitting to the power
spectrum ideally yields calibration factors for both force and distance as will be shown
below. However, in the case of the NanoTracker, noise in the most important frequency
window made it impossible to use the power spectrum to calibrate fully, and it was used
only to calibrate for distance. An ideal (simulated) power spectrum is shown in Figure
2.6 together with a power spectrum measured by the NanoTracker. Note that the axes are
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logarithmic and the noise peak at the center of the spectrum therefore delivers more than
10 times more signal than Brownian motion power spectrum itself.

The reason the noise is so problematic is that the power spectrum force calibration is
made using a quantity called the corner frequency, fc = κ

2πγ which is found by fitting
the theoretical power spectrum to the experimental one. The value of fc corresponds to
the frequency at the bend in the curve shown in Figure 2.6(a). Due to the noise in the
NanoTracker power spectrum at exactly these frequencies, the fit here is not accurate and
the value of fc cannot be determined precisely.

(a) (b)

FIGURE 2.6: Power spectra: (a) Theoretical power spectrum for Brownian
motion in an optical trap; (b) power spectrum measured by the
Nanotracker. Notice the high noise in NanoTracker power spectrum at
the frequencies just around fc. The theoretical power spectrum was
generated by an algorithm originally made by Line Skotte and Henrik
Flyvbjerg.

Numerous descriptions of the construction of the power spectrum and subsequent
interpretation exist in the literature (e.g. [34], [35], [36], [29]). Here I will mainly follow
the approach of Gittes and Schmidt [34], who explain very clearly how the discrete power
spectrum (based on numerical data) is calculated from the Fourier transform of a series
of measurements of bead positions in the trap over a period of time. As noted by
these authors, the Fourier transform of a data series contains exactly the same amount
of information as the original data, it just presents the information differently. The power
spectrum, on the other hand, is derived from the Fourier transform with loss of half of the
information but a significant gain in usefulnes. Essentially, Gittes and Schmidt explain,
the power spectrum can be seen as a measure of the intensity of the signal at a given
frequency. They go on to define the one-sided power spectrum - which exists only for
positive frequencies - for a discrete data series as is needed in practice. The one-sided
power spectral density for a signal that is continuous in time is simpler to define, as is
done in [37]:

Sx(f) = |x̃(f)|2 + |x̃(−f)|2 = 2 |x̃(f)|2

Note that Sx(f) is defined only for f ≥ 0 (which seems to make physical sense when we are
dealing with a time series of distance measurements) and the last equality holds only for
functions x(t) that are real. This is the power spectrum definition that is used for calibrating
optical traps in [34] as well as [35] and [36]. The two-sided power spectrum can be used as
well as long as the treatment is internally consistent.
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The theoretical expectation value of the one-sided power spectrum for an optical trap is
derived in Appendix A following [34] and [38]. It is:

Sx(f) =
kBT

γπ2 (f2
c + f2)

(2.5)

where fc = κ
2πγ as mentioned is the corner frequency whose value corresponds to the

frequency at the bend in the curve shown in Figure 2.6(a). The shape of the power
spectrum curve is sometimes referred to as a Lorentzian because it has the general form
f(x) = a/(b2 + x2).
The power spectrum for the distance XQPD measured in volts is related to the power
spectrum for the distance in meters x(t) by Sx(f) = β2 Sv(f). Thus least squares fitting
to a measured power spectrum yields both the calibration factor β from volts to distance
and, theoretically (though in not in practice for the NanoTracker data), the calibration factor
α from volts to force. The latter is found through the fitted value for fc, which reveals the
trap stiffness, κ = α/β.

2.3.4 Fitting to the power spectrum

As noted in above in Chapter 2.3.3, the corner frequency, fc, which is usually used for
calibration, could not be reliably found for the Nanotracker due to noise at about 1000
Hz, just about where fc was located. However, fitting the experimental power spectrum
measured by the Nanotracker to its theoretical expectation value still yielded a fairly
good estimate for the conversion factor β2 for converting voltage to distance (Equation
2.3). Three fitting methods were tested for this purpose and one was selected as the
one that most consistenly yielded a reasonable fit. This was a routine that performed an
unweighted fit of the low and high frequency portions of the experimental power spectrum
to the theoretical one. It was implemented in the programme IgorPro by Jesper Tholstrup,
as despite the efforts of this author neither Gnuplot nor Matlab could be coaxed into
performing this type of fit with any stability. The two other fitting methods investigated
by this author were:

• Weighted least squares fitting only to the region of high frequency, f � fc, where
Sx(f) ≈ kBT

γπ2f2 performed in Gnuplot.
• Weighted least squares fitting of the low and high frequency regions of the data to

the full equation for the power spectrum, excluding the noisiest regions from the fit,
also performed in Gnuplot.

The three methods yielded slightly different values for β, differing by up to about 30
%. Sample fits made to the same experimental power spectrum using the three different
methods are shown in Appendix A, Figure A.1 (a), (c) and (e). The accuracy of the
calibration factors yielded were tested as follows: Two beads were caught in the traps
and brought close enough to stick together by what appeared to be an inelastic polystyrene
connection (method suggested by Jesper Tholstrup). One trap was held immobile while
the other was moved away at constant speed. Since in this scenario the distance between
the beads is expected to be constant over time though the force is increasing linearly, a plot
of force versus tether extension should yield a vertical line if the traps have been correctly
calibrated. This is because change in tether extension (i.e., change in bead-bead distance) is
calculated as the distance between the traps minus the displacement of the beads from the
trap centers. If the bead-bead distance is constant while the traps are moved, the change of
displacement of the beads from the trap centres, which is calculated using the calibration
factors, should exactly cancel the known movement of the traps.
In fact it turned out that none of the calibration factors yielded a completely straight line in
the test plots, as may be seen in in Appendix A, Figures A.1 (b), (d) and (f). In general, the
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unweighted least squares fit to the data in the least noisy regions performed best, so this
was the routine which was subsequently used in data analysis. The ranges of data points
fitted were 50-150 Hz and 20-55 kHz.

It was a surprise to this author that the most accurate calibration method turned out to be
an unweighted least squares fit, since a weighted least squares fit seems most statistically
correct (as noted in the detailed treatment of power spectrum fitting in [29], the variance
of Sx(f) is simply equal to Sx(f) since the values of Sx(f) are exponentially distributed
about their expected value). The reason the unweighted fit is best may be as follows: The
weighted fitting method only works well if the data in the regions of relatively low noise
truly correspond to the ideal power spectrum for the optical trap. If we examine the fit to
the theoretical powerspectrum, Sv(f) = 1

β
kBT
γπ2f2 , in the region of high f in Figure A.1(a),

we see that the slope of the data in this log-log plot is actually steeper than the line fit to
it. Thus contrary to what might be expected, namely that due to aliasing Sx(f) would be
too large in the region of high frequency (see, e.g., [29], [34]), there is a loss of intensity at
high frequency. This intensity loss most likely derives from loss in the photo diodes due
to diffusion of electrons between the silicon wafers as explained in [39], even though the
NanoTracker photodiodes are made of a type (InGaAs) that should minimize this loss. The
loss of data in the high frequency region makes this area unreliable for fitting. It therefore
makes intuitive sense that the unweighted fit is better, as it effectively gives more weight
to the more reliable low frequency data than to the high frequency data.

2.3.5 Sources of calibration error

Apart from the uncertainty in fitting to the power spectrum (which is not an ideal
Lorentzian as it should be) or to the Gaussian position distributions for the Stokes
calibration (which are not ideal Gaussians), error in calibration arises from the values used
for:

• viscosity η
• temperature T
• bead radius r

which all influence the force calibration more than the distance calibration, since error in
α is directly proportional to error in ν and r while error in β is proportional to the square
root of the error in ν, r, and T .

Bead radius differs significantly from experiment to experiment. Apart from difficulty
fitting to the power spectrum, this is probably the most significant source of error. The
manufacturer provides the mean value and for the smaller beads also a measure of the
standard deviation. The larger beads varied very much. Though visual evaluation was
used to limit variation in size of the larger beads used for experiments, variation on the
order of about 5 % of the larger beads’ radii could probably not be avoided. See examples
of bead variation in Figure 2.7.

As noted, the calibration will also contain some systematic error from approximating the
dynamical viscosity, which depends on temperature as well as on exact media composition.
The variation due to the uncertainty in temperature itself is not large, but the uncertainty
in the viscosity due to temperature variation is noticeable - η is about 10 % lower for water
at 25 ◦C than at 20 ◦C. The temperature at the focus of the optical trap will be higher than
laboratory temperature; how much depends on the intensity of the laser at the trap, which
is not easy to measure. In [40] the temperature difference between laboratory and optical
trap is measured to about 8 ◦C/W around silica beads held in water by a 1064 nm laser.
Using a nominal laser power of about 1 W per trap during experiments, we do not expect
that the power delivered at the traps in the sample chamber after loss in the optical path
will be much more than 100 mW. Thus the heating is not expected to exceed 1 ◦C above
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FIGURE 2.7: Size variation of beads. The two large beads at top left of
image should nominally both have a radius of 1.5 µm. The two smaller
beads have 1 µm radii. The beads are stuck on the glass surface at the
bottom of the sample chamber; photograph taken from below.

laboratory temperature. The viscosity of the buffer used in experiments was measured by
Jesper Tholstrup and found to be very similar to that of water. The value used is therefore
the viscosity determined for water at 25 ◦C, easily found in literature as η = 0.89 (e.g. [41]).





3 Theoretical background - molecular
transitions

This chapter will introduce the molecular transition investigated in greater detail along
with a brief theory of polymer stretching and some kinetics and thermodynamics relevant
for single molecule experiments.

3.1 Pseudoknot opening - the molecular transition investigated

As described in the introduction, this thesis investigates the opening and closing of an RNA
pseudoknot as it is pulled and relaxed by optical traps. The basic experimental layout was
shown already in Figure 1.2: a molecular construct containing the RNA pseudoknot is
attached to polystyrene beads which are held and manipulated by two laser traps. A full
description of the experimental conditions will follow in Methods and Materials, Chapter
4, but to give the theory presented in this chapter some context, the expected transition is
shown in Figure 3.1

In short, the transition envisioned is that a molecular construct including a folded RNA
pseudoknot structure is pulled so that the pseudoknot opens up into a single strand of
RNA. The construct may then be pulled even further before being relaxed so that the single
strand may refold into the pseudoknot.

Using the optical trap, the force on the beads holding the molecule and the change in
extension of the molecule are continously measured. From these measurements, curves
of force versus extension may be drawn for each pulling cycle. A theoretical curve of force
versus extension is shown in Figure 3.2. Note the abrupt changes (rips and zips) on the
force-extension curve, which are expected when the pseudoknot structure unfolds into the
single strand at A or refolds from the single strand at C. As will be explained below, the
single stranded RNA is expected to be much more flexible than the folded pseudoknot
structure, and the force-extension curve therefore rises more steeply from point D to A,
where the psuedoknot is assumed to be folded, than from point C to B, where a long section
of the molecular construct is expected to occur as single stranded RNA.

3.2 Polymer stretching theory

Several models have been developed to describe the stretching of molecular polymers such
as DNA and RNA. One of the most commonly used is the Worm Like Chain (WLC) model
[42], which describes the stretching of DNA by envisioning it as a continually flexible cord
(like an electric cord or a rope, the molecule can according to the model be rearranged
more or less flexibly depending on how stiff it is, but it cannot be lengthened elastically).
This model considers only entropic changes in the molecule as it is stretched but ignores
enthalpic changes.

19
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FIGURE 3.1: Cycle of pseudoknot unfolding/refolding expected for the
pseudoknot-containing RNA strand as the beads are moved apart and
together again (open circle sections on either side of the pseudoknot
strands are meant to show the bead attachments). At A, the beads are
fairly close together and the pseudoknot is folded. At B, the pseudoknot
has opened up into the single strand and the beads are able to move
much further apart. Subsequently the molecular construct is relaxed back
down to the conformation at C before the pseudoknot structure is formed
again and the structure passes into conformation D. From conformation
D the beads may again be moved apart, elongating the molecule back to
conformation A and the cycle can be repeated.

The WLC is characterized by the persistence length, Lp, of the polymer, which is a measure
of how “bendy” it is with respect to thermal fluctuations (a telephone cord is much more
flexible than the electrical cord for a fridge when both are kept at the same temperature,
for instance). The model predicts the extension, x, of the polymer as a fraction of its total
contour length, Lc, when a given force, F , is applied to it. The model equation is:

F =
(
kBT

Lp

)[
1

4(1− x/Lc)2
− 1

4
+

x

Lc

]
. (3.1)

Essentially, the WLC accounts for the decrease in entropy as an initially completely
randomly arranged polymer is straightened out by force allowing less and less random
polymer bending and curving. It agrees well with experimental stretching of double
stranded DNA up to a force of about 10 pN according to [17]. An expanded version of the
WLC model called the Extensible Worm Like Model or EWLC adds a parameter, the elastic
modulus, K0, to account for the intrinsic ability of the polymer to stretch. This change is
enthalpic rather than entropic; it has to do with the conformation of the chemical bonds
of the polymer and releases or absorbs heat (when you stretch a rubber band it actually
feels a little cooler!). The EWLC was originally applied to measurements of the stretching
of double stranded DNA by Wang et al. [11]. It is an implicit equation, which reads as
follows:

F =
(
kBT

Lp

)[
1

4(1− x/Lc + F/K0)2
− 1

4
+

x

Lc
− F

K0

]
. (3.2)

Lp has been found experimentally to vary with ionic buffer strength from about 40–50 nm
for double stranded DNA while K0 lay around 1.0–1.3 nN with no clear trend in value
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FIGURE 3.2: Expected curve of force versus extension for the simple cycle
of molecular transitions described in Figure 3.1. The letters correspond
to the molecular conformations shown in that figure. The pseudoknot is
closed during the extension from D to A and open during the relaxation
from B to C. The transition from A to B is called a “rip” and the transition
from C to D is called a “zip”.

dependending on buffer [11]. Both the EWLC and the WLC model assumes Lc >> Lp. It
must be kept in mind that the EWLC does not necessarily hold in the case of the molecular
constructs investigated in this thesis, since they have Lc ∼ Lp rather than Lc >> Lp.
The EWLC predicts the stretching of double stranded DNA well up to about 30 pN [43, 44].
Above 30 pN the curve starts to deflect away from the EWLC (its curvature is reversed) and
at about 60 pN the stretching curve of force versus extension plateaus due to force-induced
melting of the double strand [45]. To predict the exact shape of the force-extension curve
above 30 pN it is therefore necessary to take into account the twisting and melting of the
DNA under tension as described by [44].
The WLC has been used to estimate the stretching of the molecular constructs used in
optical tweezer investigations of RNA hairpins [46, 4], while in investigations of RNA
pseudoknots both the WLC [25] and EWLC [17] have been used. These investigations
either treat the stretching of the DNA-RNA hybrid handle as negligible and ignore it [4, 17]
or they simply treat the the single strand of RNA and double stranded RNA-DNA hybrid
as separate entities with each their own Lp [25, 46, 47] and add their contributions to get
the total curve.
Figure 3.3 shows the theoretical EWLC force-extension curve calculated for the expected
stretch of the folded and unfolded PK 11/6 pseudoknot structure. In the figure, the
predicted curve is plotted together with a measured force-extension curve which displays
a transition between a longer and a shorter conformation. The predicted curves are plotted
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with two different values of Lp for the double stranded (RNA-DNA hybrid) part of the
construct, since Lp = 10 nm is the value used in other RNA studies [46, 47] while Lp = 43
nm is a value found for double stranded DNA in [11]. It is difficult to tell which value
is better based on the curves shown here or on other curves examined - perhaps a value
in between the two extremes would fit the data best. Note that the experimental force-
extension curve has an arbitrary zero point for extension as the inital separation of the
beads was not known. The predicted curve has been offset from zero by minus 85 nm to
match the experimental curve.

In the EWLC prediction, the value used for K0 is 1 nN and the persistence length Lp
for single stranded RNA is set to 1 nm as in [17]. The precise method used to make the
predicted EWLC curve will be described in Chapter 4.5.1.
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FIGURE 3.3: EWLC prediction of force versus extension for the PK 11/6
pseudoknot constructs investigated in this thesis. Shorter traces (black):
closed pseudoknot. Longer traces (gray): open pseudoknot. The fully
drawn traces use Lp = 43 nm for the DNA-RNA hybrid handles which is
the persistence length calculated for double stranded DNA in Wang et al.
[11]. The dashed traces use Lp = 10 nm as in Collin et al. [46]. Note
that the predicted curve has been offset from zero by minus 85 nm to
match the experimental curve. The initial separation of the beads in the
experimental setting is not known and the extension scale therefore has
an arbitrary zero.

3.3 Kinetics

From the distribution of forces at which the pseudoknot opens and closes, information may
be extracted about the rate of opening at different forces, k(F ). The rate of opening at zero
force, k0, is especially of interest. Finding these rates is not easy when the transition is as
complicated as the one involving a pseudoknot, since several intermediate states and thus
several rates of reaction are most likely involved. Nonetheless, if some simplifications are
accepted, several models exist for finding k(F ) from the distribution of unfolding forces.
The simplest is based on an expression called Bell’s formula as cited in, e.g., [48]:

k(t) = k0e
F (t)x‡
kBT . (3.3)
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Here x‡ is a quantity called the distance to the transition state, which is a “distance” in the
energy landscape of the pseudoknot. Fx‡ is the energy required for the molecule to reach
the transition state. Bell’s formula is thus very similar to the Arrhenius equation,

k(t) = k0e
∆E

kBT . (3.4)

The idea of an energy landscape which contains a distance to a transition state is easiest to
understand by looking at a conceptual illustration. See Figure 3.4, which is inspired by an
illustration found in [49]. In Figure 3.4 (a), an energy landscape surface U0(x) at zero force
varies along an arbitrary reaction coordinate and the distance to the transition state is a
distance along this virtual coordinate between the closed state and the transition state. The
apparent energy of activation, ∆G‡, quantifies the energy difference between the closed
and transition states at zero force along the reaction coordinate. It is not equivalent to the
actual energy of activation at zero force, ∆Gtransition, unless the molecular energy levels
attained during the zero force transition actually correspond to the energy levels along the
reaction coordinate shown.

In Figure 3.4 (b), the effect of adding force to the molecular system is shown. Here
the reaction coordinate is the pulling coordinate in a pulling experiment and thus may
be imagined as corresponding to an actual physical molecular extension. The more the
construct is pulled, the more force is applied to the system and the more energy is added to
it. This can be visualized as a tilting of the energy landscape that alters the relative energy
of different conformational states and lowers the transition barriers between some states.

An example of a naturally occurring reaction where the transition from one molecular state
to another would as in a pulling experiment be directly correlated to molecular extension
is the unzipping or unwinding of an RNA hairpin by a ribosome. In such reactions, the
basepairs have been observed to be opened one at a time from the end of the helix [13].
Here, ∆G‡ might truly correspond roughly to ∆Gtransition and x‡ to a change in the end-to-
end extension of the molecule casued by the ribosome.

Bell’s formula for molecular unfolding kinetics is based on the following assumptions:

1. That the reaction is a first order two-state transition so that the survival probability
of the molecule is an exponential function of time.

2. That the quantity x‡ is constant with increasing force.

Using Bell’s formula we can derive an expression for k0 and x‡ in terms of the probability
that the molecule has not yet unfolded. Following [50], we assume that the reaction of the
pseudoknot opening and closing is a simple two-step reaction with probability of being in
the closed state Pc and probability of being in the open state Po = 1− Pc where

Pc(t) ≈ Nc(t)/Ntot

and Nc(t)/Ntot is the fraction of molecules in the closed state at time t. Then the change
over time in the probability of being in the closed state is governed by the differential
equation:

dPc(t)
dt

= −kf(t)Pc(t) + kr(t)(1− Pc(t)), (3.5)

where kf(t) and kr(t) are the rates of the forward (opening) and reverse (closing) reactions.

Assuming that very few closing transitions take place compared to opening transitions, we
simplify the expression to

dPc(t)
dt

= −kf(t)Pc(t), (3.6)
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(a) (b)

FIGURE 3.4: Energy landscapes. (a) Generic energy landscape described
by the surface U0(x) for a two-state system with an open and a closed
conformation separted by an energy barrier. The energy barrier is
characterized by x‡, the distance from one state to the transition state
along the (arbitrary) reaction coordinate, and by ∆G‡, the energy of
activation along the reaction coordinate. (b) The transition curve U0(x)
is tilted by κ(x− rt)2/2 due to the application of force from the optical trap.
The energy needed for the transition is reduced and the rate of transition,
k(F ), is increased. During a pulling experiment, the reaction coordinate
being varied is the molecular extension (or actually the distance between
the traps). In this direction the tilt is exactly κ(x − rt)2/2. On the actual
energy landscape path along which the transition takes place, the effect of
the force may be different.

which is first order decay of the number of molecules in the closed state over time.

Following the approach in [51], we then insert Bell’s expression for kf(F ):

dPc(t)
dt

= −k0 e
F (t)x‡

kBT Pc(t).

We substitute in F = rt where F is the force applied to the system by pulling the molecule
and r is the pulling velocity. Then we integrate by parts and rearrange and finally get:

r lnPc = −k0kBT

x‡

(
e

F (t)x‡
kBT − 1

)
. (3.7)

Thus from the empirical probability distribution of the pseudoknot opening at a given
force, we can plot r lnP against F (the forces at which molecular transitions are observed)
and fit to Equation (3.7) to find k0 and x‡. This way of finding these kinetic parameters will
later in this thesis be called the rlnP method.

The rlnP method allows us to check how well the model fits the data by using the
parameters to go back to the probability distribution of unfolding forces (or the distribution
of any other type of transition forces), p(F ), as is demonstrated by [48]. We find p(F )
remembering that Po(F ) tells us the probability that the pseudoknot has opened at force F
or below:

Po(F ) =
∫ F

0

p(F )dF
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and Po(F ) = 1− Pc(F ), so

p(F ) =
d

dF
(1− Pc(F )) = − d

dF
Pc(F ).

Thus p(F ), the expected distribution of unfolding forces, is found by differentiating the
expression for Pc(F ) found in 3.7 [48]:

p(F ) =
k0kBT

r
exp

[
kBTFx

‡ − k0

r x‡

(
e

F (t)x‡
kBT − 1

)]
. (3.8)

3.3.1 The Dudko-Hummer-Szabo kinetics approach

Although the rlnP kinetic approach presented above is useful, neither of the assumptions
made in Bell’s formula (Equation (3.3)) to derive it are likely to be true in the experiments
undertaken here or in similar single molecule experiments. In the last few years, several
theoreticists have attempted to take this into account in their work. Specifically, in [49] and
[52], the authors Olga Dudko, Gerard Hummer and Attila Szabo attempt to address the
violation of the second assumption: As the force increases, the whole “energy landscape”
of the pseudoknot (including x‡) changes. They therefore explicitly describe a theoretical
free energy surface U(x) along the pulling coordinate x:

U(x) = U0(x) + κ(x− rt)2/2

where U0(x) is the free energy surface at zero fore and κ(x − rt)2/2 is the potential due to
the pull from the optical trap. As before, κ is trap stiffness and r is pulling speed. They use
two different simple geometric formulas for U0(x), one that is “cusp” shaped, i.e. parabolic
with a sharp drop-off at the transition state, and one that is cubic with a soft hill at the
transition state. They then use Kramer’s theory for particle escape over an energy barrier
to find the rate of transition, k(F ).

The inverse of the transition rate, τ(F ) = 1/k(F ), which can be thought of as the average
lifetime of the closed construct at a given force, is according to this formalism found as [52]:

τ(F ) = τ0

(
1− νFx‡

∆G‡

)1−1/ν

e−k!BT∆G‡[1−(1−νFx‡/∆G‡)] (3.9)

In this equation two new parameters have been introduced, namely ∆G‡, the “apparent
energy of activation” that was discussed above in connection to Figure 3.4, and ν, a
parameter describing the assumed shape of the energy landscape. As the authors describe,
using fixed values of ν, Equation (3.9) can be fitted from experimental values for τ(F )
found from histograms of unfolding forces from single molecule pulling experiments. This
will be attempted in Chapter 5.

The shape parameter ν elegantly defines whether the assumed underlying energy
landscape is cusp shaped (ν = 1/2) or cubic (ν = 2/3) [49]. Figure 3.5 illustrates the
energy landscape shapes assumed by Dudko, Hummer, and Szabo (this figure is inspired
by [48] as well as [49]). From the figure it is clear that the kinetic theories treated here still
assume a two-state transition. It is also clear that the cusp-shaped and cubic-shaped energy
landscapes depend on the first order reaction approximation made in Equation (3.6): there
is no returning from the open state once the energy barrier has been passed.
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(a) (b)

FIGURE 3.5: Energy landscape visualizations. (a) Cusp shaped two-state
transition curve U0(x), corresponding to ν = 1/2 in equation 3.9. (b) Cubic
two-state transition curve U0(x), corresponding to ν = 2/3 in equation 3.9.

3.4 Nonequilibrium thermodynamics

When molecular transitions are induced by a rapidly changing force as in the single
molecule force spectroscopy used here, the system is not in equilibrium and classical
thermodynamics cannot be used to find the transition energy. In the last fifteen years,
however, new thermodynamic theories have been developed that are able to derive
information from nanoscale nonequilibrium experiments. Below the theories used in this
work are described.

3.4.1 Free Energy, the Jarzynski Equality and the Crooks Fluctuation Theorem

When the unfolding of a molecular construct takes place as an irreversible reaction, heat is
dissipated and the work performed on the system by the surroundings during unfolding
is not all transferred to internal energy in the construct. Therefore the work used in an
irreversible reaction cannot be directly used to estimate the Gibbs free energy difference,
∆G, between the unfolded and folded construct. However, using the Crooks Fluctuation
Theorem or the Jarzynski Equality, which describe how work energy and Gibbs free energy
are related in a reaction taking place away from equilibrium, ∆G can be found.

The relation first discovered that may be used to find ∆G for a non-equilibrium transition
is the Jarzynski Equality (JE) [27]:

〈e−kBTW 〉 = ekBT∆G, (3.10)

where W in the average on the left hand side is the work measured for either the forward
or the reverse transition. It assumes that the transition being measured (whether forward
or reverse) begins in equilibrium. Though formulated two years before the Crooks
Fluctuation Theorem, it is actually a consequence derived from it. In fact when Crooks
first derived his fluctuation theorem (though not in its final form), he was out to prove the
Jarzynski equality [53].

The Crooks Fluctuation Theorem (CFT) states [26]:

P (WF)
P (−WR)

= e(W−∆G)/kBT , (3.11)
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whereW is an amount of work done on the construct, P (WF) is the probability distribution
of the work exerted by the system on the construct during the forward transition, P (−WR)
is the probability distribution of the work absorbed by the system during the reverse
transition, and ∆G is the reversible change in the Gibbs free energy of the construct. Note
that in (3.11), ∆F in the original formulation [26] has been replaced by ∆G, as is also the
way the theorem is presented in the work of Collin et al. [46].
As shown by both Crooks [26] and Jarzynski [54], all one needs to do to derive the
Jarzynski Equality, Equation (3.10), from the Crooks Fluctuation Theorem, Equation (3.11),
is to multiply both sides by P (−WR)e−W/kBT and integrate for all transition work values
remembering that ∆G is independent of the individual transitions and their associated
work (variables as above):

P (WF)e−W/kBT = P (−WR)e∆G/kBT (3.12)∫ ∞
−∞

P (WF)e−W/kBTdWF =
∫ ∞
−∞

P (−WR)e∆G/kBTdWR (3.13)

〈e−W/kBT 〉 = e∆G/kBT

∫ ∞
−∞

P (−WR)dWR (3.14)

= e∆G/kBT . (3.15)

The derivation of the Crooks Fluctuation Theorem will not be repeated here, nor will the
original derivation of the Jarzynski Equality. For the derivation of the CFT, the reader is
referred to [53] which is detailed and more intuitive than the proof in [26] (the CFT appears
in the first line of equation 10 in [53]. This author first noticed this derivation through [55]).

3.4.2 Using the Jarzynski Equality and the Crooks Fluctuation Theorem

The Jarzynski equality has the advantage that it requires data only for transitions in one
direction. The disadvantage, which is quite substantial, is that since it uses an average
of exponential functions, it is disproportionately influenced by the smallest work values
measured. Very large numbers of measurements are required to give good statistics and
make up for this skewing. The further the process is from equilibrium, the more data are
required. In practice, Jarzynski noted, it would probably be very hard to obtain enough
data if the heat dissipation is more than about kBT [27]. Others have calculated that if the
dissipation is more than about 9kBT , about 8000 experimental repetitions are needed (!)
[47]. However, a better estimate appears possible to obtain if the Jarzynski equality is used
on both unfolding and refolding work distributions and the two are averaged, as is done
in [46].
The Crooks Fluctuation Theorem, on the other hand, is easy to employ even with relatively
limited data sets. The theorem implies immediately from Equation (3.11) that at the point
where P (WF) = P (−WR), we have W = ∆G. Thus even though the reaction is taking
place under non-equilibrium conditions and is irreversible, ∆G for the reversible transition
can be found from the intersection of the distributions of work used in the unfolding and
refolding transitions. This is illustrated in Figure 3.6. The further the reaction is from
equilibrium, the more heat is dissipated and the less P (WF) and P (−WR) overlap. This
makes it more difficult to find their intersection, but using a Bennett’s acceptance ratio [56],
which describes how the distribution of states must be between two energy levels that obey
detailed balance, it can still be done [46, 57].
Note that the CFT applies under the following assumptions:

• The state in which the system begins the unfolding transition is the same as the one
in which it ends the refolding transition, and vice versa, that the state in which the
unfolding transition ends is the one in which the refolding transition begins.



28 Theoretical background - molecular transitions

FIGURE 3.6: The Crooks Fluctuation Theorem states that the Gibbs
free energy, ∆G, of an irreversible transition is equal to the work value
where the forward and reverse transition work distributions overlap. If the
transition were reversible, P (WF) and P (−WR) would overlap and both
center on ∆G. Note that the work distributions are here approximated by
Gaussian distributions. They are not truly Gaussian, but resemble them
[58].

• The transition, though overall irreversible, is microscopically reversible, i.e., at any
given moment, if the velocity were reversed, the system would be just as likely to
move in the reverse direction as it was to move in the forward direction with original
velocity.

The latter condition means that at any given moment we cannot tell whether we’re looking
at the forward or the reverse reaction. This is true even though overall, when looking at
many irreversible forward and backward reactions, we can tell that there is hysteresis in the
system, i.e., that the forward and backward reactions on average require/return different
amounts of energy.

3.4.3 Work distributions and handles

To employ the Crooks Fluctuation Theorem (CFT) and the Jarzynski equality in practice,
we must determine the work distributions. The work is found as the force applied to the
construct times the distance moved by the system. Formally the distance moved should
be measured as the distance between the traps, i.e., r t where r is the pulling rate and t
is the time since the beginning of the pull. Thus the work is the area under the curve of
force vs r t [58]. However, more often in literature the area under the curve of force versus
molecular extension is used [46, 47, 58]. When the data is smoothed, the error introduced
by this approximation becomes negligible [58].
The work for the transition measured from each force-extension curve includes several
contributions that do not relate to the change in Gibbs free energy, ∆GPK, during the
chemical transition from closed to open pseudoknot. Following the lettering in Figures
3.2, the contributions during the cycle are:

• Curve through D to A: The handles and the closed pseudoknot are stretched
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• A to B: Rip. The pseudoknot opens, the handles relax, the closed pseudoknot is re-
laxed to zero extension and the open pseudoknot is stretched from the extension of
the closed pseudoknot at A to its own equilibrium extension at B

• Curve rising above B: The handles and the open pseudoknot are stretched

• Curve descending through B to C: The handles and the open pseudoknot are relaxed

• C to D: Zip. The pseudoknot closes, the handles stretch, the open pseudoknot is re-
laxed to zero extension and the closed pseudoknot is stretched from zero extension
to its equilibrium extension at D

• Curve descending below D: the handles and the closed pseudoknot are relaxed

Collectively the contributions from stretching the handles and the pseudoknot will be
called Wstretch. These must be subtracted from ∆G for the full transition found using the
CFT or the JE to yield ∆GPK. This is done by calculating the theoretical value of Wstretch

using the EWLC as will be described in Chapter 4.5.1. The assumption is that the EWLC
describes force versus extension of the stretching of the construct well. Implcitly this entails
that the stretching and relaxing of the handles and the pseudoknot are reversible on the
time scales of our experiments [4, 46, 47].

3.4.4 Measuring work distributions - two methods of finding ∆GPK

For the CFT, the work must formally be measured for transitions which all start and end
in the same states. For the Jarzynski Equality they must formally all start in equilibrium.
However, since we are interested only in ∆GPK and will subtract Wstretch from ∆G for the
full transition to find it, we can ignore the part ofWstretch that is the same for all transitions.
Therefore for finding the work distributions for both the CFT and the Jarzynski equality
we can find the integral of the force-extension curves for all pulls between a starting force
corresponding to the lowest opening force observed and an ending force corresponding to
the highest force observed. This is what is done by Liphardt et al. [4] in their 2001 paper
experimentally validating the Jarzynski equality and by Collin et al. [46] in their 2005
paper experimentally verifying the Crooks fluctuation theorem (the methods that these
papers use are explained in more detail than in the original articles by Tinoco et al. in a
2006 Quarterly Reviews of Biophysics article [47]). Both groups measure the opening and
closing of an RNA hairpin and Collin et al. also investigate another more complex RNA
structure; these experiments are thus possible to relate to the ones undertaken here.

The approach of [4] and [46] is theoretically stringent but highly vulnerable to error arising
from the estimation of Wstretch from the EWLC when the difference between the lowest
and highest opening and closing forces is large and Wstretch therefore also becomes large.
This may be problematic since as noted above the EWLC assumes Lc >> Lp, which is not
the case here. Therefore, in this work two different variant approaches are applied which
reduce this error but introduce extra assumptions.

The first approach is closely related to the approach applied by Liphardt et al. and Collin et
al. [4, 46]. The modification made in this thesis is that rather than integrating between the
same forces for all pulls, I integrate only between the refold force and unfold force recorded
in each pull (points D and B in Figure 3.7). Thus the states of the construct at point D for all
pulls and at point B for all pulls are treated as though they is the same no matter at what
force they occurs (in other words, the state at point B is not considered equivalent to the
state at point D, but differences in state between points D occurring at different forces in
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different pulls are ignored, and likewise for the different points B found in different pulls).
Despite this difference between the approach here and the one used in the literature, this
approach will be called the "Collin approach" in the remainder of this thesis.

The second approach, which will be called the "simple approach", estimates the work
required during the opening transition as the area only beneath the rip of the force
extension curve. See Figure 3.7. The work required during the closing transition is
similarly found from the work beneath the zip of the force extension curve. This approach
extends the approximation made above by treating the transition as though the state at the
beginning of the opening rip (point A in Figure 3.7) and at the end of the closing zip (D)
is the same even though it occurs at different forces and extensions. Similarly, the state at
B and C in Figure 3.7 is treated as though it is the same. Thus any stretching or relaxing
of the construct between D and A and between B and C is ignored. The advantage is that
the contribution Wstretch to the work energy is much smaller in this approach. As Wstretch

is difficult to estimate correctly due to the uncertainty of the EWLC prediction, this simple
approach may therefore be more reliable.

FIGURE 3.7: In the "Simple" approah to finding the work distributions, WF

for each pull is found as the area beneath the force extension curve’s rip
from A to B while WR is found as the area beneath the zip from C to D. In
contrast, with the Collin approach, the area beneath the curve from D to A
to B is found for the forward reaction and the area beneath the curve from
B to C to D is found for the reverse reaction.

The second approach is the one used in the supplementary material in Hansen et al.
[17, 43]. The approach used in Green et al. [25] is not clear. This is the only other source
found where an attempt is made to calculate the Gibbs free energy of the transition between
the open and the closed pseudoknot.

How the contributions to Wstretch is calculated using each method will be described briefly
below.
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3.4.5 Calculating the work to stretch handles and pseudoknots

For the Collin approach, Wstretch is the same for the forward transition measured from D
to B in Figure 3.7 and the reverse transition from B to D. It is equal to the work required
to stretch (or in some cases gained by relaxing) the handles from D to B, the work gained
by relaxing the closed pseudoknot from D to zero and the work spent stretching the open
pseudoknot from zero to B.

Since in the Collin approach the work is calculated between different forces FD and FB for
each pull, Wstretch is also calculated for each of these sets of FD and FB . These values were
averaged for subtraction from ∆G to give ∆GPK.

In the simple approach illustrated in Figure 3.7, Wstretch is different for the forward (rip)
transition and the reverse (zip) transition. For the work exerted during the rip,WstretchRip is
the work gained by relaxing the handles from A to B, the work gained by relaxing the closed
pseudoknot from A to zero extension and the work used to stretch the open pseudoknot
from zero to B. During the zip, WstretchZip is the work spent stretching the handles from C
to D, the work spent stretching the closed pseudoknot from zero to D, and the work gained
by relaxing the open pseudoknot from C to zero.

An average Wstretch for the simple approach is calculated from WstretchRip and WstretchZip

weighted by the numbers of rips and zips included in the analysis. The numbers of rips
and zips is not necessarily the same, since this approach requires only a clear, one-step
opening or closing of the pseudoknot, not that both are observed in the same pull, which
may be the case as will be seen in Results, Chapter 5. The average Wstretch is subtracted
from ∆G to give ∆GPK

3.5 Summary of molecular transition theory

This chapter has presented the main characteristics of the molecular transitions generally
expected in single molecule pulling experiments. It has shown the theory behind the kinetic
equations used to find parameters such as the distance to transition state, x‡, and the rate
of reaction at zero force, k0. It has also shown newer kinetic theories developed by Dudko,
Hummer, and Szabo [52] that may be able to provide more information on the underlying
energy landscape of the molecular transitions. Finally we have seen how the Crooks
Fluctuation Theorem and the Jarzynski Equality may be used to extract information on the
Gibbs free energy (∆G)of a molecular transition even if the transition occurs irreversibly
with heat dissipation. We have also examined in detail how to find the distributions of
work energy needed to make the calculation of ∆G in practice.

It is now time to look at the detailed experimental routines used in this thesis before
presentation of the results of the experiments.
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This section will present the experimental setup and protocols used during the thesis
work including the the molecular constructs, biochemical assays, optical tweezer setup,
calibration routines, error sources, and the data processing routines.

4.1 The pseudoknots - structure and frameshift efficiencies

Two pseudoknots whose structures are related to a wild-type frameshifting pseudoknot
found in Infectious Bronchitis Virus (IBV) are studied in this project. They are are named
PK 11/6 for a pseudoknot with eleven basepairs in Stem1 and six in Stem2 and PK 6/11
for a pseudoknot with six basepairs in Stem1 and eleven in Stem2. Figure 4.1 shows the
expected structures of PK 11/6 and PK 6/11 together with one of the pseudoknots treated
by Hansen et al. [17], PK401, which like PK 11/6 has stem lengths of eleven and six base
pairs for Stem1 and Stem2 respectively. The wild-type IBV pseudoknot also has eleven
basepairs in Stem1. In previous studies, artificial pseudoknots with Stem1 length shorter
than eleven basepairs have proved much less efficient at provoking frameshifting than the
wild-type, whereas a longer Stem1 still worked equally well [59].

It is important to note here that our study, Hansen et al. [17] and Green et al. [25] all
rely on theoretical programs to predict how variations in base composition will change
the basic structure of the pseudoknot, i.e. which stems and loops will form. In Hansen et
al., pknotsRG [61] is used, and this was also the program used during the design of this
experiment to predict the structures of PK 11/6 and PK 6/11 as seen in Figure 4.1. Newer
program options include DotKnot [63] and HotKnots [64]. All three of these programs also
predict the Gibbs free energy of formation of the pseudoknot from the free single strand
based on the base pairings expected, but not on tertiary interactions. The crucial point to
note is that whereas the program pknotsRG only displays a single predicted structure, the
one it finds optimal, DotKnot and HotKnots present a number of different conformations
with slightly different energies of formation for a single input sequence of RNA bases. For
the PK 11/6 and PK 6/11 sequences, some of these outputs are pseudoknots with entirely
different stem or loop lengths than those expected from the pknotsRG output. Others
are not psuedoknots at all and others again strongly resemble the pknotsRG output, with
variation only in the hairpins formed within the loops or on the single stranded parts of
the handles. A number of alternative possible structures are shown in Chapter 6, Figures
6.1 and 6.2, where they will be discussed further.

The upshot of the uncertainty in the structural prediction is that the loops and stems
being opened in a pseudoknot experiment might be shorter than expected or that the
structure might not be a pseudoknot at all. Since several possible structures are predicted
which have similar energies of formation it is possible that several different molecular
conformations are randomly encountered during experiments. Chen et al. consider this
possibility explicitly in two different papers as they discuss evidence for misfoldings
occurring during their experiments on human telomerase RNA pseudoknots [18, 21]. A
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FIGURE 4.1: Sequence and predicted structure of a) PK 11/6, b) PK 6/11
and c) PK401. PK 11/6 and PK 6/11 are investigated here. PK 11/6
causes some frameshifting while PK 6/11 does not [20, 60]. PK401,
investigated by Hansen et al. [17] is similar structurally to PK 11/6 but
frameshifts more effectively. Predicted structures found with pknotsRG
[61] and rendereded by PseudoViewer 3.0 [62]. Pseudoknot stems
in yellow. Hairpins (blue) are not expected to significantly influence
pseudoknot strength. PK401 is shown without downstream single strand
handle.

similar scenario is discussed by Li et al. [65], who examined the folding and unfolding of a
HIV transactivation response region RNA hairpin with a bulge.

Assuming that the structures shown in Figure 4.1 are correct, PK 6/11 is more or less a
reversal of PK 11/6: Stem1 has become Stem2 and vice versa, while Loop1 has become
Loop2 and except for a one-nucleotide insertion Loop2 has become Loop1. The insertion
of an extra nucleotide is made to keep the amino acid sequence produced by the mRNA
more uniform so that the frameshift products can be more accurately compared [66]. This
addition is countered by the deletion of a nucleotide in the portion of the mRNA that
follows the pseudoknot so that the remainder of the cistron being translated will be the
same for both pseudoknots. The sequences and corresponding amino acids are shown in
Figure 4.2.

FIGURE 4.2: Pseudoknot nucleotide sequences and corresponding amino
acids (rendered by Jesper Tholstrup)
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TABLE 4.1: Comparison of pseudoknots. PK 11/6 and PK 6/11 are the
pseudoknots investigated in this work. PK 10/6 was investigated by Jesper
Tholstrup in parallel to this work [67]. PK 401 was investigated by Thomas
Hansen [69]. The characteristics of the wild-type IBV pseudoknot are
included for extra perspective. The numbers of basepairs and nucleotides
in stems and loops are predictions based on the sequence of bases in the
RNA single strand. ∆Gtransition is a prediction of the free energy needed to
form the basepairs of the expected structure from the single strand.

PK 11/6 PK 6/11 PK 10/6 PK 401 Wild-typea

Stem1 basepairs 11 6 10 11 11
Stem2 basepairs 6 11 6 6 6
Loop1 nucleotides 6 33 6 2 2
Loop2 nucleotides 32 6 32 32 32
Predicted ∆Gtransition (kCal/mol)b -43.1 -45.9 -41.6 -39.4 -37
Frameshift efficiency (1D gel)c 10 % ∼ 0 8 % 14 % 30 %
Stall efficiencyd 2.3 1.0 1.5 ∼ 1.1 Unknown
Stall percentagee ∼ 60 ∼ 0 % ∼ 30 ∼ 10 % Unknown
a Information on wild-type pseudoknot structure found in [59].
b Found using pknotsRG [61] except for the wild-type, whose ∆G was found using

DotKnot [63]. Loop2 sequence assumed the same as in PK 11/6 and PK 401.
c Frameshift efficiency is the percentage of frameshifted mRNA protein product out of all

protein product. Does not count protein products from stalled ribosomes as frameshift
products [60]. For PK 11/6, PK 6/11, and PK 10/6 measured by Jesper Tholstrup and
Michael Sørensen [60]. Percentage for PK 401 from [17] and for wild-type from [68].

d Stall efficiency is the ratio of total frameshifted protein products (including products
from stalled ribosomes) to the amount of frameshifted protein products from non-stalled
ribosomes. For PK 11/6, PK 6/11, and PK 10/6 numbers provided by Jesper Tholstrup
and Michael Sørensen [60]. For PK 401, estimated from Figure 3B in [20].

e For PK 11/6, PK 6/11, and PK 10/6 numbers provided by Jesper Tholstrup and Michael
Sørensen [60]. For PK 401, estimated from Figure 3B in [20].

Apparently, the loop lengths are not as important as the stem lengths in determining how
well the IBV-variant pseudoknots frameshift. The only requirement is that Loop2 must be
long enough to span Stem1 [59]. The length of loop2 in PK 11/6 and PK401 is the same
length, 32 nucleotides, as in the wild-type pseudoknot, while in the wild-type, loop 1 is
only two nucleotides long [59].

The frameshift efficiencies of the pseudoknots described here were measured by Jesper
Tholstrup and Michael Sørensen. With a conventional assay for measuring frameshift
efficiency, which uses one-dimensional SDS-PAGE gel analysis, they found that the
percentage of protein product that was frameshifted was about 10 % for PK 11/6
whereas for PK 6/11 the amount of frameshifting was negligible, meaning that it was
indistinguishable from the spontaneous frameshift rate at only 0.1 % [60]. With novel usage
of a two-dimensional SDS-PAGE gel to investigate frameshift efficiency, they additionally
found that a little more than half of the ribosomes that were frameshifted by PK 11/6
actually got stuck ("stalled") within the pseudoknot [20, 60]. For PK 6/11 there was no
detectable stalling of ribosomes [60]. A gel analysis performed by Michael Sørensen to
investigate the stalling of PK 6/11 is shown (and explained) in Appendix B.

For comparison with the pseudoknots investigated in this thesis, an extremely closely
related pseudoknot called PK 10/6, which was investigated by Jesper Tholstrup in parallel
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to the work done in this thesis, had 8 % frameshift efficiency and displayed about 30 %
stalling of frameshifted ribosomes [60]. PK401 gave rise to about 14 % frameshifted protein
product (investigated with one-dimensional gel analysis) [17] and only a small proportion
permanently stalled ribosomes, about 10 % [20]. PK401 is the one of the three pseudoknots
shown in Figure 4.1 that most closely resembles a naturally occurring -1 frameshifting
pseudoknot: its stem1 is much longer than stem2 and it has a very short loop1. The
wild-type IBV pseudoknot originally investigated 20 years ago by Brierley et al. [68]
has different stem nucleotides from PK401 but the two are otherwise structurally similar.
This wild-type pseudoknot displayed 30 % frameshifting according to one-dimensional gel
analysis [68]. The expected structural characteristics and measured frameshift data for all
five pseudoknots are summarized in table 4.1.

4.2 The molecular constructs

For the pseudoknot pulling experiments, short strands of mRNA are attached to DNA
handles so that RNA and DNA form hybrid double stranded handles with a short section
of single-strand RNA in between. The RNA single strand region includes the pseudoknot
sequence and very short sections on either side including on the upstream (5’) end the
slippery sequence and spacer region before the pseudoknot. The RNA flanking the single
strand region is hybridized to DNA single strands. One of the DNA strands is attached to
a digoxigenin group, the other to biotin. For the experiments the biotin-labelled end of the
RNA-DNA construct is allowed to bind to a streptavidin-coated polystyrene bead while
the other end binds to a smaller anti-digoxigenin coated bead. This is illustrated in Figure
4.3.

Both biotin-streptavidin and digoxigenin-antidigoxigenin complexes are commonly used
in single molecule experiments to tether DNA to surfaces. Biotin-streptavidin interactions
create a very strong non-covalent bonds, while digoxigenin-antidigoxigenin are connected
by a weaker non-covalent antibody bond. When molecular constructs break mid-pull,
it is assumed that it is the digoxigenin binding that is broken [43]. This is because it
is by far the weakest link in the chain. Like the biotin-streptavidin bond, the covalent
bonds of the single stranded RNA and DNA nucleotide backbones are far stronger than
the digoxigenin-antidigoxigenin bond. The non-covalent base pairings joining the single
stranded RNA to the DNA handles are not individually strong (as seen in RNA and DNA
hairpin unzipping experiments, e.g. [4], they are easily unzipped if pulled in the direction
normal to the double strand). When exposed to shear stress rather than normal stress,
however, they only start melting at a force of about 65 pN, where their force-extension
curve starts exhibiting a characteristic sawtooth pattern [45]. This sawtooth pattern was
observed twice at about 65-80 pN during the experiments performed for this thesis (data
not shown). This underscores the unlikelihood that the construct would break in any other
location than at the digoxigenin-antidigoxigenin handle attachment.

While the upstream handle attached to the 5’ end of the RNA may be connected by more
than one biotin-streptavidin bindings to bead, the downstream handle attached to the 3’
end of the RNA is always attached to the styrofoam bead by only one digoxigenin bond.
The reason is how the handles are produced: They are made using PCR, polymerase chain
reaction, which produces huge numbers of copies of a specified DNA sequence using only
short complementary primers from which the reaction starts. The primers must correspond
to the upstream (5’) section of the sequence, so any marker attached before PCR must
be attached to the 5’ end so it does not interfere with the lengthening process. Thus
when handles are produced, each downstream (5’) handle already has a digoxigenin group
attached to its primer, whereas biotin is added enzymatically to the upstream (3’) handle
after PCR [69].
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FIGURE 4.3: Conceptual image of molecular construct and attachments
to beads. Not to scale. Polystyrene beads 3 µm in diameter coated with
streptavidin are bound to biotin on the DNA-RNA upstream handle, while
beads 2 µm in diameter coated with anti-digoxigenin antibodies are bind
to a digoxigenin group on the downstream handle.

4.3 Biochemical methods

For this thesis, the author participated in synthesizing the downstream DNA handles and
the mRNA pseudoknot strand, annealing handles to RNA, and preparing RNA-handle
constructs with beads for pulling. The biochemical protocols are described in detail in
Appendix C. All protocols were suggested by and carried out with the guidance of Jesper
Tholstrup, who also synthesized the plasmids, upstream handles, and DNA oligos used
for downstream handle synthesis, which were used in the processes described below.
The basis for the molecular construct is the pseudoknot-containing RNA strand. It is made
from a DNA template by in vitro transcription by RNA polymerase. Even when kept
frozen at −20 , RNA is not as durable as DNA, so the constructs need to be made every
few months.
Downstream handles for the construct were prepared from DNA oligos which had
digoxigenin attached to the 5’ end of the strand that would become the handle strand.
The oligos had been generated by PCR by Jesper Tholstrup. They were extracted with
phenol and digested with λ-exonuclease which breaks down DNA strands from the 5’ end
(digoxigenin protected the handle strand, allowing the exonuclease only to remove the
opposite single strand, thus leaving a single stranded handle). After digestion, the handles
were washed to remove the exonuclease, carefully extracted with phenol again, washed
with salt, measured and frozen for later attachment to RNA constructs.
The RNA portion of the molecular construct was transcribed from linear DNA templates,
which were made by PCR amplification of plasmid DNA. Plasmid DNA is explained in



38 Materials and Methods

Appendix C; the plasmid DNA used here had been synthesized and purified by Jesper
Tholstrup and encoded the RNA-pseudoknot sequence plus handles, slippery sequence
and spacer. The DNA templates were transcribed to make RNA using T7 RNA polymerase,
a polymerase originally found in T7 phages. The process requires great care, since RNA is
easily destroyed by omnipresent RNA-ase enzymes. To counteract this, RNA-ase inhibitor,
RNA-sin, is added to the reaction mixture. Nonetheless, this is the reason that the RNA
constructs do not last indefinitely.
After the RNA strands were produced, they were annealed to the DNA handles by heating.
The process was not always succesful as the relative amounts of RNA solution and the two
types of handle solutions had to be appropriately adjusted. Careful checking of the partial
products and final outcome of the process using an agarose gel was necessary. See Figure
4.4 for a succesful example. Once the handles had been attached, the constructs were ready
to be annealed to polystyrene beads for the pulling experiments.

FIGURE 4.4: Checking for synthesis of full construct with two handles on
an agarose gel. This example was from the synthesis of PK 11/6. The
smallest molecules run the furthest down the gel. The marker, Ethidium
Bromide, binds best to double stranded DNA and RNA, so the single
stranded RNA with no handles bound to it does not show up clearly.
Samples from left to right: RNA only, RNA + upstream handle with biotin,
RNA + downstream handle with digoxigenin, marker, and RNA with both
handles

4.3.1 Preparing samples for pulling experiments

For pulling experiments, RNA-handle constructs were mixed at high concentration with
one type of beads (streptavidin coated) and allowed to bind for some time. Then the
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mixture was diluted before the second type of beads (different diameter, antidigoxigenin
coated) was added, so that there would be high likelihood that RNA constructs had bound
to the streptavidin coated beads but not to the antidigoxigenin coated beads before being
added to the sample chamber. A detailed guiding protocol is given in Appendix C.

The relative amounts of beads and construct were adjusted over the course of experimen-
tation to give optimal likelihood of catching beads and observing single molecule binding
events. The amount of RNA construct and the time for construct binding to streptavidin
beads was adjusted to make it more likely that one and only one molecular tether would
form between beads. The amount of beads was adjusted so that one of each kind could con-
veniently be caught while the remaining beads in solution were not so numerous that they
would interfere with the experiment by diffusing into the traps. In particular, there had
to be enough anti-digoxigenin coated beads to allow the experimenter to catch one with a
optical trap before they attached permanently to the glass surface of the sample chamber.

The buffer used during pulling experiments was called buffer R. It contained 10 mM Tris-
HCl pH 7.5, 250 mM NaCl and 10 mM MgCl2. Tris-HCl keeps the buffer at the correct pH
and is commonly used for biochemical solutions with nucleic acids. The amounts of other
salts are also important for how the nucleic acids fold. In particular, Mg 2+ ions, which like
K+ and Na+ are present under physiological conditions, shield the negative charges on the
nucleic acid backbone, creating more favorable conditions for double stranded nucleic acid
conformations. Therefore RNA pseudoknots and hairpins are expected to be significantly
stronger in the presence of Mg 2+. This has been experimentally confirmed, e.g. by
Liphardt et al. [4].

4.4 Pulling experiments

As described in Chapter 2.2, a double optical trap setup was used for the pulling
experiments. During the experiments, one trap was moved while the other was held steady.
As also described in Chapter 2, photodiodes measured the displacement of the beads from
the centres of the optical traps. Stokes calibration and power spectrum analysis of the
unattached beads were subsequently used to translate volt output from the photodiodes
into force and distance.

The molecular extension was calculated from the distance between the traps minus the
displacement of the bead centers from the trap centers. It is important to note that the
absolute distance between the traps was not known. Zero was set at the point at which the
beads started moving. The trap-trap distance measurement was then updated as a function
of time and the velocity of the moving trap, while the displacements of the beads from the
trap centers were calculated from the photodiode outputs. Since the absolute separation
of the beads could not be measured accurately, the absolute molecular extension is not
known.

The movement of the traps, the objectives, the mechanical stage and the piezo that allows
fine control of stage position were all controlled from the software that accompanies the
NanoTracker. The traps can be moved in the x, y, and z direction with x-y the sample plane
and z the vertical direction through the microscope, i.e., the direction of the laser through
the objective and sample to the condenser.

4.4.1 Sample chamber and trapping routine

Sample chambers were made from glass slide object covers and double adhesive tape. They
were sealed by silicone wax so that the sample solution did not evaporate because of the
laser heat during trapping. Silicone wax is also used to attach the larger glass slide to
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the sample holder. Images of a chamber are shown in Figure 4.5. The objectives used
for viewing the sample and focusing the laser were water immersion objectives. To avoid
evaporation of immersion liquid due to the heat of the trapping lasers, special immersion
oil was used with a refractive index very close to that of water (nr ≈ 1). A droplet was
placed on either side of the sample chamber near its center before the chamber was placed
inside the NanoTracker.

FIGURE 4.5: Sample chamber stuck to sample holder flanked by boxes
of objective slides used for chamber construction. The inset shows
the sample chamber itself. It is made from two glass objective covers
separated from each other by small pieces of double adhesive tape and
sealed along the other edges by silicone wax. Silicone wax is also dotted
near the ends of the larger glass slide to allow it to stick to the sample
holder.

Before experimentation, the objectives had to be adjusted in height using the NanoTracker
software to allow trapping at correct sample level and to give a focused camera image. For
further experiments, note that the focusing routine requires great care to avoid crashing the
upper objective into the sample. The lower objective may need to be lifted slightly using
the lever for changing objectives so that it attains the correct height.

Once the objectives were focused, beads were located and trapped, and calibration was
carried out. The beads were then approached to each other so that a molecular tether
might form between them. The traps with the beads could be placed near each other using
the computer mouse to move the Nanotracker trap symbols on the camera image. Fine
approaching was subsequently done in 20 nm increments until the voltage signal increased
nonlinearly during small (∼ 40 nm) reseparations of the beads, showing that a molecular
tether was caught (a linear increase in the voltage indicated that the beads were inelastically
stuck to each other by a polystyrene tether).

When a possible RNA tether had been observed, a programmed routine was used to
repeatedly move the beads apart and together again a set distance at a set velocity. The
voltage signal was recorded continuously during each pull. In this way long series of pulls
could be recorded for subsequent analysis. Since the pulling speed was 0.1 µm/s and the
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TABLE 4.2: Average effective trap stiffness of all experiments, pN/µm. κ1 is
the stiffness of Trap1, κ2 is the stiffness of Trap2, and κeff is the effective
stiffness experienced by a molecule held between the traps.

κ1 κ2 κeff
µ std µ std µ std

PK 11/6 153 33 224 35 91 13
PK 6/11 209 46 225 29 108 14

pull distance was about 400-700 nm in each direction, each pull took about 8-14 seconds.
The waiting time between pulls varied, usually between a few seconds and half a minute.

4.4.2 Nanotracker particularities: Trap interference and trap intensity variation

Figure 4.6 (a) shows the proximity of the beads as seen through the camera when a tether is
caught. Since the beads were so close, some interference occurred between the traps. This
meant that the larger bead in trap2 was easily pushed above the laser focus and lost. The
z height of the trap foci therefore had to be adjusted during each experiment so that the
focus of trap2 was located slightly above the focus of trap1.

The effect of trap1 on the bead in trap2 and vice versa meant that whent the beads were
moved apart during a pull, each adjusted slightly in z height, changing the voltage output
a little bit also for the signal for the y-direction (the pulling direction in which we measured
displacement of the beads and traps). It was important to try to minimize the disturbance
of the y-signal while maintaining the stability of the beads in the traps. This was done
by repeated adjustment of the trap z height interspersed with "baseline" measurements in
which the traps were moved as they would be for pulling a molecular tether while no tether
was caught. A baseline measurement ideally should show no change in the displacement of
the beads from the trap centers as the traps were moved relative to each other. In practice
the change in displacement of the beads from the trap centers due to interference as the
traps were moved could be limited to a signal that corresponded to an error of up to about
2-3 pN (usually much less) in the force-extension curves.

Figure 4.6 (b) shows an image of the reflection of the laser beams at the upper surface of
the sample chamber. In this image the two traps are nominally set at the same z-height and
laser intensity. It is impossible to know whether the traps are in fact at the same height,
but attempts to focus the beam reflections as much as possible indicated that they were
offset somewhat, perhaps up to 0.4 µm. Despite any possible difference in trap height,
what stands out in the image is the difference in the size and intensity of the laser reflection
spot, which gives an indication of the difficulty of predicting and controlling the strength
of each trap.

Not only was it hard to predict the distribution of laser intensity between the two traps.
The trap strength also varied quite a bit from experiment to experiment despite nominally
being set to the same power level. This meant that trap stiffness varied significantly from
experiment to experiment. Table 4.2 shows the average trap stiffness of all the experiments
with each type of pseudoknot. The size of the standard deviation gives some indication of
the great variation in measured stiffness. The effective trap stiffness, κeff , which is the trap
stiffness experienced by a molecule caught between the beads in the traps, is calculated as:

κeff =
κ1κ2

κ1 + κ2
.

The loading rate, r, is calculated as vκeff where v is the pulling speed.
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(a) (b)

FIGURE 4.6: Pull layout and laser strength. (a) : Layout of a typical pull.
Trap2 holding the large bead is located just next to trap1 with the small
bead (”above“ it in the y-direction). The z-height of the two traps has been
adjusted so that the beads remain stable in the traps when this close.
That means that the z-height of the center of the bead in trap2 most likely
is above the center of the bead in trap1 (based on appearance in photo,
taken from below, in which the bottom of the two beads appear to be at
about the same height though their diameter is different. (b) Reflection of
the laser light at the bottom surface of the sample chamber. Laser enters
from below and photo is taken from below. The two traps are nominally at
the same z-heigth and laser intensity.

4.5 Data processing and statistics

Most of the data processing was carried out using Matlab scripts written by the author. This
included calculation of the conversion factor α based on Stokes calibration, generation of
force-extension curves, recording of rip and zip forces on force-extension curves, Maximum
Likelihood Estimation of fits of unimodal and multimodal Gaussian distributions to the
data sets of of rips and zips and of rip and zip work energies, finding the intersections and
other defining characteristics of multimodal Gaussian distributions, generation of scatter
plots, generation of theoretical plots of the stretching of the closed and open pseudoknot
structure using the EWLC model, statistical analysis of various possible subdistributions
of rips and zips, and even the simple analysis of average effective trap stiffness.

However, as noted, Matlab could not be used for fitting the power spectrum data with
an unweighted fit, so the conversion factor β for finding bead displacement from the trap
center in terms of distance rather than volts was calculated using a script written in IgorPro
by Jesper Tholstrup.

Additionally and importantly, a script written by Jesper Tholstrup in Python were used to
generate theoretical predictions of the rip and zip lengths using the EWLC model, as will
be described in more detail below. A bootstrapping script by Jesper Tholstrup written in
Python was also used to estimate the uncertainty in the intersection point found between
intersecting Gaussian distributions based on the uncertainty in their parameter values.
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This allows estimation of the uncertainty in the values found for ∆G using the Crooks
Fluctuation Theorem.
Finally, Gnuplot was used for several least squares fitting routines, particularly to fit the
kinetic data to Equation (3.7) and Equation (3.9). Some of the preprocessing of data for
these fits was still performed in Matlab, i.e., finding rip and zip forces and associated
survival probabilities as well as estimating values of τ(F ) from histograms of rip forces.
Detailed data analysis routines will not be provided here. It is worth noting, however,
that fortunately most of the data routines were cross checked with the routines written to
perform the same tasks by Jesper Tholstrup in Python and IgorPro. By ensuring that the
same results were obtained for the same data sets using the two types of routines we have
both tried to provide a control that the data routines were not too plagued by undiscoved
bugs.

4.5.1 Using the EWLC to predict force-extension curves and rip/zip lengths

As described in Chapter 3.2, predictions of the force-extension curves for the closed
and open expected pseudoknot structures were made using the Extensible Worm Like
Chain. The predictions were made with fixed parameter values for Lc, Lp, and K0 for the
double and the single stranded portions of the molecular construct (the digoxigenin-anti-
digoxigenin and streptavidid-biotin linkers were considered inelastic in these calculations).
This author used a relatively simple Matlab routine to generate values of the expected
force-extension curves by solving for the extension that minimized the difference between
the right and left hand sides of Equation (3.2) for a series of fixed force values. These
predictions were made using the EWLC parameter values specified in Chapter 3.2.
Subsequently, in order to calculate Wstretch, the energy needed to stretch the handles and
the pseudoknots during a pull, the predicted EWLC curves for the appropriate double or
single stranded portions of the construct were integrated to give the energy required to
stretch that portion of the construct between the appropriate forces.
The predicted force-extension curves could also be used to give a rough indication of
expected rip and zip lengths at high forces forces. However, because the calculation of rip
length based simply on static force extension curves assumes that the same force occurs at
the start and the end of the rip, the length prediction made is an overestimate, especially at
low forces. In reality, any change in construct length is accompanied by a change in force.
For a change in force, a new construct length needs to be calculated, and as the change
in construct length is rather large at low forces, proper prediction of expected rip length
requires an iterative script. Such a script was implemented by Jesper Tholstrup and used
by this author to generate the curves of predicted rip length that will be shown in Chapter
5.
Crucially, the calculations made to predict both force-extension curves and rip/zip lengths
is made based on the a priori assumption of the pseudoknot’s structure presented in Figure
4.1. The stem and loop lengths as well as the lengths of the surrounding single and double
strand portions are needed. The EWLC is then used to predict the change in extension that
is expected on the explicit assumption that one or both stems of the pseudoknot open at a
given force, causing a change in the double and single stranded lengths of the construct of
a particular number of base pairs or nucleotides.
Note additionally that any experimental mismatch in the z-height of the traps during the
pull would make the measured force-extension curve appear to have a slightly lower
persistence length, Lp [67]. This was a relevant concern based on the Nanotracker
particularities noted above (the beads were almost certainly misaligned in z height during
experiments). Jesper Tholstrup found that the error caused by this in the force-extension
curves generated was on the order of a few percent, less with increasing force [67].
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4.6 Summary of methods

This chapter has presented the main experimental and (briefly) the main numerical
methods used in this thesis. Detailed protocols for some of the experimental routines may
be found in the appendixes while data processing routines may be obtained directly from
the author. The next chapter, Chapter 5, will present the first batch of the experimental
results: measured force-extension curves and observed rip and zip lengths and forces.
Chapter 7 will present the remaining results, those deriving from work and kinetic analysis
of the rip and zip data.



5 Results Part I: Rips and zips

As described in Chapter 2 and Chapter 4, the raw data for this thesis were voltage outputs
from the Nanotracker’s photodiodes. These were recorded during each attempt to pull a
molecule by moving one optical trap relative to the other and were converted to graphs
of force vs extension. The force-extension curves that showed the presence of a single
molecular tether which displayed clear molecular transitions (rips or zips) were the basis
of further investigation.

In this chapter, typical force-extension curves for the two pseudoknots will be presented
followed by an overview of the number of molecular tethers observed, the number of pulls
with rips, etc. The distributions of forces at which rips and zip occurred and the lenghts of
the rips and zips will subsequently be presented.

To refresh the terminology, a “tether” is a molecular construct linking two beads. A "pull" is
a recording of the elongation and relaxation of a molecular tether. It may also be an attempt
to pull a molecular tether that breaks or an attempt in which there turn out to be several
molecular tethers between the beads. A "rip" or "zip" is an abrupt change in molecular
extension on the force-extension curve that is assumed to indicate the opening or closing
of the pseudoknot.

Throughout this chapter and the next the uncertainties indicated by “±” are the standard
error of the mean (SEM) unless otherwise noted.

Histograms of data shown in this chapter and the remainder of the thesis are depicted
with actual data counts on the y-axis rather than relative counts. This has been chosen
to explicitly show the number of data points included. Probability distributions shown
together with the histograms are therefore multiplied by a constant to show up in the
figures, although this is not always noted in the figure captions.

Note additionally that for all experimental force extension curves shown, the scale on the
x-axis, i.e., the extension, has an arbitrary zero as the initial separation of the beads is not
known (see Chapter 2.3.4).

5.1 Typical force-extension curves

Figures 5.1 and 5.2 show examples of force-extension curves recorded for PK 11/6 and
PK 6/11. The curves have been chosen to display samples of typical rip and zip patterns
observed. Some rips are short and at low force, some far longer and at high force. Some
curves show two rips during molecule elongation, indicating a two-step transition from
open to closed pseudoknot, others show only a single rip, a rip followed by a zip and
another rip during elongation, or other more complex pathways. The criteria used to
distinguish rips and zips from noise will be presented below. When several rips and rezips
occur during elongation of the molecule or several zips and rerips occur during relaxation
it is called “hopping”. In the range of forces where hopping occurs, the state of the molecule
is apparently multistable.

45
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FIGURE 5.1: Examples of force-extension curves with rips and zips
observed for PK 11/6. Blue: elongating the molecule (moving the beads
apart). Red: relaxing the molecule (moving the beads together). (a) Clear
rip and zip at low force. (b) Rips/zips in several steps with hopping: the
pseudoknot opens, closes, and reopens. (c) Two-step opening of the
pseudoknot. (d) Clear rip during molecule elongation, extra rip during
molecule relaxation. (e) Zip during refolding constitutes the first step of a
two step closing transition, the remainder occurs gradually. (f) Two-step
opening of the pseudoknot, gradual closing. Pulls (c)-(f) originate from the
same molecule and were recorded sequentially within a short time span.
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FIGURE 5.2: Examples of force-extension curves with rips and zips
observed for PK 6/11, displayed on the same axes as the curves for PK
11/6 in Figure 5.1. Blue: elongating the molecule. Red: relaxation. (a)
A clear rip and clear zip. (b) One-step rip during elongation, first step of
a two-step zip and gradual completion of closing during relaxation. (c),
(d), (e) and (f): Complex opening and closing transitions with hopping;
see zooms in Figure 5.4. Pulls (b) through (f) originate from the same
molecule and were recorded sequentially within a short time span; note
similarity in appearance.
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FIGURE 5.3: Labeling of the first and completing rips and zips of
hypothetical two-step opening and closing transitions. The first (1st) step
during elongation (blue) is the one at lowest force while the 1st step during
relaxation (red) is the one at highest force. The second step is called
the “completing” step as some hopping might occur before it is observed.
Scale on x- and y-axis from a theoretical plot of the EWLC-model of the
closed and open pseudoknot constructs as described in Chapter 3.2.

The rips and zips observed were classified as one-step or two-step transitions from the
assumption that pseudoknot opening would occur either in one single step or in two steps
corresponding to the opening of first one pseudoknot stem and loop, then the other (see
original hypothesis in Chapter 1.4). As illustrated in Figure 5.3, the first step of a two-step
rip on the elongation curve (sometimes called two-step opening) was the one occurring
at the lower force. The first step of a two-step zip on the relaxation curve was the one
occurring at the higher force. The following step of a two-step transition is called the
“completing” step because it might occur after a bit of hopping rather than straight after
the first step.

To better display the differences in force and extension of the rips observed, the force-
extension curves in Figures 5.1 and 5.2 are all shown on the same scale. The details of
some of the multistep and hopping transitions observed for PK 6/11 in Figure 5.2 (c)-(f)
are shown in magnification in Figure 5.4. Hopping was also observed for PK 11/6 but less
often. Note that, e.g., in Figure 5.4 (c) and (d) it is not completely obvious whether we are
seeing part of a two-step transition or a full one-step transition.

Multistep transitions were characterized as the 1st step or the completing step of a two-step
transition even when only one clear step was observed as long as it was obvious that the
clear step was part of a larger transition. This could occur for instance because the other
step was obscured as a gradual transition (Figure 5.1 (c) and (e), Figure 5.2 (b)) or because
the structure hopped back to the original state before a longer transition was observed
(Figure 5.4 (b)). For this reason the numbers of 1st and completing two-step transitions in the later
analysis are not the same.

In some experiments, long series of pulls were recorded for the same molecular tether
(up to 250 sequential recordings in one case), while in most experiments the tether broke
almost immediately. For each pull, a separate force-extension curve was generated.
Many force-extension curves were recorded which showed no clear rips or zips during
molecule elongation and relaxation. Others showed large rips but no zips or more gradual
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(a) (b)

(c) (d)

FIGURE 5.4: Force-extension curves for PK 6/11 with complex stepping
and hopping: Details from Figure 5.2 (c)-(f). Note different levels of
zoom/different scales. Blue: elongating the molecule. Red: relaxation. (a)
Two-step opening, then hopping back to closed state and to intermediate
state before the open structure continues elongating during the remaining
pull; similar hopping during relaxation. (b) One-step opening, hop back
to closed state, 1st step of two-step opening, then hop back to closed
state before a full one-step opening during the elongation of the tether;
closing in a single one-step zip. (c) and (d) Hopping where all transitions
are classified as one-step rips or zips. As noted in Figure 5.2, all four
pulls originate sequentially from the same molecule. The beginnings of
each transition used in further analysis of rips and zips is marked by a
little geometrical shape. Red triangles are first parts of two-step rips,
blue triangles are completing two-step rips, black triangles are partial hop
transitions. Blue boxes are first one-step rips, pink boxes are first one-step
zips and gray boxes are one-step hop transitions. The same symbols will
be used in Figures 5.8 and 5.9.
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FIGURE 5.5: Examples of force-extension curves highlighting that rips and
zips do not occur in all pulls. Blue: elongating the molecule. Red: relaxing
the molecule. (a) A clear rip and gradual closing of PK 11/6. (b) A PK 6/11
tether elongates and relaxes without a rip. (c) Multiple PK 6/11 tethers: At
least two tethers have been caught and one breaks mid-pull at ≈ 27 pN.
Notice that the elongation and relaxation curves do not coincide at low
force the way they do in (a) and (b). (d) A PK 11/6 tether breaks during
the pull.

refoldings, which was interpreted as evidence that multiple molecular tethers had formed
and one or more of them ripped during the pull. Figure 5.5 displays some examples of
pulls with and without rips, with multiple tethers and with a tether that breaks.

The tethers for which many sequential pulls were recorded showed a pattern that is not
easily quantified: A number of pulls with similar transition pathways would be observed
sequentially (e.g., high force long rips) followed by a number of pulls with another type
of transition pathway (e.g., low force short rips). See Figure 5.2 (b)-(f) for one such series.
The force-extension curves in Figure 5.1 (c)-(f) were also recorded sequentially for a single
molecule within a similar timespan, but the rips in these curves vary much more in
appearance. With the full sequence of force-extension curves for this molecule, however,
sequential patterns of force-extension curves with similar appearance are also observed.
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5.2 Criteria for accepting rips and zips for analysis

As described above, rips (openings) and zips (closings) were defined as clear, abrupt
transitions on the force extension curves such as the transitions shown in Figures 5.1 and
5.2. Distinguishing rips or zips from noise was not always easy, however. See Figure 5.6
for an illustration of force-extension curves in which it may be difficult to discern rips.
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FIGURE 5.6: Two examples of pulls where discerning rips and zips from
noise may be difficult. Blue: elongating the molecule. Red: relaxation.

The criteria used to filter rips and zips were:

1. The rip or zip observed had to be unusually large relative to the inherent noise of the
force extension curve in that region.

2. A transition from one equilibrium curve to another had to be apparant beneath the
noise. This meant that relatively large sudden changes in force and extension were
not included if the curve immediately returned to its original path.

3. The transition had to be abrupt enough that the slope force extension curve was
approximately equal to the trap strength, −κ (estimated by eye). This follows
from the fact that an immediate change in the force had to be accompanied by a
proportional change in extension according to F = −κx. Thus the slope of the force
extension curve during a rip or zip had to be negative. This meant that:

• gradual transitions were never included as rips or zips
• if both rips and zips occurred on the same plot, they had to be approximately

parallel.

4. The curve had to display both an opening and a closing, though one of the transitions
(most often the closing) might occur gradually. In other words, the transition from the
“open-state” curve to the “closed-state” curve had to occur before the force dropped
all the way to the baseline level during molecule relaxation.

5. Two-step transitions had to display a clear pause at an intermediate force-extension
curve before full opening or closing (see Figure 5.3 for a theoretical illustration and
Figure 5.4 (a) for a real example). In other words, three distinct "states" of the
molecule’s force extension curve had to be observed.



52 Results Part I: Rips and zips

The fourth criterion was made to exclude rips which simply represented the breaking
of one tether in a multi-tether pull. Contrast Figure 5.5 (a) and Figure 5.5 (c). During
control experiments performed by Jesper Tholstrup using molecular constructs with
no pseudoknot-forming sequence on the single-strand RNA, large rips were sometimes
observed but never with an apparant refolding back to the original curve [67]. This was
interpreted as the breaking of one out of several molecular tethers linking the beads, since
once broken it would be unlikely for the tether to form again before the beads were back at
the baseline level [67].

The fifth criterion means that if only one stem of the pseudoknot unfolded at all during a
pull, that one unfolding would be classified as a one-step rip. A scenario in which one stem
of the full pseudoknot unfolds while the other stays intact is expected to be unlikely based
on the assumption that once one stem has opened, the other is basically a simple RNA
hairpin, which should be much weaker than the full pseudoknot and therefore relatively
easily opened. However, it is possible that only one hairpin rather than a full pseudoknot
was formed at the beginning of the pull, so that no more than a single hairpin could be
opened at all.

The assumption behind the idea of a transition between equilibrium curves is that the
molecule’s force extension curve (criterion two) is approximated by the Extensible Worm-
Like Chain model (EWLC) as discussed in Chapter 3.2. Thus when it transitions from
closed to open and back it passes from one EWLC-curve to another with a different contour
length, persistence length and stiffness as shown in Figures 3.3 and 5.3. From the examples
in Figures 5.1, 5.2, 5.5, and 5.6 it is seen that in some cases rips and zips are easily identified
and delineated and in some cases not.

5.3 Data overview

Table 5.1 gives an overview of the data obtained in this work. The number of pulls with
rips and/or zips is the maximum number of uncorrelated openings and closings of the
pseudoknot that may be used for further analysis. As mentioned above, the transitions in
a given pull may actually not have been completely uncorrelated with the transitions in
previous and subsequent pulls. However, transitions in different pulls are certainly less
correlated than transitions measured during the same pull.

The number of experiments with rips and/or zips in Table 5.1 is the minimum number of
separate molecules observed that displayed abrupt opening or closing transitions. More
molecules may have been observed, as in some experiments a molecular tether broke but
another later formed which could be the same molecule or a different one. The number of
separate tethers indicate how often this occurred. It is the maximum number of separate
molecules for which pulls without breakages were observed.

Table 5.1 thus gives an idea of how many molecules were observed and how likely it was
that a rip or zip would be observed once a molecular tether had been caught, extended,
and relaxed without breaking. The percentage of molecular tethers that did not break and
which contained rips or zips may have depended on e.g. pull distance (varied during the
experiment) and precise loading rate (though the piezo stage was always moved at 0.1
µm/s, the actual loading rate varied with the trap strength and had a standard deviation
of a little over 10 %). Nevertheless this percentage could give a rough indication of
the strength of that particular pseudoknot: A low percentage of tethers with rips and
zips out of the total number of tethers that do not break would indicate that the closed
state is relatively favorable. However for the two pseudoknots here the difference in the
percentage of pulls that exhibit rips and/or zips out of the total number of pulls with
unbroken tethers is not significant (tested with a two-tailed Student’s t-test, p=0.75).
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TABLE 5.1: Overview of experimental data

PK 11/6 PK 6/11
Experiments w tethersa 14 23
- of which w rips/zips 8 6
- %-age with rips/zips 57 % 26 %
Separate tethersb 43 26
- of which w rips/zips 20 9
- %-age with rips/zips 47 % 35 %
Pulls w unbroken tethersc 429 306
- of which w rips/zips 171 64
- %-age with rips/zips 40 % 21 %
Total number of rips/zips 411 227
Average rips/zips per pull w rips/zips 2.4 3.5
Number of “hop” rips/zips 101 80
%-age hop rips/zips 25 % 38 %
Pulls w multiple tethers (minimum) 51 15
Pulls w broken tethers 205 152
Total pulls w tether(s) 685 473
- %-age with rips/zips 25 % 14 %
Mean loading rate (pN/s) ± std 9.1± 1.3 10.8± 1.4
a Experiments in which RNA tethers were caught, i.e. minimum

number of separate molecules observed
b Maximum number of separate molecules observed. During

some experiments a tether broke after a number of pulls but
another tether was observed later in the same experiment with
the same beads. This is considered a separate tether, though it
may or may not be the same molecular construct.

c Total number of pulls recorded where the molecular tether
does not break. May include pulls with multiple tethers where
none are observed breaking.

The table also compares the number of pulls with rips and/or zips to the total number of
rips and zips recorded and shows how many of these represent “hopping” rips or zips.
This number could give some indication of how easily the structure reforms once broken
during a pull. However, again the difference between the percentages of hopping rips/zips
is not significant (tested with a two-tailed Student’s t-test, p=0.84).

Figure 5.7 graphically breaks down the distribution of pulls in the categories of broken
tethers, multiple tethers, tethers that neither broke nor exhibited rips, and tethers with rips
for PK 11/6 and PK 6/11 (examples of pulls in each category were seen in Figure 5.5). Note
that it was usually not possible to distinguish pulls with multiple tethers from single-tether
pulls unless at least one tether broke during the pull.

The number of pulls with rips and/or zips observed per molecule ranged from one to
109 for PK 11/6 and from one to 50 for PK 6/11. As the total number of pulls with rips
or zips were 171 and 64 respectively for the two pseudoknots, clearly further analysis of
the rip and zip characteristics may have been biased by the circumstances of the particular
experiments where many rips were observed. The possibility of such bias will be examined
below in Section 5.5.
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FIGURE 5.7: Distribution of pulls recorded among broken tethers, multiple
tethers (of which at least one breaks, so that the pull is identifiable as
such), tethers that do not break but also do not exhibit rips or zips, and
tethers that exhibit rips and/or zips.

5.4 Rips and zips: forces and lengths

After filtering, the rips and zips identified were analyzed through examination of the
forces at which they began and the change of construct length they represented. This was
straightforward in the many cases where a single clear opening step was observed as the
molecule was elongated and a single clear closing step or more gradual closing transition
was observed during relaxation. Such transitions were seen in Figures 5.1 (a), 5.2 (a), and
5.5 (a). When the molecule displayed hopping or multiple-step transitions, however, this
had to be taken into account in the analysis. For pulls with hopping, the first rip during
the elongation of the molecule and the first zip during relaxation were treated separately
from the remaining rips and zips (first rips and zips are here named according to the
logic presented in Figure 5.3). This separation was made to allow analysis of uncorrelated
rips and zips as indicated above. Likewise, two-step transitions were analyzed separately
from one-step transitions since they were assumed to describe different types of molecular
reaction.

One of the most illuminating ways to examine the data is to visually inspect the correlation
of rip forces and rip lengths, zip forces and zip lengths in scatter plots. Such plots are
shown in Figures 5.8 and 5.9. These plots are grouped according to the transitions that are
observed during elongation and relaxation of the molecules. Different symbols are used
for one-step and two-step rips and zips as well as for first "hop" rips or zips. Additionally
the plots show curves predicting rip/zip length as a function of force for several possible
structures of the single stranded RNA pseudoknot sequence. The predictions were made
as described in Chapter 4.5.1 and will be discussed further in Chapter 6.

What stands out first of all is that the distribution of rip/zip forces and rip/zip lengths
observed for PK 11/6 is radically different from the distribution of rip/zip forces and
rip/zip lengths for PK 6/11. In particular, much higher rip forces and longer rip lengths
are recorded for PK 11/6 than for PK 6/11. It is clear from Figure 5.8 (a) that these higher
forces and lengths often, but not always, occur together, and that they relatively often occur
as part of two-step opening transitions. The latter is not easily reconciled with the idea
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FIGURE 5.8: Scatter plots of rip/zip force versus rip/zip length for ALL
extension rips and zips. (a) PK 11/6. (b) PK 6/11. Predicted curves made
as described in Section 4.5.1. “Other” rips and zips refer to hop transitions.
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that a two-step transition corresponds to one or the other of the stems of the pseudoknot
unfolding. This will be discussed in Chapter 6.2.

Another striking difference between the data for PK 11/6 elongation rips and zips in Figure
5.8 (a) and the data in the other scatter plots is that while a main data cluster occurs in each
plot, at least one extra cluster, possibly two, are observed for the PK 11/6 elongation rips
and zips at higher forces and lengths. These additional clusters might well correspond to
different molecular transitions. The main data cluster occurs at approximately the same
forces and lengths in all four scatter plots - between about 5 and 25 pN (higher for PK 11/6
than PK 6/11) and between about 5 and 22 nm. This large cluster could again consist of
sub-distrubitions of data. For instance it appears that the shorter rips and zips for PK 6/11
in Figure 5.8 (b) apparantly occur at a wide range of forces while the longer rips all occur
at fairly high forces. This might correspond to two different types of transitions.

It should here be noted that any rips and zips that might occur at lower forces than 5 pN
and/or were shorter than about 5 nm could usually not be distinguished from noise using
our rip/zip selection criteria. Also, the amount of data at higher forces may be limited
by how often the molecular tethers broke at the digoxigenin/anti-digoxigenin link not far
above 20 pN. However, some tethers were obtained for PK 6/11 that reached much higher
force than 20 pN, but which displayed no rips or zips at these high forces. Lack of access to
the high force regime is thus not the only reason that no rips or zips were recorded at high
forces for PK 6/11.

An additional striking pattern seen clearly in Figures 5.8 and 5.9 is that for PK 6/11
elongation transitions and for all relaxation transitions, two-step transitions are generally
(though not all) shorter than one-step transitions. This is emphatically not the case for the
two-step rips and zips seen for PK 11/6 in Figure 5.8, where the two-step transitions are as
widely scattered as the one-step transitions.

To a large degree the "hop" rip and zip data points (gray boxes, black triangles) lie in
the same clusters and generally follow the same patterns as the uncorrelated first rips
and zips observed during elongation and relaxation (blue boxes, red and blue triangles).
Two observations stand out regarding "hop" rips and zips. The first is that the few long
transitions observed during relaxation for PK 11/6 are all hop transitions. The second is
that the hop rips and zips mostly occur at low forces, below about 20 pN. This could reflect
that at lower force the single strand of the pseudoknot is under less tension and therefore
more easily folds back into its original structure. It could also relate to the possibility that
the lower force shorter rips and zips derive from a different type of molecular transition
than the higher force longer rips.

All in all it appears from Figures 5.8 and 5.9 that the PK 11/6 transition from the closed
to the open state occurs in a very different manner from the transition of PK 6/11. It is
also clear that for PK 11/6, one-step opening transitions do not occur as simple sums of
two-step openings. This contrasts to the pattern seen in the remaining scatter plots. The
measured rip lenghts will be compared to predicted rip lengths in Chapter 6.2, where an
attempt will be made to explain the patterns described here. First, however, we will have
a closer look at the distributions of rip lengths and use these to separate clusters of data
which will in Chapter 7 be used to calculate the free energy of the transitions observed
as well as kinetic parameters. We will also briefly look at some subsets of the data to
determine how vulnerable they are to the observations made in individual experiments.

5.4.1 Exploring possible subdistributions of rips and zips

From the scatter plots in Figures 5.8 and 5.9 it is clear that the rip and zip data may derive
from several distinct distributions rather than from a single distribution. Since distinct
underlying distributions could well derive from different types of molecular transitions,
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further analysis of the data required separating the distributions. This was only done
for one-step transitions due to the low number of data for two-step transitions. The
distributions of rip and zip lengths were considered most indicative of the distributions
of the molecular transitions taking place, although rip force and rip length are correlated.
The reason is that distinct rip lengths are expected to be associated with specific molecular
transitions while rip forces are expected to display more random variation. Therefore clear
evidence of several underlying rip/zip length distributions were used to divide the dataset
for further analysis.

Distributions of rip and zip lengths with fits and residuals between data and cumulative
fitted curves are shown in Figures 5.10 and 5.11. Note that the distributions are all quite
similar except that a number of longer transitions are observed for PK 11/6, and relatively
many short transitions are observed for PK 6/11, as can also be seen in the scatter plots in
Figures 5.8 and 5.9. It is clear that the higher order fits result in smaller residuals, but also
that they in some cases may overfit the data. For rips observed for PK 11/6 (Figure 5.10
(a), (c), and (e)), the second and third order fits appear much better than the first order fit,
but for the other distributions this is not obvious, again much in tune with the impression
gained from the scatter plots of force versus transition length in Figures 5.8 and 5.9.

Distributions of rip and zip forces are shown in Appendix E, Figures E.1 and E.2. Among
these distributions, the rip forces for PK 6/11 most clearly stand out as multimodally
distributed (compare Figure E.1 (b) to the other cumulative distributions). It is again
difficult to evaluate by eye whether the other distributions are unimodal or multimodal,
although the pattern of residuals for PK 11/6 rip forces does underscore that a single
Gaussian does not describe this data well. Again, as seen in Figures 5.8 and 5.9, the forces
observed for PK 11/6 elongation transitions are much higher than those observed in the
other graphs.

Several methods were subsequently used to investigate the goodness-of-fit of the
underlying distributions:

1. χ2-test of single Gaussian distribution: A simple χ2 test was used to determine if a
single Gaussian distribution could be rejected for the data. This χ2 test relied on
histogramming of the data using a built-in Matlab function.

2. Comparison of R2-values: χ2-testing of the double and tripple Gaussian fits to the
overall distributions of data was difficult since the fits were made only using
Maximum Likelihood Estimation, which does not give an individual data point
variance needed to calculate the value of χ2. Instead the multiple correlation
coefficient, R2, was calculated and used to evaluate the goodness of fit as described
in Bevington and Robinson [70, pp. 205–207].

3. F -test of additional parameter validity: An F-test was used to test the inclusion of extra
terms in the model. This test is also inspired by Bevington and Robinson [70, p. 207];
a more detailed description was found in [71].

4. Aikaike Information Criterion: Another standard method of comparing goodness-of-fit
between several models, the Aikaike Information Criterion (AIC), was implemented
following [72].

5. Multivariate Gaussian Mixture Model fit: A built-in Matlab function that fits a Gaussian
mixture model to multivariate data was applied to the combined force-length data
for rips and for zips to find underlying Gaussian distributions in two dimensions.
This function also used the Aikaike Information Criterion to determine the number
of underlying distributions needed to best fit the data.
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FIGURE 5.10: Rip (left) and zip (right) length distributions for PK 11/6: (a)
Histogram of first one-step elongation rip lengths fit by single, double, and
tripple Gaussians. (b) Histogram of first one-step relaxation zip lengths
with single, double and tripple Gaussian fits. (c) and (d) Cumulative
distributions of data and fits (note x-scales are adjusted so that maximum
detail of the distribution can be discerned). (e) and (f) Residuals between
fitted curves and experimental cumulative distribution.
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FIGURE 5.11: Rip (left) and zip (right) length distributions for PK 6/11: (a)
Histogram of first one-step elongation rip lengths fit by single, double, and
tripple Gaussians. (b) Histogram of first one-step relaxation zip lengths
with single, double and tripple Gaussian fits. (c) and (d) Cumulative
distributions of data and fits (note x-scales are adjusted so that maximum
detail of the distribution can be discerned). (e) and (f) Residuals between
fitted curves and experimental cumulative distribution.
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6. Visual inspection: Visual inspection was used to compare the cumulative distributions
of rip/zip lengths to the fitted distributions, not least through examination of plots
of the residuals between data points and fitted cumulative distributions. The
appearance of the scatter plots in Figures 5.8 and 5.9 was likewise an important guide.

In the end, visual inspection (Method 6) proved decisive in determining the number and
locations of the underlying distributions used for further analysis. This was combined with
the simple χ2 test of whether a single Gaussian distribution could be rejected (Method 1)
and calculation of the value of R2 for each fit to evaluate the goodness of fit (Method 2).
Though the other methods are less subjective, the problem with them is that they only
compare goodness-of-fit but do not reveal whether any of the models are actually good
descriptions of the data. As shown by e.g. Dudko et al [49], the expected distribution of
rip forces for molecular transitions are not Gaussian in the first place. Thus although the
statistical tests usually pointed to relatively high order Gaussian fits as the better fits (e.g.
a quadruple Gaussian fit for the rip forces observed for PK 11/6), this might simply have
to do with the non-Gaussian nature of the underlying distributions rather than the true
number of underlying distributions. Method 5, multivariate fitting of Gaussian mixture
models, was additionally problematic because the fits were not stable but depended on the
random starting point values for the fits made by Matlab.
Tables E.1 and E.2 in Appendix E show the overall results of the various tests for different
order fits for both lenghts and forces. As staed, in forming the conclusions below, the two
factors that weighed the most were the possible rejection of the single Gaussian distribution
for rip lenghts and the visual inspection of the scatter plots of force versus length (Figures
5.8 and 5.9). Detailed results of the tests are not included.
The conclusions are:

• The distribution of first one-step elongation rips for PK 11/6 appears at least bimodal and
possibly trimodal (or even higher order). This conclusion is drawn from the observation
of the distribution of points in the scatter plot, Figure 5.8 (a), where at least
two distributions of one-step rips (blue squares) are evident. A single Gaussian
distribution is rejected for both rip lenghts and rip forces, and the cumulative
impression from the results of the other tests is that there is definitely more than
one underlying distribution.

• The distribution of first one-step relaxation zips for PK 11/6 appears unimodal. This is
based on the fact that a single Gaussian distribution is not rejected for the rip lengths
(though it is for the rip forces, this is considered less important as discussed above).
Also, crucially, visual inspection of the scatter plot reveals no more than one obvious
distribution of one-step elongation zips. The other tests also point to no more than
maximally two underlying distributions, indicating a simpler distribution than for
PK 11/6 rips.

• The distribution of first one-step elongation rips for PK 6/11 appears either unimodal or
bimodal Although a single Gaussian is not rejected for the distribution of rip lenghts,
the distribution of rip forces for these rips is unequivocally bimodal (Figure E.2).
Visual inspection of the scatter plot in Figure 5.8 (b) likewise quite clearly hints at
more than one underlying distribution of elongation transitions. Additionally, the
alternative tests with only one exception point to a bimodal distribution.

• The distribution of first one-step relaxation zips for PK 6/11 appears unimodal. The reason
is that a single Gaussian distribution cannot be rejected for either zip lenghts or zip
forces, and visual inspection also does not clearly indicate more than one distribution,
partially due to the relatively low number of data points. The alternative tests do not
give any clear picture of the number of number of underlying distributions.
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5.4.2 Identification of rip subdistributions

The multimodal distributions identified for the one-step rip distributions above were used
to divide the rip data into subdistributions. This was done through a very simple criterion:
Is the rip length for this particular rip longer or shorter than the rip length corresponding
to the intersection point of the estimated underlying Gaussian distributions? Clearly the
subsets of data thus formed do not take into account the overlap that must exist between
the distributions, but since there is no way of knowing exactly which points belong to
which distribution in the overlap region, this simple division was deemed sufficient.

The resulting divisions of points are seen in Figures 5.12 (a) for PK 11/6 and 5.13 (a) for
PK 6/11, as above presented together with predicted rip/zip lengths based on EWLC-
modelling. The average force and extension for each subdivision of the data is shown
in Tables 5.2 and 5.3 along with the predicted transition lengths at the experimentally
found average forces. The measured average versus predicted rip lengths will be discussed
further in Chapter 6.2. Figures 5.12 (b) and 5.13 (b) show scatter plots of the first zips
on the relaxation curves recorded during the same pulls as the rips that are divided
into subdistributions in Figures 5.12 (a) for PK 11/6 and 5.13 (a) (zips only displayed in
cases where one-step zips actually occurred during the relaxation in the same pull). It
is striking that the distributions of one-step zips deriving from the same pulls as the rip
subdistributions are not divided into subdistributions of differing zip lengths but rather
appear to overlap completely.

For PK 11/6, we will look in detail at the subdivision of points called distribution A
(pink diamonds) in Figure 5.12 (a) and (b). Distribution A is slightly different in (a) and
(c) due to the difference between fitting a double and a tripple Gauss to the same data,
but still comprise basically the same data points. This subdistribution stands apart from
the remaining data very distinctly and it seems intuitively reasonable to separate it out,
especially since it also stands apart from the scatters of data points obtained for the PK
11/6 relaxation transitions and for all PK 6/11 transitions observed in Figures 5.8 and 5.9.

Further subdivision of the rip data for PK 11/6 as seen in Figure 5.12 (b) is less visually
obvious. The subdistributions B and C could certainly belong to two subdistributions, and
this idea will be explored further, but they could also be part of the same distribution.

Likewise the subdivision of the rip data for PK 6/11 in Figure 5.13 is not completely
convincing, but not implausible either. Visually one is tempted to divide the data into a
low force, short portion and a high force portion with a wider range of lengths, but due to
the instability of the multivariate Gaussian mixture fit that was attempted (see above), it
is hard to say if this approach would be better than the division based on rip length alon,
which is shoen here.

The subdistributions and their possible explanations will be further explored along with
the promised discussion of the predicted rip lengths in Section 6.2. First, however, we will
look at a different set of data subsets, namely those deriving from particular experiments
which displayed "super tethers" (explanation will follow). These data subdivisions may
not be as interesting as the the ones explored above, but it is important to check how they
influence the results.

5.5 Testing bias from “super tethers”

A few molecular tethers lasted much longer than the others and endured pulling to much
higher forces with no breakage of the digoxigenin-antidigoxigenin link. These tethers are
dubbed “super tethers” because they were so strikingly much more stable than the tethers
that were usually caught. Three of these very durable molecular tethers also displayed



5.5. Testing bias from “super tethers” 63

TABLE 5.2: Rip/zip forces and lengths for PK 11/6. The variable n is the
numbers of rips or zips (forward or reverse transitions) analyzed. F is the
rip/zip force, X is the rip/zip length. The error is the standard error of the
mean (SEM) of the measured values. For multimodal distributions, n is
the proportion of data points expected in that part of the distribution. This
number is used to calculate the SEM for these distributions. The predicted
rip/zip lengths corresponds to the average force for that distribution of
rips/zips. Values closest to the measured average transition length
is highlighted (dark for good correspondence, lighter for less clear
correspondence or where there may be two possibilities).

Data averages Predictions (nm)

n 〈F 〉 (pN) 〈X〉 (nm) stem 1a stem 2b full PK 11/6c PK 11/6 Ud

Mean of all
1st rips 169 19.8±0.5 13.5±0.3 4.3 13.9 28.3 17.6

1-step rips:
2G 145 19.4±0.5 14.8±0.3 4.2 13.7 28.0 18.1

8 28.9±4.4 28.2±0.3 4.8 15.0 30.5 21.2

1-step rips:
3G 49 17.3±1.1 11.2±0.2 4.0 13.4 27.4 16.6

89 20.1±0.6 16.1±0.2 4.3 14.0 28.4 19.7
14 27.5±3.5 23.9±0.5 4.7 15.0 30.3 21.1

First of 2-
step rips 21 19.8±1.4 16.0±1.2 4.25 13.9 28.3 17.6

Completing
2-step rips 13 33.4±4.7 13.6±0.3 5.0 15.5 31.4 21.9

Mean of all
1st zips 113 15.4±0.4 12.4±0.3 3.85 13.0 26.6 18.3

1-step zips 101 15.4±0.4 12.9±0.3 3.85 13.0 26.6 18.3

First of 2-
step zips 16 14.4±0.7 9.3±0.8 3.8 12.8 26.2 18.5

Completing
2-step zips 7 16.2±2.8 8.6±1.2 3.9 13.2 27.1 18.6

a Stem 1 of the originally expected pseudoknot structure opens/closes.
b Stem 2 of the originally expected pseudoknot structure opens/closes.
c All of the originally expected pseudoknot structure opens/closes.
d All of the alternative pseudoknot structure, PK 11/6 U opens/closes. If only stem 1 or stem 2 of the

alternative pseudoknot opens/closes, this is in practice indistinguishable from the predicted length
of stem 1 of the originally expected pseudoknot opening. See discussion in Chapter 6.2.
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FIGURE 5.12: Subdistribution scatter plots for PK 11/6: (a) 2-Gaussian
subdistributions of rip force versus rip length and (b) zip force versus
zip length from same pulls as subdistributions in (a). (c) 3-Gaussian
subdistributions of rip force versus rip length and (c) zip force versus zip
length from same pulls as subdistributions in (a). Pink diamonds in (a) and
(c) are from distribution A, blue squares are distribution B, and black dots
are distribution (c). Curves representing predicted rip/zip lenghts in (a)
and (c) correspond to the labels used in (b) and (d). These are discussed
in Chapter 6.2
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TABLE 5.3: Unfolding/refolding forces and rip/zip lengths for PK 6/11.
As for the previous table, the variable n is the numbers of rips or zips
(forward or reverse transitions) analyzed. F is the rip/zip force, X is
the rip/zip length. The error is the standard error of the mean (SEM) of
the measured values. For multimodal distributions, n is the proportion
of data points expected in that part of the distribution. This number is
used to calculate the SEM for these distributions. The predicted rip/zip
lengths corresponds to the average force for that distribution of rips/zips.
Values closest to the measured average transition length is highlighted
(dark for good correspondence, lighter for less clear correspondence or
where there may be two possibilities).

Data averages Predictions (nm)

n 〈F 〉 (pN) 〈X〉 (nm) stem 1a stem 2b fullc

Mean of all 1st rips 64 15.0±0.4 13.8±0.6 3.8 12.9 26.4

1-step rips: 1G 51 15.4±0.5 13.8±0.5 3.8 13.0 26.6

1-step rips: 2G 12 16.2±0.4 11.5±0.4 3.9 13.1 27.0
39 12.8±1.3 15.2±0.2 3.5 12.2 25.3

First of 2-step rips 14 13.5±1 14.0±0.5 3.6 12.4 25.7

Completing 2-step
rips 15 14.2±0.9 13.5±0.6 3.7 12.7 26.0

Mean of all 1st zips 51 12.7±0.4 12.6±0.6 3.5 12.3 25.1

1-step zips 46 14.5±0.5 13.0±0.6 3.7 12.8 26.2

First of 2-step rips 5 6.7±1.4 9.6±1.2 2.2 9.2 19.5

Completing 2-step
rips 3 6.9±3 7.5±1 2.2 9.3 19.8

a Stem 1 of the originally expected pseudoknot structure opens/closes.
b Stem 2 of the originally expected pseudoknot structure opens/closes.
c All of the originally expected pseudoknot structure opens/closes.

many more clear pseudoknot openings and closings than the others. These super tethers
which survived many pulls with many clear rips or zips consequently somewhat dominate
the data on rip and zip forces and lengths.

The possibility of bias from the conformation of particular molecules is a frequent issue
in single molecule studies, where even such seminal articles as the experimental test of
Jarzynski’s Equality by Liphardt et al. in 2002 [73] and the verification of the Crooks
Fluctuation Theorem by Collin et al. in 2005 [46] rely on measurements of only seven
and two to five molecules per experiment respectively. In the pseudoknot pulling study
by Chen et al. from 2009 [21], the number of separate tethers used for data analysis hovers
between 7-13 for each type of pseudoknot tested, and for one particular experiment data is
presented which derives from only one experiment in which two tethers were caught (!).

Nonetheless it seems appropriate to examine the data deriving from the individual super
tethers to see how they influence the results and whether we can learn something from
the differences between the zip and rip patterns of individual molecules. This is done in
detail in Appendix D. The most striking observation is that if one single super tether is
left out of the data set for PK 11/6, the remaining data for PK 11/6 ends up looking very
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FIGURE 5.13: Subdistribution scatter plots, PK 6/11: (a) 2-Gaussian
subdistributions of rip force versus rip length with predicted transition
lengths and (b) zip force versus zip length from same pulls as
subdistributions in (a).

similar to the data for PK 6/11: the distribution of rip forces is bimodal, the scatter plot of
force versus extension is mostly clustered between 5 and 25 pN and between 5 and 25 nm
with two longer exceptions, and two step rips are generally shorter than one-step rips. On
average, rips still occur at higher force for PK 11/6 than for PK 6/11, but the cloud of long
rips occurring at high forces observed in Figure 5.8 (a) are no longer present.

As might be expected, the calculated work energy, Gibbs free energy change, and kinetic
parameters (Chapter 7) also change significantly if this one super tether is left out of the
data set for PK 11/6. The values calculated for PK 11/6 then become much more similar to
those calculated for PK 6/11. See Appendix D.

This does not mean that the full data set for PK 11/6 is not valid, but along with the
knowledge that the number of rips and zips observed in total for PK 6/11 is much more
sparse than for PK 11/6 and that only one super tether was observed for PK 6/11 compared
to two for PK 11/6, these observations do imply that catching a few more super tethers for
each molecule and thus getting much more data might elaborate and change the overall
picture significantly. Note, however, that “catching a few more super tethers” for each
pseudoknot would probably mean spending a month or two in the lab as their occurrence
is so rare.

5.6 Summary of points made in this Chapter

So far we have seen that:

• The data representing the elongation rips/zips observed for PK 11/6 are radically
different from those observed for PK 6/11, showing longer rips and zips occurring at
higher forces for PK 11/6.

• All of the relaxation rip/zip data as well as the elongation rip and zip data for PK
6/11 and a large portion of the elongation rips/zips for PK 11/6 appear to cluster in
a main region between about 5-25 pN and between about 5-22 nm.

• For PK 11/6 it is very difficult to see a pattern in the two-step rip and zip transitions
observed. For the remaining data sets (both sets of relaxation data and the PK 6/11
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elongation data) the two-step transitions appear generally shorter than the one-step
transitions, corresponding to the notion that two two-step transitions may simply
add up to a full one-step transition

• The one-step elongation rip data appears best fit by bi- or even trimodal
subdistributions. The distinction between long rips and the remaining cluster of rips
observed for PK 11/6 is especially clear.

• The difference between the rip data set for PK 11/6 and PK 6/11 largely stems from
data from a single experiment. This means that the data are somewhat dependent on
rare experimental conditions.

These facts will be investigated to some degree in the next chapter before we move on to
looking at energy and kinetic parameter calculations for the two pseudoknots.





6 Discussion Part I: possible transitions and
intermediates

In this chapter the distributions of rips and zips found in the previous chapter will be
interpreted in more detail. First the observed rip forces will be discussed briefly and then
the observed rip lengths. The observed rip lengths will be compared to predicted rip
lengths that were shown already in Figures 5.8 and 5.9 and the possible subdistributions of
transitions will be discussed.

6.1 Rip forces

Two obvious differences between the unfolding force distributions of the two pseudoknots
stand out. The first is that the distribution of unfolding forces include much higher forces
for PK 11/6 than for PK 6/11 and that the average unfolding force is also higher for PK
11/6 than for PK 6/11. The second is that the unfolding distribution is unimodal for PK
11/6 but bimodal for PK 6/11.

Both of these observations reveal that the two pseudoknots are different in ways that
are not immediately apparant from the sequence of nucleotides they are made up of.
The originally expected structures of the pseudoknots shown in Figure 4.1 are almost
symmetric in their most prominent features, the stem and loop lengths. That reversal of
the stems and loops would alter the way a ribosome interacts with the pseudoknot – and
thus the frameshift efficiency – seems unsurprising, since the ribosome always encounters
the pseudoknot from the 5’ end. In contrast, it is not obvious that reversal of the stems and
loops would alter the way that a pseudoknot is opened by a force that is applied blindly
and presumably symmetrically to both ends of the pseudoknot by beads held by optical
traps.

Similar to the observed correlation of unfolding force and frameshift efficiency observed in
[17], the overall higher forces required to unfold PK 11/6 compared to PK 6/11 correlate
with the difference in their frameshift efficiencies.

The differences in unfolding force distributions indicates that the reversal of loops and
stems does not correspond to a simple reversal of the overall pseudoknot structure. This
could be due to the stereochemistry of the bases that make up the pseudoknot, which could
not be predicted in advance. It is probably important that not only has the longer loop been
lengthened by one nucleotide in PK 6/11 compared to PK 11/6, both loops are also from
a symmetry point of view reversed in sequence compared to the stems (i.e. the order of
the nucleotides making up the stems but not the loops have been reversed in PK 6/11
compared to PK 11/6). This would clearly cause changes in the tertiary interactions of
the loop with the remaining pseudoknot. The stereochemistry/tertiary interactions of the
bases may thus significantly influence the mechanical properties of the pseudoknot, as
was also observed by Chen et al. [21]. Indeed the structures formed by the pseudoknot
nucleotide sequences may not correspond to the originally predicted structures in Figure
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4.1 at all. This would mean that the differences between PK 11/6 and PK 6/11 is not
only about the relative stability of their loop and stem interactions but about their overall
structure.

A bimodal distribution of unfolding forces has been theoretically shown to arise in
molecular transitions simply if several different conformations of the molecule are possible
at a given force [74]. Different conformations could correspond to different chemical
states or to different molecular orientation or degree of extension, all of which could arise
randomly. Thus the bimodality of the distribution of unfolding forces for PK 6/11 indicates
that several conformations of the molecule is encountered which respond differently to the
force. The bimodality of the distribution of unfolding forces for the subset of data for PK
11/6 excluding one of the "super tether" molecules indicates the same for PK 11/6: the
conformations that the molecule may randomly take on varies in a way that influences the
unfolding force distribution.

The average magnitude of the rip forces found was as we saw about 20 pN for PK 11/6
with a high subdistribution averaging at about 28 pN (or 17, 20, and 28 pN when the rips
were divided into three subdistributions) while the average rip force for PK 6/11 was only
about 15 pN (13 and 16 pN when subdivided into two rip distributions). For comparison,
Hansen et al. find average rip forces for their pseudoknots of 31 ± 1.9 pN and 39 ± 1.5
pN [17] at experimental buffer conditions and loading rates similar to the ones used here.
They see refoldings in various patterns, for one pseudoknot often in two zip step at 19± 4
and 9 ± 4 pN. Green et al. [25] find an average rip force of 31.4 ± 3.8 and an average zip
force of 15.1 ± 1.5 also with buffer and loading rate similar to the ones used here. Chen et
al. found average pseudoknot rip forces at about 50 pN in a buffer which in contrast to the
one used here containsno stabilizing Mg 2+ ions. They use the same pulling speed as that
used here (trap strength not indicated) [18]. In later experiments, also without Mg 2+ ions,
the same group found bimodal rip force distributions with one peak averaging at about 18
pN and the other varying between about 22 and 50 pN [21]. The average rip forces found
by Liphardt et al. [4] found average unfolding forces for a range of RNA hairpins in the
presence of Mg 2+ ions between 8 and 22 pN at loading rates of 3 pN/s or about 1/3 of
those used here.

The experiments without Mg 2+ are difficult to compare to the results found here, but the
others provide interesting contrast. It appears that only the high force long PK 11/6 rips
correspond well in force to the pseudoknots investigated by Hansen et al. and Green et al.
whereas the lower force PK 11/6 rips and the PK 6/11 rips correspond more in strength to
the hairpins investigated by Liphardt et al.

6.2 Measured versus predicted rip and zip length

The completely unfolded single strand pseudoknot lenghts of PK 11/6 and Pk 6/11 are
expected to differ only by one base, which means that they should have almost the same
unfolding length at the same force. If anything, PK 6/11 should unfold sligthly further
since it is the one that contains an extra nucleotide. However, as seen in Chapter 5.4,
significantly longer rips are observed for PK 11/6 than for PK 6/11.

Part of the difference in unfolding length could derive from the difference in unfolding
force, since the Extensible Worm-Like Chain model predicts that the molecule will be
longer at higher forces, especially when it unfolds to a state with a longer single stranded
portion. The higher average unfolding force for PK 11/6 could therefore perhaps explain
its longer unfolding distance. To investigate whether this is the reason for the difference
in rip lenghts, the predicted change in length of the molecules at the measured average rip
forces was calculated as described in Chapter 4.5.1.
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The EWLC predictions of rip and zip length are in general a little shorter for PK 6/11 than
for PK 11/6 (compare the Prediction columns for Stem1, Stem2 and the Full pseudoknot
in Tables 5.2 and 5.3). This was expected due to the lower average rip forces observed for
PK 6/11. However, what stands out is the discrepancy between the predicted rip lengths
and the measured rip lenghts. Two possible reasons are explored here. The first is that
the EWLC parameters do not describe the molecular construct well, the second that the
structure opening during the rip is different from what was originally expected. First we
look at altering the parameters for the EWLC prediction.

6.2.1 EWLC parameter sensitivity

We start off with a quick back-of-the-envelope check of the expected rip length for the
pseudoknots. This can be made by examining the difference between the expected contour
lengths of the folded and the open pseudoknot. Calculation of the contour length is less
prone to parameter uncertainty than the rest of the EWLC prediction, as the contour lenght
of single and double stranded RNA is assumed to be fairly well established. The contour
lenght of the single strand that is expected to open is about 40 nm (40 nm = ( 12 (stem1)
+ 6 (loop1) + 32 (loop2) + 22 (stem2)) nucleotides * 0.56 nm/nucleotide), while the folded
pseudknot is expected to have a contour length of about 5 nm (5 nm = (6 (stem1) + 11
(stem2)) basepairs * 0.28 nm/basepair). Thus the change in contour lenght is about 35
nm. If this were to correspond to an actual change in extension of only 15 nm, the single
stranded portion of the molecular construct would have to be very flexible - much more
flexible than we assume in the EWLC prediction shown in Chapter 5.4.2. This means that
the persistence length, Lp, must be lowered, corresponding to more coiling of the molecule.

It turns out that the EWLC prediction can be made to correspond approximately to the
measured value if the persistence length, Lp, of the single strand region is reduced from
1 nm to about 0.25 nm. Keeping constant values for Lp for the double stranded portion
and for the elastic modulus K0 for both single and double stranded regions, this gives a
predicted unfolding length for PK 11/6 at 19.8 pN of about 16 nm (the mean rip force for all
first PK 11/6 rips is 19.8 pN, while the mean rip length for all first PK 11/6 rips is 13.5 nm).
In contrast, reducing Lp for the double stranded portion from 50 to 10 nm, as is assumed
in [46], or increasing K0 for the single stranded portion significantly (from 1 nN to 15 nN)
does not change the predicted unfolding length much.

However, although it is possible that Lp is lower for short pieces of RNA than initally
expected and that this could account for the short extensions measured, this does not seem
like a plausible explanation. The value needed for Lp is quite a low one; in 2001 Liphardt
et al. [4] cited the range 0.7-5 nm found in literature for Lp for single strand RNA and
themselves found the value 1 nm; a more recent value of Lp = 1.5 ± 0.1 nm is reported
by Mangeol et al. in 2011 [75], which is an improvement upon a 2006 value of 1.1 ± 0.6
nm [76] by the same group. Also, apart from inconsistency with the literature the problem
with simply explaining the discrepancy between measured and predicted extension with
the need for a lower value of Lp in the EWLC is that this explanation is incompatible with
the longest rip lengths measured for PK 11/6. Some of these rip lengths exceed 30 nm, and
with a lower value of Lp, these rips would according to the EWLC model correspond to a
change in contour length that is far longer than the actual total lenght of single stranded
RNA expected in the construct. Even with the knowledge that noise in the position of
the Nanotracker traps is significant, meaning that the measured change in extension might
not correspond to the actual change in extension of the molecule, measuring rips of 30+

nm for the pseudoknot opening seems impossible assuming single stranded Lp of only
0.25 nm. The Nanotracker noise occurs at about 1000 Hz, so with sampling at 5000 Hz
and smoothing by a 200 data point moving average down to about 25 Hz, the noise really
should not noticeably affect the change in extension measured. Additionally, altering the
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parameters of the EWLC does not explain the observed lengths of two-step transition steps
(see e.g. Figure 5.8 (a)).

We will therefore return to the alternative explanation for the discrepancy between the
observed and predicted rip lengths: the majority of the transitions observed (even the one-
step transitions) may not correspond to the full opening of the pseudoknot.

6.3 Subdistributions and intermediate states

As noted in Chapter 4.1, the single stranded RNA sequences of PK 11/6 and PK 6/11
may fold in numerous conformations other than the pseudoknot structures originally
predicted by the program pknotsRG. Using other programs available online (DotKnot and
HotKnots [63, 64]) as well as pknotRG [61] with modified input, i.e., leaving out part of the
nucleotide sequence, several other possible foldings of the single strand sequences have
been identified. A variety of these structures are shown in Figures 6.1 and 6.2. They differ
significantly in the rip lengths that they would yield upon unfolding, but their predicted
energies of formation (∆G) shown in the figure captions are surprisingly similar. The
predictions of ∆G of formation made by these programmes is based only on the base
pairings and leaves out tertiary interactions.

Probably the most stable alternative structure for PK 11/6 is the alternative pseudoknot, PK
11/6U, seen in Figure 6.1 (b). This structure was predicted from a truncated version of the
nucleotide sequence for PK 11/6 and was suggested by Jesper Tholstrup. It is very similar
to the PK 10/6 U structure predicted from a truncated version of the nucleotide sequence
for PK 10/6, a pseudoknot investigated by Jesper [67]. PK 10/6 U was often observed in
experiments that parallel the ones performed for PK 11/6 and PK 6/11 in this study.

For PK 6/11 no particularly stable alternative prediction stands out, except that in several
of the alternative structural predictions a hairpin made up of stem2 and loop2 apparently
remains stable (Figure 6.2 (b), (c), (e) and (g)).

If we hypothesize that the unexpectedly short rip lengths arise because the structure that
opens does not correspond to the full pseudoknot, two possible explanations now present
themselves:

1. The pseudoknot opens one stem at a time, and even when only one transition length
is observed during a given pull, this corresponds only to one stem of the pseudoknot
opening. This might mean that the other stem does not open at all during the pull, is
already open at the start of the pull (the pseudoknot acts like a hairpin) or the opening
of the other stem is lost in noise.

2. The folded structure that opens during a rip could itself be shorter than expected, as
is observed for many of the possible alternative structures in Figures 6.1 and 6.2. This
would give rise to shorter observed rip lengths.

To investigate these possibilities, predictions were made not only of the expected rip
length for the full pseudoknot strucuture unfolding but also for some of the other possible
structures that might unfold. These predictions were shown in Figures 5.8 and 5.8 and in
Tables 5.2 and 5.3. Two of the possibilities investigated were that stem1 and loop1 might
unfold, leaving behind (at least for a time) a hairpin consisting of stem2 and loop2 and vice
versa. This idea, namely that the pseudoknot might open one stem at a time, is suggested
by Hansen et al. [17] because of their observation of two-step zip transitions. While it is
considered unlikely that a hairpin consisting of the shorter stem and longer loop (stem2
and loop2 for P11/6, stem1 and loop1 for PK 6/11) would be stable for long, the prediction
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FIGURE 6.1: Possible structural conformations of PK 11/6: (a) Originally
expected structure (predicted by pknotsRG, also shown in Figure 4.1).
(b) PK 11/6 U structure predicted by pknotsRG [61] from PK 11/6
sequence with final part deleted. (c), (d), (e), (f): Alternative structures
predicted from PK 11/6 sequence by the programme DotKnot [63]. Images
rendereded by PseudoViewer 3.0 [62]. Pseudoknot stems yellow, hairpins
blue.
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FIGURE 6.2: Possible structural conformations of PK 6/11: (a) Originally
expected structure (also shown in Figure 4.1, predicted by pknotsRG).
(b) Predicted folding when central part of structure is deleted (suggested
deletion by Jesper Tholstrup, prediction made by pknotsRG). (c) Hairpin
portion of (b) and a little surrounding sequence only (structure predicted
with pknotsRG [61]). (d), (e), (f), (g): Alternative structures predicted from
PK 6/11 sequence by the programme DotKnot [63]. Images rendereded
by PseudoViewer 3.0 [62]. Pseudoknot stems yellow, hairpins blue.
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shows that if the structure unfolds one hairpin at a time with the unfolding of the longer
stem and shorter loop first, this transition would be so short (about 4 nm) that it would
most often be indistinguishable from noise in the force-extension curves. It thus appears
possible either that only the short stem and long loop unfolded during pulling, leaving a
relatively stable hairpin structure behind, or that the full pseudoknot unfolded one hairpin
at a time with first the long stem and short loop, then the short loop and long stem opening
in such a way that the opening of the first hairpin was obscured by noise (See Figures 6.1
(a) and 6.2 (a) for reference).

Another possibility considered was that only one hairpin made up of the longer stem and
the shorter loop had formed at all and was opened during pulling. This is in the scatter
plots called “stem2 opens, stem1 open from start” or “stem1 opens, stem2 open from start”.
Again it appears to be a possible - and plausible - explanation for the observed short rip
lengths.

Finally, for the PK 11/6 data the predicted rip length of the shortened pseudoknot structure
PK 11/6 U was investigated. This too appears to correspond to some of the observed rip
and zip lengths for this construct. Note that if the PK 11/6 U structure formed or opened
hairpin by hairpin, the individual rip lengths of these transitions would be so short that
they would easily be obscured by noise.

To conclude, when the data for rips and zips shown e.g. in Figures 5.8 and 5.8 are shown
together with predictions of rip/zip length based on the expected pseudoknot structure
and stretch, it appears that only the very longest rips and zips for PK 11/6 could correspond
to the full originally expected pseudoknot opening. What we see in the scatter plots for PK
11/6 is that the remaining rips and zips correspond much more closely to a rip length that
would correspond to either:

• opening only stem2 and loop2 of the pseudoknot (assuming the opening of stem1
and loop1 are obscured by noise)

• opening only a hairpin consisting of stem1 and loop1 and no other structure
• opening the alternative pseudoknot structure of PK 11/6 U.

The observation in Figure 5.8 a that all one-step hop rips and zips during elongation of the
molecule occur at fairly low forces, corresponding best to the various hairpins and not so
well to the PK 11/6 U unfolding, lends credibility to the idea that the large cluster of data
between 5 and 25 nm and 5 and 30 pN for the PK 11/6 construct is actually a mixture
of points deriving from hairpin unfoldings and PK 11/6 unfolding. This is because it
seems logical that hopping would more easily occur between the hairpin and single strand
than between a fully formed pseudoknot and a single strand. However, it may also be
that hopping simply generally is more likely to occur at lower forces where the molecular
construct is under less tension. As PK 11/6 also at times opens in two step transitions that
sometimes occur at extremely different forces (see Figure 5.1 and in which the individual
steps of the two-step transitions are not necessarily shorter than the one-step rips, it appears
that much more is going on than just opening of the pseudoknot one hairpin at a time.
Clearly sometimes one intermediate structure changes midpull to a structure similar to the
originally observed pseudoknot.

If it is true that PK 11/6 displays a mixture of hairpin, small pseudoknot and full
pseudoknot conformations, this supports the observation that the rips are distributed
in three different clusters, but the delineation between the two lower force, shorter rip
distributions remains difficult to discern.

In contrast to PK 11/6, PK 6/11 is never observed to unfold in steps long enough to match
the predicted rip lenght for the full pseudoknot. It appears that this pseudoknot instead
mostly is observed either to open one hairpin at a time with the opening of the longer stem
and shorter loop obscured by noise or to be mostly in the conformation of a single hairpin
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that opens during the pull. It is also possible that the pseudoknot is switching between
some of the states seen in Figures 6.2. When PK 6/11 opens in two step transitions, these
are far shorter than the one-step transitions and on average appear add up to a full one-
step transition. It is not obvious how these smaller partial transitions could add up to
correspond to a longer transition that more or less corresponds to only stem2 and loop2 of
the full pseudoknot opening.

All in all the results in Chapter 5 paint a convincing picture that the rips and zips observed
for the two pseudoknot containing nucleotide sequences represent a mixture of transitions
between a variety of structural conformations.

Figures 5.12 and 5.13 provide an interesting addition to the picture of how the single
stranded RNA sequence passes from one structural conformation to another. They show
subdistributions of one-step zips belonging to the same pulls as the one-step rips that were
divided into subdistributions according to their different lenghts. Clearly rips and zips
occurring in the same pulls are not necessarily correlated in length. A long rip representing
the unfolding of the full pseudoknot to the single strand may be followed by a short zip
representing the folding of the single strand into a hairpin. If the structure reverts to a full
pseudoknot, this must first occur when the molecule is at low force.

The next chapter will examine the energies and kinetic parameters associated with the
observed structural transitions.



7 Results Part II: Gibbs free energy and
kinetic parameters

This chapter will describe how the opening and closing transitions described in the
previous chapters are used to estimate the Gibbs free energy change and kinetic parameters
associated with each pseudoknot. Work calculations are based on both force and extension
data for the transition while the calculations of the kinetic parameters, namely the distance
to the transition state and the standard rate of reaction, are based only on the force
measurements.

7.1 Work distributions and ∆G

The Gibbs free energy, ∆Gtransition, of the transition between two states of a molecule
may be calculated from the distributions of work required for the transition. As described
in Chapter 3.4, for irreversible transitions this calculation may be done either using the
Crooks Fluctuation Theorem (CFT) or the Jarzynski Equality (JE). Both methods will be
used below. Before we start out, however, we must note that this calculation requires that
transitions used to estimate the work distributions all start and end in the same state. For
this reason it is important to separate distinct molecular transitions in the analysis. This is
not trivial but will be done as far as possible.

The work required for each transition was estimated in using two different approaches as
described in Chapter 3.4.4, namely using the “simple” approach and the “Collin” approach.

In the “simple” approach, the areas directly beneath the rips and zips on the force-extension
curves were used to estimate the work required for the transitions (see Figure 3.7). In
cases where the pseudoknot opened and/or closed repeatedly only the first opening on
the extension trace and the first closing on the relaxation trace were used. The rips and zips
used to find ∆GPK using the simple approach were exactly the ones shown in Figures 5.12 and 5.13
in Chapter 5.4. Two-step transitions were thus left out of the simple approach analysis.

For the “Collin” approach, the transitions included were slightly different. In this case
the work for each transition was estimated as the area beneath the force-extension curve
from the beginning to the end of the opening or closing transition. This meant that gradual
and two-step transitions were also included as long as their beginning and end points were
clearly defined at points where the elongation and relaxation curves coincided (see Chapter
3.4.4). Pulls were excluded from analysis if the rip and zip were significantly offset from
each other due to e.g. noise or drift. On the other hand, even if the rip or zip was too
gradual to be included as a clear rip or zip in the simple area analysis, the area under the
full closing or opening could often be included in the Collin type analysis (for example, the
openings and closings seen in Figure 5.1(f) and 5.1(c) were both included in this analysis
but not in the simple area analysis). This explains the different numbers of pulls included
in each analysis below.

77
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As described in Chapter 3.4.3, from the work distributions for each pseudoknot, ∆G for the
full transition was found using the CFT or the JE. ∆Gtransition specifically for the opening/
closing transition investigated was then found by subtracting the work, Wstretch, required
to stretch/relax the handles and the pseudoknot. The latter was found theoretically as
the integral under the Extensible Worm Like Chain model for how the construct stretched
(described in Chapter 4.5.1). As in Chapter 3.4, the work for the full opening transition
including handle and pseudoknot stretching is called Wf (“f” for forward transition) while
the work for the full closing transition is called Wr (“r” for reverse transition).

7.1.1 Finding ∆GPK using the simple area approach
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FIGURE 7.1: PK 11/6: Simple approach work distributions using double
Gaussian (2G) rip subdistributions. Letter names of subdistributions
correspond to the ones used in Figure 5.12 (a) and (b). (a): Histograms
of P (WF ) (B) and P (WR) (B) with single Gaussian fits to the work
distributions, showing their point of intersection (although the number
of data points in each distribution is different, the fitted probability
distributions have been multiplied by the same constant in order to be
comparable and intersect at the correct point). (b) Cumulative distributions
of the work represented by the rips and zips in subdistributions A and B.
Histograms for distribution A not shown due to low number of data points.

As described above, the subdistributions of rips and zips found in Chapter 5.4.2 were
used to theoretically divide the rips and zips representing different types of molecular
transitions before calculation of work energy for each transition. This meant that for PK
11/6 subdivision of the rip and zip data into two or three different types of transitions
was explored while for PK 6/11 one single transition distribution or subdivision into two
types of transitions were investigated. Figures 7.1 – 7.4 show all of the resulting work
distributions as cumulative distributions and in the cases where there were enough data to
justify it also histograms of the work distributions. It may be questioned whether the zip
subdistributions identified in Figures 5.12 and 5.13 really matched the rip subdistributions
well enough to merit this approach, but no other approach seemed immediately obvious.

Interestingly, although initial work investigations using the full distribution of rips and
zips for each pseudoknot were all well fitted by Gaussian distributions (see Figure F.1 in
Appendix F and Figure 7.3), the subdistributions of work energies also were fairly well
fitted by Gaussians, at least when they contained enough data points for fitting. Especially



7.1. Work distributions and ∆G 79

35 105 175 245 315 385 455 525 595
0

5

10

15

20

25

30

35

P(W
F
) and P(−W

R
) for (C), PK 11/6

 simple area 3G

C
ou

nt
s

Work (pNnm)

 

 
W

F
 (C) (n=43, bin width=70)

W
R
 (C) (n=37, bin width=70)

Gaussian fit to P(W
F
) (C)

Gaussian fit to P(W
R
)

(a)

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

P(W
F
) and P(−W

R
) (B), PK 11/6

 simple area 3G

C
ou

nt
s

Work (pNnm)

 

 
W

F
 (B) (n=99, bin width=70)

W
R
 (B) (n=66, bin width=70)

Gaussian fit to P(W
F
) (B)

Gaussian fit to P(W
R
) (B)

(b)

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cumulative Work PK 11/6 
 simple area 3G

F
ra

ct
io

n
 o

f 
co

u
n

ts

Work (pNnm)

 

 

S(W
R
) (C) (n=37)

S(W
R
) (B) (n=66)

S(W
R
) (A) (n=3)

S(W
F
) (C) (n=43)

S(W
F
) (B) (n=99)

S(W
F
) (A) (n=10)

(c)

FIGURE 7.2: PK 11/6: Simple approach work distributions using tripple
Gaussian (3G) rip subdistributions. Letter names of subdistributions
correspond to the ones used in Figure 5.12 (c) and (d). (a): Histograms of
P (WF ) (C) and P (WR) (C) with single Gaussian fits, showing overlapping
distributions. (b) P (WF ) (B) and P (WR) (B) with single Gaussian fits
showing distribution intersection. (c): Cumulative distributions of the
work represented by the rips and zips in subdistributions A, B, and C.
Histograms for subdistribution A not shown due to low number of data
points. Note that although the number of data points in each distribution
is different, the fitted probability distributions shown with the histograms
have been multiplied by the same constant in order to be comparable and
intersect at the correct points.
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FIGURE 7.3: PK 6/11: Simple approach work distributions using single
(i.e., full) Gaussian rip distribution. (a) Histograms and (b) cumulative
distributions of works values for the full distribution of opening and closing
transitions. Although the number of data points in each distribution is
different, the fitted probability distributions shown with the histograms have
been multiplied by the same constant in order to be comparable and
intersect at the correct point.
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FIGURE 7.4: PK 6/11: Simple approach work distributions using rip
tripple Gaussian (3G) subdistributions. Letter names of subdistributions
correspond to the ones used in Figure 5.13. (a): Histograms of P (WF )
(A) and P (WR) (A) with single Gaussian fits (although the number of data
points in each distribution is different, the fitted probability distributions
have been multiplied by the same constant in order to be comparable and
intersect at the correct points). (b): Cumulative distributions of the work
represented by the rips and zips in subdistributions A and B. Histograms
for subdistribution A not shown due to low number of data points.
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for PK 11/6, it looks as though the subdivision of the data according to rip lenght also helps
separate out data points that belong to different work energy distributions.

A sample table with calculated values of work and ∆G for the double Gaussian
subdistribution of transitions for PK 11/6 are summarized in Table 7.1. Similar
tables for the tripple Gaussian subdistributions for PK 11/6 and the double Gaussian
subdistributions for PK 6/11 as well as for the full distributions of work values for both
pseudoknots may be found in Appendix F. A summary with the most important values
from these tables and from the work calculations using the Collins approach is shown in
Table 7.3

The variables included in the tables are defined as follows:

• nf and nr are the numbers of rips and zips included in the analysis.
• 〈Wf〉 and 〈Wr〉 are the averages work values for the forward and reverse work

distributions.
• ∆GCrooks is the work value at the intersection of Gaussian fits to the forward and

reverse work distributions corresponding to ∆G for the full reversible transition
(including stretching contributions) according to the Crooks Fluctuation Theorem.

• ∆GJE(f) is the value of ∆G for the full transition found using the Jarzynski equality for
the forward transitions only, ∆GJE(r) is the same for the reverse transitions only and
〈∆GJE〉 is their average.

• 〈Wstretch(f)〉 and 〈Wstretch(r)〉 are the average calculated contributions to ∆G from
stretching the handles (〈Wstretchhandle(f)〉) and pseudoknot (〈WstretchPK(f)〉) during
the forward and the reverse transitions. 〈Wstretch〉 is an average of the stretching
contributions weighted by the number of forward versus reverse transitions included
in the analysis.

• ∆Gtransition using CFT = ∆GCrooks − 〈Wstretch〉.
• ∆Gtransition using JE = 〈∆GJE〉 − 〈Wstretch〉.
• ∆Gtransition using 〈W〉 = (〈Wf〉+ 〈Wr〉)/2− 〈Wstretch〉.

The last item, “∆Gtransition using 〈W〉”, reflects that in addition to using the CFT and the JE, a
very crude estimate ∆Gtransition was calculated from 〈W 〉, the average of the work energies
for the forward and the reverse transitions. This was done to provide a sense of how the
non-equilibrium conditions of the transitions affect the calculation of the work energy and
also to enable estimation of ∆Gtransition in cases where the data were too sparse for CFT
or JE analysis and in cases where the forward and reverse transition work distributions
overlap to such a degree that the CFT cannot be used as the distributions do not intersect
between their maxima.

The errors shown in the table are the standard errors on the means except in the case of
∆Gtransition using the CFT which was found using a bootstrapping script developed by
Jesper Tholstrup. The error on ∆Gtransition using the Jarzynski equality was not found.

An important point to notice in Table 7.1 is that the energy that goes into stretching
the handles is generally negligible compared to the energy that goes into stretching (or
relaxing) the single stranded portion of the structure that unfolds (or refolds). In this
context it is necessary to emphasize that 〈Wstretch〉 was summed from the average work
required to stretch the handles (〈Wstretchhandle〉) and the average work required to stretch
the full pseudoknot (〈WstretchPK〉) during the forward and the reverse transitions. Thus in
the calculation of the stretch energy, it no allowance is made for the hypothesized shorter
structures unfolding during shorter transitions. This means that the work that goes into
stretching the single strand during each transition is overestimated and better estimates of
∆Gtransition would be higher.

Another thing to note in the detailed work data table is that the estimate made of 〈∆GJE〉
by averaging ∆GJE(f) and ∆GJE(f) is surprisingly close to the value found using the CFT
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TABLE 7.1: PK 11/6, 2G subdistributions: Calculated ∆G from simple area
approach. Calculations are based on the distributions shown in Figure 7.1.
Variable names explained in text. No uncertainty is given for ∆GJE since
its calculation requires bootstrapping or a similar statistical technique (see
[46]). No ∆GCrooks or ∆GJE was found for subdistribution A since the data
for this subdistribution was so sparse.

PK 11/6 2G
Subdistr A Subdistr B
± SEM ± SEM

nf 7 145
nr 2 104

〈Wf〉 (kCal/mol) 125.1± 28.8 42.1± 1.6
〈Wr〉 (kCal/mol) 32.1± 2.0 25.6± 0.9
(〈Wf〉+ 〈Wr〉)/2 (kCal/mol) 79± 14 14.4± 0.9

∆GCrooks (kCal/mol) NA (too sparse) 36.7± 0.9

∆GJE(f) (kCal/mol) NA (too sparse) 12.9
∆GJE(r) (kCal/mol) NA (too sparse) 58.8
〈∆GJE〉 (kCal/mol) NA (too sparse) 35.8

〈Wstretchhandle(f)〉 (kCal/mol) −3.9± 0.5 −1.64± 0.04
〈WstretchPK(f)〉 (kCal/mol) 27.9± 3.8 21.0± 0.5
〈Wstretch(f)〉 (kCal/mol) 24.0± 3.8 19.3± 0.5

〈−Wstretchhandle(r)〉 (kCal/mol) −1.70± 0.5 −1.29± 0.04
〈−WstretchPK(r)〉 (kCal/mol) 16.7± 3.1 15.7± 0.3
〈−Wstretch(r)〉 (kCal/mol) 15.0± 3.1 14.4± 0.3

〈Wstretch〉 (kCal/mol) 22± 3.6 17.3± 0.9

∆Gtransition using 〈W〉 (kCal/mol) 57± 14 16.6± 1.4
∆Gtransition using CFT (kCal/mol) NA (too sparse) 19.4± 1.3
∆Gtransition using JE (kCal/mol) NA (too sparse) 18.5

considering how far the estimates of ∆GJE for either the forward or the reverse transition
alone is. This pattern was generally observed in the work calculations where the number
of work data points used in the Jarzynsky Equality to estimate ∆G was more than about
10.

Nonetheless, of the of the three estimates of ∆Gtransition displayed, the one that is most
reliable is probably the one found using the Crooks Fluctuation Theorem, since the data is
too scarce for a reliable estimate using the Jarzynski Equality. Finding ∆Gtransition using
〈W〉 is really only a crude approximation to the Crooks Fluctuation Theorem method
which assumes that the distributions P (WF ) and P (WR) intersect exactly halfway between
their maxima. Note, however, that in the cases where the CFT cannot be used because
the distributions overlap, the error will be small because the reaction is almost reversible
anyway. This is of course not true in the cases where the CFT cannot be used because the
number of data points in the work distributions is too sparse. The estimate of the energy of
transition for subdistribution A for PK 11/6 found using this method is shown in the table
but must be considered extremely uncertain, not only because of its large SEM but also
because the few zips that were included in the analysis might not derive from the correct
type of transition at all.

In the summary table, Table 7.3, the value for ∆Gtransition considered most reliable for each
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TABLE 7.2: Calculated ∆G (kCal/mol). Collin approach. Variables
explained in text in Section 7.1.1. OBS Uncertainties in DeltaG CFT!

PK 11/6 ± SEM PK 6/11 ± SEM
Bimodal Unimodal

Lower distr Upper distr

n 87 30 50
〈Wf〉 (kCal/mol) 38.2± 1.7 146± 12 39.2± 1.9
〈Wr〉 (kCal/mol) 31.2± 1.3 116± 8 37.7± 2.2
(〈Wf〉+ 〈Wr〉)/2 (kCal/mol) 34.7± 1.1 131± 7 38.5± 1.4
∆GCrooks (kCal/mol) 39.6 156 NA
∆GJE(f) (kCal/mol) 12.8 81.2 11.3
∆GJE(r) (kCal/mol) 54.8 262 96.0
〈∆GJE〉 (kCal/mol) 33.8 171 53.7
〈Wstretchhandle〉 (kCal/mol) 3.1± 0.4 14.7± 1.9 0.3± 0.6
〈WstretchPK〉 (kCal/mol) 18.1± 0.5 26.4± 1.1 17.2± 0.5

〈Wstretch〉 (kCal/mol) 21.2± 0.3 41.1± 1.1 17.5± 0.4
∆Gtransition using 〈W〉 (kCal/mol) 13.5± 1.1 90± 7 20.9± 1.5
∆Gtransition using CFT (kCal/mol) 12.1± 115± NA
∆Gtransition using JE (kCal/mol) 12.6 130 36.1

transition is displayed.

7.1.2 Finding ∆GPK using the Collin approach

The distributions of work energy found by using the Collin approach are seen Figure 7.5.
With this approach (finding the entire area between zip and rip under the force extension
curve) the distributions of work energies found are very broad. For the full data set for
PK 11/6 the distributions were especially broad and appeared better approximated by the
sum of two Gaussian distributions, one sharp with a mean at low work values and one
very broad with a much higher mean, than by a single Gaussian (see Figures 7.5 (a) and
(b)).

For P (WF ) for PK 11/6 the bimodality probably derives from the high force long rips
observed in Figure 5.8 (a), which are included with the Collin approach in contrast to the
simple area approach, since two-step transitions were included by the Collin approach
as long as they had clearly defined start and end points (points corresponding to D and
B in Figure 3.7 in Chapter 3.4.4). The lower of the two work subdistributions thus may
correspond to the main cluster in the scatter plot of relatively short low force rips while
the upper of the two work subdistributions may correspond to the more diffuse cloud of
higher force rips.

For P (WR) for PK 11/6 the bimodality is not readily predicted from the scatter plot in
Figure 5.8 (b)), but is probably due to the gradual refoldings from the high force openings
that are included in the Collin analysis but not in the scatter plot. This may mean that this
approach captures a portion of the data - and a type of transition - that is not well captured
by the simple approach. However, as noted in Chapter 3.4.4 these very large work value
estimations are more vulnerable to errors in estimating the work that goes into stretching
the handles and the single stranded pseudoknot than are the work values estimated by the
simple area approach.

In order to extract free energy information from this bimodal data set, it was divided into
two subdistributions as follows: The data for P (WF ) was fitted by a double Gaussian using
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FIGURE 7.5: Collin approach to finding P (WF ) and P (−WR) using the
area beneath the force extension curve for the full opening and closing
transitions. (a) PK 11/6: Histograms with Gaussian fits of P (WF ) and
P (−WR) as well as a double Gaussian fit to P (WF ). Note that Gaussian
fits are multiplied by a constant to be visible on the scale of the histograms.
(b) Cumulative distributions and cumulative fits for PK 11/6. (c) PK 11/6:
Histograms with Gaussian fits of P (WF ) and P (−WR). The fit to P (WF )
excludes the top outlier (fit to full dataset not shown). (d) Cumulative
distributions and fits for PK 6/11.



7.1. Work distributions and ∆G 85

a Maximum Likelihood Estimation routine just as the rip length and rip force data was in
Chapter 5.4.1. The intersection of the two Gaussians was found and used to distinguish
the two distributions so that all opening transitions with higher energy were classified as
belonging to one distribution and those with lower opening transition energy to the other.
Since with this approach each opening transition was accompanied by a corresponding
closing transition (see Chapter 3.4.4 and in particular Figure 3.7), distributions of closing
transition work energies could automatically be determined. As may be seen in Figures 7.5
(c) and (d), these indirectly determined distributions of P (WR) neatly correspond to higher
and lower work energy distributions exactly as the two distributions for P (WF ). Therefore
the Crooks Fluctuation Theorem and Jarzynski Equality are applied to each of these two
sets of work distributions to find two different Gibbs free energies of transition that are
assumed to correspond to two different molecular transitions.

The results of these calculations are shown in Table 7.2 together with the results for PK
6/11. The variable names in the table are the same as in Table F.1 (see explanation in text of
Section 7.1.1) except that using the Collin approach the number of opening transitions, n,
was the same as the number of closing transitions, so there was no need to distinguish
nf and nr. Also, using the Collin approach 〈Wstretch is identical for the opening and
closing transitions, so there is no need to distiguish (or find the average of) 〈Wstretch(f)
and 〈Wstretch(r).

For PK 6/11, P (WF ) and P (WR) overlap completely when the Collin approach is used
(see Figures 7.5 (e) and (f)). Therefore the CFT cannot be applied and ∆G for the full
transition is calculated simply as the average of 〈WF 〉 and 〈WR〉. Due to the overlap,
the error introduced by this estimate should be very small. Since the work distributions
appear very well approximated by a single Gaussian for both the forward and the reverse
transitions, no attempt is made to divide the work data into subdistributions for PK 6/11
using the Collin approach.

Notice in Figures 7.5 (c) and (d) that P (WF ) (B) and P (WR) (B) do not appear completely
well fit by single Gaussians. Their shapes hint that the full Collin approach work
distribution for PK 11/6 could be better fit by a tripple Gaussian, matching the distributions
found in Chapter 5.4.1, with only very few data points in the highest energy work
distribution. This idea is speculative and is not explored by an actual fit. However, the bad
single Gaussian fit to these subdistributions means that the estimate of ∆GCrooks made by
finding the intersection of the Gaussian fits is probably not very accurate. By eye one would
estimate from Figure 7.5 (c) that the two distributions intersect in between their maxima at
about 700 pNnm or 100 kCal/mol rather than 155 kCal/mol. This would give an estimate
of ∆Gtransition after subtraction of 〈Wstretch of about 60 kCal/mol. While this number still
very different from the estimated transition energy for the lower distribution, it is not as
strikingly high.

In the next section, the estimates of ∆Gtransition using the Collin approach will be
compared to the estimates using the simple area approach and to the values predicted
by programmes that predict RNA folding energies from the basepairs expected in the
structure.

Table 7.3 summarizes the estimated values of ∆Gtransition usiing the different methods/ap-
proaches above. It also shows the theoretical predictions of ∆Gtransition made by the pro-
gramme pknotsRG (43 kCal/mol for PK 11/6 and 49 kCal/mol for PK 6/11, lower values
for shorter the suggested structure of PK 11/6 U and the individual hairpins). For each
approach, the estimated value that is assumed to be most accurate is shown - i.e. when
available the value found using the CFT rather than the JE or a simple average of the work
values. If a CFT estimate could not be made due to too much overlap between opening and
closing transition work distributions, a simple average was judged to be sufficient to find
a good estimate of ∆Gtransition. Therefore the JE estimates are not included in the table at
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TABLE 7.3: Comparison of ∆Gtransition obtained from various methods
(kCal/mol). The values in the first four rows are theoretical predictions of
the energy needed to open the originally expected pseudoknot structures,
the alternative PK 11/6 U pseudoknot structure, and the individual
pseudoknot hairpins. The predictions were made with the programme
pknotsRG [61] and the mfold server [77]. The remaining values are the
best estimates that could be made for the transition investigated; the
method of determining the value is indicated by the subscript on ∆G.

PK11-6 ± SEM PK6-11 ± SEM

Predictions pknotsRG predict of ∆GfullPK 43 46
pknotsRG predict of ∆GPK11/6U 39 NA
mfold predict ∆Ghairpin1 22 ∼ 21.5
mfold ∆Ghairpin2 ∼ 23 29

Simple approach: 1G ∆GCFT not relevant 15.5± 1.0
2G ∆GCFT 19.4± 1.3 15.5± 1.9

∆Gsimple−〈W 〉 57± 30 13.6± 2.3
3G ∆Gsimple−〈W 〉 9.0± 1.8

∆GCFT 20.2± 2.8
∆Gsimple−〈W 〉 48± 11

Collin approach ∆GCFT 12.1
∆Gvisual−guess ∼ 60
∆Gsimple−〈W 〉 20.9± 1.7

all, as they appeared quite volatile (they are highly affected by the lowest work values of
each distribution because the number of data points is so low).

The most important observations are:

• The opening and closing transition is nearly reversible for the full set of transitions
for PK 6/11 and for the PK 11/6 low force distributions

• When all rip data are lumped together and treated according to the simple approach,
the work to open PK 11/6 appears higher than that required to open PK 6/11; when
subdistributions are used clearly one of the 11/6 subdistributions contains much
higher energy transitions than the others.

• The simple approach possibly leaves out a portion of transitions requiring a large
amount of work because these transitions do not take place in a single clear rip or
zip. Such transitions appear better reflected by the Collin approach.

• The Collin approach indicates that the lower force transitions for PK 11/6 require
relatively little work and the higher force transitions much more work than the PK
6/11 transitions

• Since the two approaches use different underlying sets of rips and zips, it is difficult
to directly compare the work estimates made.

• The estimated values of ∆Gtransition are all far lower than the predicted values except
for the estimate from the high work value regime accessed for PK 11/6 with the Collin
approach and to some extent with subdistribution A in the simple approach.

• The overall impression is that for PK 11/6 subdivision of the data into several
underlying transitions with different associated transition energies is reasonable.
There may be two or three transitions. The values in the table fall in three general
ranges: The low distribution of the tripple Gaussian subdistribution used in the
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TABLE 7.4: Calculated kinetic parameters with asymptotic standard error.
Values from F-dependent fits (highlighted) are considered most reliable.
Note that the asymptotic standard error underestimates the error because
it assumes that k0 and x‡ are uncorrelated, which they are not.

PK 11/6 ± ASE PK 11/6 ± ASE

k0 from r lnP (s−1) 0.21 ± 0.01 0.0009 ± 0.0002
- weighted fit to same 0.05 ± 0.003 0.0004 ± 0.0001
k0 from F-dependent fit (s−1) 0.040 ± 0.004 0.006 ± 0.001

x‡ from r lnP (nm) 0.27 ± 0.01 2.25 ± 0.07
- weighted fit to same 0.62 ± 0.01 2.07 ± 0.05
x‡ from F-dependent fit (nm) 0.66 ± 0.02 1.56 ± 0.08
〈x‡〉 from Dudko method (nm) 0.39 ± 0.08 0.69 ± 0.2

simple approch (∆GPK-simple-〈W 〉-3G) and the lower work distribution using the Collin
approach (∆GPK-Collin-Crooks-lower) result in estimates of about 10 kCal/mol, the simple
approach treatment of the full distribution and the double Gaussian subdistribution
both result in estimates of about 20 kCal/mol, and the high work value distribution
treated by the Collin approach results in an estimate of about 60 kCal/mol.

• For PK 6/11 it is harder to see evidence of the presence of different transition
energies and it is difficult to tell whether the averages found using the simple or the
Collin approach is more accurate; both have weaknesses due to the way they were
calculated.

For comparison of the range of values found, values of 18.6 and 22.5 kCal/mol were found
for similar pseudoknots PK400 and PK401 by Hansen et al. [17] by the Jarzynski-method
and 24.8 kJ/mol was found for PK401 using the Crooks Fluctuation Theorem. These values
appear to agree well with those found in the present work. Green et al. [25] find ∆Gtransition
for four different pseudoknots also derived from Infectious Bronchitis Virus in the range of
19–34 kCal/mol, also in the same range as the values found here. Like the values presented
here, the values from [17] and [25] are based on experiments in the presence of Mg2+ ions;
another pseudoknot study by Chen et al [21] does not use Mg ions, which is expected to
have a large stabilizing effect, so this study cannot be easily compared to the values here.

The work distributions and energies and the implications for possible different transitions
observed will be discussed further in Chapter 6.2.

7.2 Kinetics: distance to transition state

The distance to the transition state, x‡, and the standard rate of reaction, k0, were
investigated following the approaches described in Theory 3.3: first using the "rlnP"
method used in Hansen et al.[17], then attempting to use the method described in Dudko
et al.[52]. Results are summarized in table 7.4.

The fits performed to calculate the values in the table using the rlnP-method are seen
in Figure 7.6. As may be seen in the figures, three different fitting methods were used.
Initially, a weighted and an unweighted fit was made to Equation (3.7). The difference
is that in the weighted fit, the data for rlnP are weighted by 1/P. Thus the uncertainty is
assumed to be the same for all the values of P used to calculate the values of rlnP, making
the uncertainty in rlnP proportional to 1/P. If no weights are used, the larger values of P
corresponding to high values of F will disproportionately determine the fit. However, it is
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difficult to determine what the uncertainties on values of P are as P is found directly from
the cumulative probabilty distribution for the data. It is thus not rlnP that is uncertain but
the corresponding value of F. Fitting to the equation

F =
kBT

x‡
ln(1− x‡ ∗ rlnP

k0kbT
) (7.1)

with F as the dependent variable rather than rln(P ) = −k0
x‡kbT

exp((x
‡∗F
kbT

− 1), where P is
the dependent variable avoids this problem. No weigthing of the data is necessary in this
fit; the fits found from fitting to rlnP with and without weights are shown for comparison.
This appears to be the most reliable of the fits and thus these values are probably the most
dependable.
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FIGURE 7.6: Fits to Equation (7.1) to find the parameters x‡ and k0 (called
F-dependent fit) plus weighted and unweighted fits to Equation (3.7) for:
(a) PK 11/6; (b) PK 6/11.

Note that the uncertainty given in table 7.4 is the asymptotic standard error of the
parameters found by the fitting programme Gnuplot. The asymptotic standard error
assumes that the parameters are linearly independent and therefore underestimates the
uncertainty of x‡ and k0 which are quite strongly dependent on each other.

7.2.1 Kinetic parameters: Subdistributions and reverse transitions

Beyond calculation of the kinetic parameters for the full distribution of rip forces for each
pseudoknot, the kinetic parameters for the subdistributions found in Chapter 5.4.2 were
also found. This appeared especially relevant for PK 11/6, as the data fitted in e.g. Figure
7.6 (a) do not appear to lie on a single line corresponding to a single one-step reaction.
Additionally, the full distributions of zip forces were also used to find kinetic parameters
for the reverse distributions. All of these additional calculations were made using F-
dependent fitting since this was the most reliable.

The resulting fits are shown in Figures 7.7 and 7.8 and the kinetic parameters found are
shown in Table 7.5. For ease of comparison with the values found above for the full rip
datasets using F-dependent fitting are also shown again.

The subdistributions made for PK 11/6 do not appear to capture completely the underlying
transition distictions; the data points still do not lie on a curve that corresponds to the
theoretical curve for a one-step reaction. However, both for the tripple and double
Gaussian subdistributions, the high-force subdistribution does appear to lie on a distinct
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FIGURE 7.7: Subdistribution fits to rln(P ) = −k0
x‡kT

exp((x
‡∗F
kT −1) to find the

parameters x‡ and k0 for (a) PK 11/6 double Gaussian subdistributions;
(b) PK 11/6 tripple Gaussian subdistributions; and (c) PK 6/11 double
Gaussian subdistributions. A, B, and C refer to the distributions of
transitions shown in Figures 5.8 and 5.9

curve. Interestingly, the fit to this curve gives quite different parameters than the other curves,
indicating that the high force transition could involve a more brittle structure than the remaining
transitions. If the high force data that does not appear to lie on the portion of the curve
matching the theoretical shape were excluded, the value found for x‡ would possibly be
even higher.

The subdistributions for PK 6/11 also appear to lie on distinct curves. Here the lower force
transitions are the ones that appear more brittle, though they are still less brittle than any
of the PK 11/6 subdistributions.

The fits made to the zip force data appear very well fitted by the shape of the theoretical
curve. Strikingly, for PK 6/11 the parameter value found for x‡ is almost the same as for the
full rip force data set, matching nicely the image of a reversible transition as observed in the
work distribution estimation and Gibbs free energy calculation. In contrast, the parameter
value for x‡ for the zip transitions PK 11/6 corresponds to a much less brittle structure than
the rip transition x‡.
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FIGURE 7.8: Zip transition parameter fits: F-dependent fits to rln(P ) =
−k0
x‡kT

exp((x
‡∗F
kT − 1) for finding the parameters x‡ and k0 for the reverse

(zip) transitions. (a) PK 11/6. (b) PK 6/11.

TABLE 7.5: Calculated kinetic parameters with asymptotic standard error:
full and subdivided rip datasets, zip dataset. Note that the asymptotic
standard error underestimates the error because it assumes that k0 and
x‡ are uncorrelated, which they are not.

PK 11/6 ± ASE PK 11/6 ± ASE

k0: all rip data (s−1) 0.040 ± 0.004 0.006 ± 0.001

k0: 2G subdistr A (s−1) 0.07 ± 0.02 0.001 ± 0.0004
2G subdistr B (s−1) 0.03 ± 0.002 0.10 ± 0.02

k0: 3G subdistr A (s−1) 0.007 ± 0.02
3G subdistr B (s−1) 0.018 ± 0.002
3G subdistr C (s−1) 0.052 ± 0.008

x‡: all rip data (nm) 0.66 ± 0.02 1.56 ± 0.08

x‡: 2G subdistr A (s−1) 0.32 ± 0.06 1.98 ± 0.1
2G subdistr B (s−1) 0.75 ± 0.02 0.94 ± 0.09

x‡: 3G subdistr A (s−1) 0.36 ± 0.07
3G subdistr B (s−1) 0.85 ± 0.02
3G subdistr C (s−1) 0.75 ± 0.05

k0: all zip data (s−1) 0.012 ± 0.001 0.015 ± 0.001

x‡: all zip data (nm) 1.64 ± 0.04 1.51 ± 0.03

7.2.2 Comparison of kinetic parameters to literature values

The values found indicate that PK 11/6 is more brittle (lower x‡) and less stable (higher k0)
than PK 6/11. In experiments very similar to the ones presented here, Hansen et al. [17]
found k0 = 0.16 ± 0.08 s−1 and x‡ = 0.18 nm ± 0.06 for one pseudoknot and k0 =0.074
± 0.007 s−1, and x‡ =0.19 nm ± 0.01 for another. Green et al. [25] found k0 = 0.00012
s−1 for one of their pseudoknots and x‡ in the range of about 2-6 nm for four different
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pseudoknots. Chen et al. 2007 [18] find x‡ = 0.8 nm for the pseudoknot they investigate
with force-jump and force-drop experiments. The experiments by Chen et al. were done
without the presence of Mg ions in contrast to the two other studies, so they may not be
comparable. The others are quite similar to the values found here, with the numbers for PK
11/6 more closely resembling the brittle pseudoknots observed by Hansen et al. and PK
6/11 apparantly more similar to the more stable and less brittle pseudoknots investigated
in Green et al.

For comparison with RNA hairpins, the value for x‡ found by Liphardt et al. for a simple
RNA hairpin 23 basepairs long (an A-form helix) was 11.5 nm and that of a hairpin with
an additional helix (a three-helix junction) was 12 nm while they found that the distance to
transition state for a slightly modified three-helix junction with an extra A-rich bulge was
only 1.6 ± 0.1 nm [4]. Woodside et al. found a range from about 3-20 nm for x‡ for the
unfolding of a series of DNA hairpins of varying stem and loop lenghts [78]. For an RNA
hairpin of stem length 21 with a few bulges, Li et al. found x‡ for the unfolding transition
of 7 ± 5 nm [79].

These values will be examined more closely in Section 6.2. For now let us conclude that the
values found for x‡ for PK 11/6 and PK 6/11 certainly do not indicate that the structures
unfolded were simple hairpins rather than pseudoknots. However they also do not rule
out the possibility that at least PK 6/11 could be folded as a complex type of hairpin rather
than a pseudoknot.

As a check of the validity of the values found for x‡ and k0 (though only for the full
subdistributions of data), Equation (3.8) is used to predict the distributions of unfolding
forces for each pseudoknot at the experimental value of r. See predicted distributions
in Figure 7.9. The shapes of these predicted distributions are quite different from the
observed distributions, especially in the case of PK 11/6 which extraordinarily closely
resembles a Gaussian distribution. This confirms the picture seen already in the scatter
plots of force versus extension in Figure 5.8, namely that the transition observed for PK
11/6 is not a simple two-state transition. It might be that the single Gaussian appearance
of the distribution of unfolding forces for PK 11/6 is in fact hiding a sum of (at least) two
distributions as hinted by Figure 5.8 (a).

7.2.2.1 Dudko method

An alternative equation that can be used to find the kinetic parameters for the molecular
transition was shown in Equation (3.9). This equation by Dudko, Hummer and Szabo
([49], here called the Dudko method, relies on estimating τ(F ) = 1

k(F ) from the histogram
distribution of unfolding forces, p(F). The method tries to extract more information about
the energy landscape than the "rlnP" method based on Bell’s formula that is used above.
It was attempted here, but because of the low number of data, the results are not very
conclusive.

No value for k0 was found. The data was simply too sparse as with only very few
histogram bins the values obtained for τ0 = 1

k0
(and ∆G‡0) were more or less arbitrary (from

fitting to Equation (3.9) using Gnuplot). However, using ν = 1 for a range of histogram
bin widths and starting point values for τ0 = 1

k0
and ∆G‡0, a range of values were obtained

for x‡ which appeared consistent enough to be averaged and included in Table 7.4. The
parameter ν describes the assumptions made about the underlying energy landscape and
ν = 1 corresponds to making no assumptions about the shape of the energy landscape just
as when the "rlnP" method is used. The values of τ(F ) used for the fit were found using
histograms with 5 to 9 bins. No weighting was performed for the fit, although this might
be possible based on the uncertainty of the values found for τ(F ). Figure 7.10 shows the fit
made in Gnuplot to Equation (3.9) with ν = 1 for selected histogram estimates of τ(F ).
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FIGURE 7.9: Prediction of the distribution of unfolding forces using the
values of x‡ and k0 found with the rlnP method for PK 11/6 and PK 6/11.

It is worth noting that part of the difficulty in fitting to the sparse data for τ(F ) might
derive from the fact that the distribution of unfolding forces in fact was not that of a two-
state transition and the underlying assumptions of Equation (3.9) are not fulfilled. Without
weights the fit is highly sensitive to variation of especially the largest values of τ(F ) which
occur at low forces. If the distribution does not correspond to theory in this region whether
due to random variation or due to a fundamentally different underlying distribution, the
values found for τ0 = 1

k0
and ∆G‡0 will not be reliable in the least.

Using the Dudko method with different values of ν to find x‡ and k0 for differently shaped
energy landscapes failed entirely - the fitting was too unstable even to estimate x‡. The
point of the method is to investigate the dependence of the parameters on the shape of
the energy landscape, so this was unfortunate. However, the effect of varying ν versus
the effect of varying x‡ and τ0 is investigated in Figure 7.11 and it is seen that the effect
of varying ν is insignificant compared to the effect of varying τ0 and to a lesser extent x‡.
The extreme variation in the fit with a relatively small change in τ0 illustrates why it was
possible to find a fairly stable ballpark estimate of x‡ by fitting sets τ(F ) from different
histogram estimates to Equation (3.9), whereas it was not possible to find a stable range of
values for τ0.
All in all, however, this theoretically highly interesting method of extracting extra kinetic
information from the data cannot be said to have provided extra insight into the data set
presented here.
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FIGURE 7.10: Selected fits using Dudko method to τ(F ) = 1
k(F ) : (a) Fit for

PK 11/6 using values for τ(F ) found using 7 bins of force data. (b) Fit for
PK 6/11 using values for τ(F ) found using 8 bins of force data.

7.3 Summary of points made in this chapter

In this chapter we have seen that

• The work energy for the transitions represented by the main distributions of data
points are unexpectedly low for both pseudoknots - much lower than the predicted
∆G for the full transition from open to closed pseudoknot.

• The transitions observed for the lower value work distributions for PK 11/6 and for
the full dataset for PK 6/11 were close to reversible with apparantly very similar
unfolding and refolding transitions.

• The Gibbs free energy change calculated using the full set of rip data for PK 11/6 was
significantly larger than that calculated using the full rip data set for PK 6/11

• The found Gibbs free energy changes for the various possible transitions clustered
in three size ranges: about 50-60 kCal/mol (higher than the prediction even for the
full pseudoknots), about 20 kCal/mol (corresponding well to the values of opening
energy for hairpins, especially when it is considered that the energy subtraction for
stretching the single strand is too high), and a possible distribution all the way down
at about 10 kCal/mol, possibly also corresponding to a hairpin when it is considered
that the energy subtraction for Wstretch is too high.

• The rate of pseudoknot opening at zero force was higher for PK 11/6 than for PK
6/11, though not very much

• The distance to transition state for both pseudoknots was much lower than the values
found in literature for RNA hairpins. This means that the structures are more brittle,
i.e., they cannot be deformed significantly without breaking.

• The distance to transition state was lower for PK 11/6 than for PK 6/11, indicating
that PK 11/6 is more brittle than PK 6/11

• The difference in brittleness might indicate that PK 6/11 is more hairpin-like than PK
11/6.
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FIGURE 7.11: Experimental τ(F ) = 1
k(F ) found using Dudko method

for 10 bins for PK 11/6 full data set. (a) plots of theoretical τ(F ) for
various variable values. The differences between the curves due to using
different shape parameters are much smaller than the differences from
using different values of τ0. Variation in values for x‡ and ∆G‡ has less
influence within the range of values where they give real function outputs.
(b) Histogram bins used to find values of τ(F ).

• If data is divided into subdistributions, it becomes apparant that for PK 11/6
transitions occur associated with very different Gibbs free energies - a few apparantly
requiring somewhat more energy than the full opening of the originally predicted
pseudoknot.

• The high-force (and high work energy requring) transitions also appear associated
with a more brittle structure than the remaining transitions for PK 11/6.

In the next chapter we will interpret these results.
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Like the unfolding force distributions, the Gibbs free energy changes and kinetic
parameters calculated for the pseudoknots in Chapters 7.1 and 7.2 point to some important
differences between the pseudoknots. These points were summarized at the end of Chapter
7. The most important points are revisted and drawn together here.

As mentioned in Chapter 7.1, the calculated values of the Gibbs Free energy is not too far
from the values found by Hansen et al. [17] and Green et al. [25] for similar pseudoknots.
The values are lower than expected from the calculations made with computer programs
that can predict the folding free energy of RNA pseudoknots based on their primary
sequence and the difference in values was also not expected from these programmes.

As also mentioned, the reason the measured energy is lower than the predicted energy -
not only for the pseudoknot structures but even for hairpin predictions meant to match the
shorter low force transitions - could derive from an overestimate of the amount of energy
going into stretching the molecule. This would match the hypothesis that the structure
being opened and closed is usually not the expected full pseudoknot structure but one that
has a lower energy of formation - i.e. mostly hairpins.

The different degrees of brittleness found for the different subdistributions of transitions
for PK 11/6 match the idea that the structure requiring high force to unfold and displaying
long rips and zips is indeed a pseudoknot as it is very brittle. The other transitions match
the brittleness cited in literature not for simple hairpin structures but for other pseudoknots
and complex hairpin structures, so it may be that these are the types of conformations seen.

All in all the force and kinetic data lend support to the idea that only the high force long
rips for PK 11/6 actually represent the originally expected pseudoknot structure whereas
the other rips could well represent only one stem opening/closing (a hairpin-like structure)
or an alternative structure altogether.

8.1 Energy Landscapes and intermediate states

The rip force, rip length and free energy change and kinetic data presented all indicate that
more than just a simple transition from closed to open state and back is taking place during
the pseudoknot unfolding and refoldings. As in [18], a schematic energy landscape may
be drawn reminding us that the transition from closed to open pseudoknot is expected
to be at least a three state transition. See Figure 8.1. While the energy landscapes of
RNA hairpin helixes have been described as relatively smooth, allowing easy structural
transitions through unzipping and rezipping of single basepairs, the energy landscape
of pseudoknots are expected to be more “rugged” with sharply favorable conformations
in some areas along the reaction coordinates and smooth transitions between different
structural conformations in others [51, 18]. This certainly may appear to be the case for the
PK 11/6 pseudoknot which apparantly only rarely takes on the conformation of the full
pseudoknot that has a relatively high ∆Gtransition but apparantly may more easily take
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on and transfer in and out of the conformation of both an alternative, shorter pseudoknot
(perhaps) as well as different hairpin-like structures. In contrast, the energy landscape
for the PK 6/11 sequence may be smoother - or with a very high barrier to pseudoknot
formation, so high that it is only very rarely overcome at all and the structure is not
encountered experimentally.

FIGURE 8.1: Energy landscape for a hypothetical three-state transition
from closed to open pseudoknot. The reaction coordinate is an abstract
coordinate along which the transition takes place. There will probably
be several different possible paths with different intermediate states with
different free energy and different barrier heights between states. The
exact path the pseudoknot takes will be partly determined by chance.
Thus it may sometimes get “stuck” in intermediate states.

Much research is currently taking place on the possible tertiary structure of pseudoknots,
both on how it may be predicted and how it may affect their physiological roles. Chen
et al. [21] suggest that triplex formation between the stems and loops of the pseudoknot
may stabilize their structure. These triplexes consisted of UA-U, GC-C and GU-C stem
base pairs interacting with loop bases. In Figures 6.1 (a) and 6.2 (b), possibilities for such
triplex formation in the expected pseudoknot structures may be examined. It appears that
there are many such possibilities for both originally suggested pseudoknot structures, but
that there are most for PK 11/6. Thus this may be part of the reason that the pseudoknot
structure is encountered for PK 11/6 but not for PK 6/11.

See e.g. [15] for further discussion of the possible stabilizing effect of triplexes and
quadruplexes at the bases of the helix junctions where the stems of pseudoknot structures
come together.



9 Conclusion and perspectives

This chapter will draw up conclusions based on the results and discussions presented in
this thesis. Additionally, a few perspectives and ideas for further investigations will be
presented.

9.1 Background for the conclusion

This thesis originally set out to investigate how single stranded RNA pseudoknot
structures unfold when pulled by optical tweezers, whether the different RNA structures
of PK 11/6 and PK 6/11 would show different unfolding patterns, and whether it would be
possible to relate any differences in the unfolding patterns to the differences in ribosomal
frameshifting efficiency of the two structures.

9.1.1 Basic differences

The first observation made from the experiments was that for both pseudoknot structures,
sudden unfolding and refolding events (rips and zips) were observed during pulling
experiments, corresponding to changes in conformation and length of the single stranded
RNA being investigated. Enough unfolding and refolding events were observed for each
structure that they could be compared quantitatively and it became clear that PK 11/6 and
PK 6/11 are different in strength and folding pattern.

From the outset of the investigation it was known that PK 11/6 causes ribosomal
frameshifting while PK 6/11 does not. It is also known that a relatively long stem1 is
important for a pseudoknot to be able to cause efficient frameshifting [59], and it was
therefore hypothesized that the short stem1 of PK 6/11 was the reason it did not cause
frameshifting. Based on structural prediction, the two pseudoknots were expected to
be equally resistant to pulling, however, since the expected pseudoknot structures were
almost symmetric. The pulling experiments in this thesis were therefore carried out to
test whether PK 11/6 would nonetheless turn out to be stronger than PK 6/11 and that
pseudoknot strength would therefore correlate with ribosomal frameshifting efficiency as
proposed by Hansen et al. [17]. Alternatively it was conjectured that PK 11/6 and PK 6/11
might be equally strong and the difference in frameshifting efficiency might arise from the
reversal of the structure encountered by the ribosome.

The results show that the two structures are not structurally symmetric as expected.
Instead, the structural conformations encountered for the two pseudoknots appear quite
different from each other and each RNA sequence apparently is able to pass among several
possible conformations.
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9.1.2 Pseudoknot versus hairpin

A structure that displays the full rip or zip length of the originally expected pseudoknot
was only observed for PK 11/6. In contrast, PK 6/11 never unfolded or refolded in the
manner that would be expected for the full pseudoknot structure. Instead, the unfoldings
and refoldings observed for PK 6/11 corresponded well to the changes in length that would
be expected if stem2 and loop2 of the originally expected pseudoknot were to unfold or
refold suddenly. Thus under the experimental conditions encountered here, PK 6/11 did
not behave as a pseudoknot but rather as an RNA hairpin.

Although PK 11/6 at times to unfolded in the manner predicted for the originally expected
pseudoknot, it too may sometimes have occurred as only a single hairpin made up of stem1
and loop1 of the originally predicted structure. Additionally it may have occurred as an
alternative, shorter pseudoknot structure (PK 11/6 U), formed by the originally expected
stem1 and loop1 plus a second stem and loop made up of the originally predicted loop2.
This alternative pseudoknot structure was observed to be stronger than the hairpin but
still much weaker than the originally predicted pseudoknot, even though predictions of
the free energy of the two pseudoknots were relatively similar.

These observations were supported by subdivision of the unfolding and refolding data for
both pseudoknots into long and short transitions which yielded different sets of estimates
of the Gibbs free energy of formation and of the kinetic parameters characterizing the
structural transitions.

9.1.3 Unexpected structures

Overall the conclusion is that frameshift efficiency and structural strength as characterized
by the force required for unfolding do appear to correlate for PK 11/6 and PK 6/11.
However, the reason for the correlation appears to be that PK 6/11 does not form a
pseudoknot structure at all (or at least it was not observed to do so under the experimental
conditions here and it may therefore be expected that PK 6/11 forms a pseudoknot
structure much more rarely than PK 11/6 does). If it is true that PK 11/6 can form a
pseudoknot while PK 6/11 cannot, this may explain the difference in their frameshifting
efficiency: PK 6/11 does not cause frameshifting simply because it is not a pseudoknot
and therefore does not block ribosomal progress enough to cause the ribosome to slip
backwards.

The occurrence of shorter two-step transitions and frequent hopping back and forth
between different states for PK 6/11 indicates that it may not always fold or unfold
as a simple hairpin but sometimes behaves as two hairpins that are opened and closed
independently during pulling, or that it occurs in other relatively "soft" conformations that
are easily altered.

Likewise the many two-step transitions observed for PK 11/6 indicate that it may
sometimes behave as two hairpins being opened independently or - perhaps more likely
- that it moves from one conformation to another, occasionally even transitioning into the
full pseudoknot structure while being pulled, only to transition to the fully open single
strand when the force is increased enough.

Taken together with the work undertaken by Jesper Tholstrup on related pseudoknot
structures, this thesis shows that many different conformations of the same RNA single
strand sequence may be encountered in a buffer that resembles physiological buffer
conditions. These different conformations may display very different resistance to
mechanical stress and may therefore affect translating ribosomes differently. Perhaps these
structures sometimes cause frameshifting and sometimes not depending simply whether
they are folded as pseudoknots when encountered by a ribosome.
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These observations correspond very well to the conclusions of other RNA pseudoknot
pulling studies proposing the observation of intermediate folding states [18, 21]. It also
matches the conclusion of RNA modeling efforts which suggest that the energy landscape
of different RNA folding conformations may allow easy transition from a hairpin folding
state to a pseudoknot folding state [16].

9.1.4 Predicting tertiary structure

It is clear from this thesis work and the work of Jesper Tholstrup that currently existing
programs for predicting pseudoknot structure cannot tell us which of the many possible
structural conformations we will encounter under physiological conditions nor how
efficiently a potential pseudoknot-forming RNA sequence will promote frameshifting.
Tertiary interactions between the bases that make up the structure cannot yet be accurately
predicted but are apparently very important, as these must cause the main differences
between PK 11/6 and PK 6/11.
As noted, Chen et al. [21] suggest that differences in the strength and frameshifting ability
in a series of pseudoknots were caused by triplex formation between bases, a type of
tertiary interaction. The formation of this hypothesis was aided by the knowledge of the
crystal structure of the basic pseudoknot that this investigation was based on, as the crystal
structure suggested the presence of such triplexes. The crystal structure of the Infectious
Bronchitis Virus (IBV) pseudoknot (the wild-type origin of the pseudoknots studied here)
has not been elucidated, but it is still possible to speculate that triplex formation influences
the stability of IBV pseudoknot variants.

9.1.5 Conclusion summary

1. PK 11/6 and PK 6/11 are different in strength and structure as well as in frameshifting
ability.

2. As hypothesized based on frameshift efficiency, PK 11/6 on average is stronger than
PK 6/11.

3. PK 11/6 was observed to open at least occasionally as the originally predicted
pseudoknot - a brittle but strong structure. The PK 11/6 nucleotide sequence also
appeared to occur relatively often in the conformation of a shorter pseudoknot, PK
11/6 U. Finally, the sequence sometimes appeared to occur only as a single hairpin
or to open one hairpin at a time.

4. PK 6/11 was always observed to open hairpin by hairpin or to occur simply as a
hairpin structure made out of the expected stem2 and loop2 of the originally expected
structure. Thus it may not usually occur as a pseudoknot at all. The structures formed
by the PK 6/11 sequence generally appear weaker and more elastic than the PK 11/6
structures.

5. The structures formed by the pseudoknot-containing RNA single strands vary widely
and the most common conformations are not easily predicted.

6. The PK 11/6 nucleotide sequence may be more likely to form a pseudoknot than the
PK 6/11 sequence because it contains more possibilities for base triplex formation
between loops and stems that would contribute to its structural stability.

7. The observation of multiple folding states match the conclusions drawn by Jesper
Tholstrup in his investigations of related pseudoknots and the observations made in
two pseudoknot pulling studies by Chen et al. [18, 21].



100 Conclusion and perspectives

9.2 Perspectives

The results shown in this thesis underscore how uncertain structural predictions of RNA
folding patterns still are and in particular they draw attention to the dynamics of molecular
folding patterns. At least in the case of single stranded RNA, structural prediction is not
only about finding one particular most likely molecular conformation but about finding a
range of likely structures and being able to predict how easily the molecule moves from
one conformation to another.

A better understanding of the dynamics of mRNA conformations may in a larger context
help shape our knowledge of how ribosomal translation takes place. Unending possibilities
abound for expanding the investigations made in this thesis to better understand these
dynamics. One strategy is to dive further into the detailed dynamics of the RNA nucleotide
sequences investigated here, confirming and expanding the conclusions made here by
investigating the folding patterns of the individual hairpins expeted in each sequence.
Another strategy is to continue the investigation with a wider range of pseudoknots with
different systematic variation in structure. Finally a third option would be to expand the
investigation to directly probe the interaction between ribosomes and pseudoknots.

9.2.1 Further pseudoknot pulling investigations

A logical continuation of the investigations made here would be to make molecular
constructs whose single strand portion consists only of the truncated pseudoknot forming
part of the sequence of PK 11/6, the sequence of stem1 and loop1 of PK 11/6, and the
sequence of stem2 and loop2 of PK 6/11. Such experiments might verify whether the
folding and unfolding observed here corresponds to the opening and closing of these
predicted substructures.

An interesting additional investigation would be to perform pulling experiments on
a construct whose single strand portion corresponds to the wild-type IBV frameshift-
inducing pseudoknot to see whether this highly frameshift-inducing pseudoknot more
often in fact occurs as a pseudoknot than the structures investigated here. Such
experiments should perhaps also be carried out on the individual hairpins expected to
make up the wild-type pseudoknot.

Finally it may be possible in future experiments to try to design IBV pseudoknots with
systematic variation in the number of expected base triplexes between loops and stems.
Examining the frameshift and stall efficiencies as well as the mechanical strength of such
a sequence of pseudoknots in the manner used in the present study could help illuminate
the importance of this particular type of tertiary interaction for the overall most favorable
structures of RNA single strands. If investigations are undertaken to explore tertiary
interactions more systematically, it would be worthwhile to further study existing models
attempting to predict structure by including tertiary interactions, including the Vfold
model developed by Cao et al. [80].

9.2.2 Thermodynamic investigations - diving further into the details of each
molecular transition

An interesting bonus of performing pulling experiments with simpler structures than the
pseudoknots investigated here, i.e., RNA hairpins, is that it the results of such experiments
might better lend themselves to thermodynamic analysis along the lines proposed by
Dudko et al [52] and by Hummer and Szabo [81]. In this type of analysis the underlying
energy landscape of the molecular transition is investigated and mapped, and the apparent
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energy of activation is found. This was difficult in the present study because so many
different transitions were taking place which could not easily be separated. Investigating a
structure that forms fewer intermediates might make the analysis easier.

If investigations are made of the hairpins and the smaller pseudoknot that might constitute
the intermediate states observed here for PK 11/6, they might yield reaction rates and
kinetic parameters characterizing some of the subtransitions observed. This again might
enable a much clearer understanding of the possible folding pathways of PK 11/6 - and
perhaps also of its possible interactions with a ribosome.

If these investigations were also undertaken for PK 10/6 (examined in parallel to PK
11/6 by Jesper Tholstrup), these investigations together might yield a much better
understanding of the folding dynamics of the nucleotide sequences of PK 10/6 and PK
11/6 since they are so closely related.

9.2.3 Experimental improvements and ideas for expanded pulling experiments

If further pulling experiments were to be carried out, it would be a great advantage to
eliminate some of the experimental problems experienced with the NanoTracker setup. In
particular, it would be desirable to eliminate the noise of the galvanic mirrors controlling
the trap positions by implementing a different type of trap movement control, perhaps
using one stationary trap and one trap controlled by an Acousto-Optical Deflector.
Eliminating this noise would first of all improve calibration, but it might also make it easier
to obtain stable molecular tethers because the beads would be moving much less in the
traps, allowing slower molecular interactions. Such a change in the experimental setup,
however, would require rebuilding the NanoTracker or building a new dual trap setup.

If rebuilding of the setup were undertaken, another improvement would be better control
of the z-height and trap strength through possibilities for aligning the lasers and adjusting
their focus. Additionally, a simple improvement can be made by precise quantification
of the intensity loss of the photo diode at high intensities so that it may be corrected for
during calibration as suggested by [39]. Improved data analysis would also be achieved
if the identification of rips and zips on the force-extension curves were done by a formal
filtering routine

Finally, to expand experimental possibilities it would also be extremely useful to have
a feedback system built into the trap control so that the force on the beads could be
maintained at a particular level. This would allow constant force and force-drop/force-
jump experiments, greatly expanding the range of experiments for investigating transition
kinetics. Together with a flow chamber system that allows flushing in of new reactants
(possible to buy for the NanoTracker), a feedback system enabling constant force
experiments could even make it possible to attempt the observation of real time in vitro
frameshifting of translating ribosomes. To do this, a molecular construct containing an
RNA pseudoknot would have to be held between two beads at constant force. One could
then observe the rate at which the pseudoknot opens and closes passively and contrast
it to the rate at which it opens and closes in the presence of translating ribosomes. To
allow ribosomes to translate the structure, however, much work would have to be done, as
the molecular construct would need modification so that the ribosome would attach and
start translating, and the buffer would have to contain tRNAs, amino acids, and other
components needed for translation. Such an experiment would be similar to the ones
carried out by Wen et al. and Qu et al. [13, 14], who observed opening of RNA hairpins by
translating ribosomes.
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A Power spectrum and other calibration
treatment details

This appendix will show how the expectation value of the power spectrum is derived
and how the best routine was selected for fitting the theoretical power spectrum to the
experimental power spectrum. First of all, however, the Fourier transformation which is
used to calculate the power spectrum from data will be described.

A.1 Fourier transforms and power spectrum construction

Performing a Fourier transformation can be seen as dissolving a signal measured over
time into a sum of cosine and sine functions with different frequencies. Thus Fourier
transforming takes a measure of a signal in the time domain and makes it into a measure
in the frequency domain. For a signal x(t) that is continous in time, the Fourier transform
is:

x̃(f) =
∫ ∞
−∞

x(t) e2iπftdt

while the inverse transform is:

x(t) =
∫ ∞
−∞

x̃(f) e−2iπftdt

The transformation can be normalized in several slightly different ways; this one follows
the recommendation in [37]. Note that both time and frequency are defined from −∞ to
∞. For a series of N discrete measurements xn made at times t = nδt with n running from
one to N , the Fourier transformation becomes

x̃(fk) =
N∑
n=1

xn e
−2πifktδt

with frequency fk defined for −N2 ≤ k ≤
N
2 .

As mentioned in the main text, Gittes and Schmidt [34] note that the Fourier transform
contains exactly the same amount of information as the original function, it just presents it
differently. The power spectrum is derived from it with a loss of half of the information but
a gain in usefulness. The one-sided power spectral density for a signal that is continuous
in time has already been shown in the main text but is repeated here for clarity:

Sx(f) = |x̃(f)|2 + |x̃(−f)|2 = 2 |x̃(f)|2

Note that Sx(f) is defined only for f ≥ 0 (which seems to make physical sense when
we are dealing with a time series of distance measurements) and the last equality holds
only for functions x(t) that are real. This is the power spectrum definition that is used for
calibrating optical traps in [34] as well as [35] and [36] (the two-sided power spectrum can
be used as well as long as the treatment is internally consistent). See [34] for the definition
of the power spectrum for discrete data as is needed for actual experimental calibration.
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A.2 Solving the Langevin Equation

Now we go on to derive the expectation value for the power spectrum, Sx(f). This is done
by solving the Langevin equation of Brownian motion for a particle in a harmonic potential
[34]:

Ftot = Ftherm − γv(t)− κx(t). (A.1)

This equation says that the total force on the particle is the sum of the thermal forces
acting on it, a drag force caused by its movement through the medium, and a force from
the harmonic potential. The variable γ as above is the drag coefficient and Ftherm is the
collective effect of the thermal forces from the surrounding medium. We assume that these
thermal forces are exactly balanced by the drag forces and the trap potential at any given
moment so that Ftot can be set equal to zero. This assumption is not entirely trivial, as
discussed in [85], but it works quite well. We then have:

Ftherm = γ
dx
dt

+ κx(t) (A.2)

To solve this equation for the power spectrum, we need to know that |F̃therm|2 = 2γkBT
for all frequencies. The derivation of this entity is also not trivial; one demonstration can
be found in the appendix of [38]. It relies on the fluctuation-dissipation theorem and the
Wiener-Khintchine theorem.

First we find the time derivative of the position measurement series in terms of its Fourier
transform:

x(t) =
∫ ∞
−∞

x̃(f) e−2πftdt =⇒ dx
dt

=
∫ ∞
−∞

x̃(f) (−2πif)e−2πiftdt.

Knowing |Ftherm|2 we can then write the Langevin equation in terms of its Fourier
components:∫ ∞

−∞
F̃therm(f) e−2iπftdt = κ

∫ ∞
−∞

x̃(f) e−2iπftdt+ γ

∫ ∞
−∞

x̃(f) (−2πif)e−2πiftdt

=
∫ ∞
−∞

(κ− 2γπif)x̃(f) e−2πiftdt.

We remove the summation and find that the Fourier transform of the Langevin equation
can be written as:

F̃therm(f) = (κ− 2γπif)x̃(f).

Now we can square the modulus of the equation above and plug in our knowledge of
|F̃therm|2 from the fluctuation-dissipation theorem:

|F̃therm(f)|2 = 2γkBT = |[(κ− 2γπif) x̃(f)]|2

= (κ2 + 4γ2π2f2) |x̃(f)|2

.

Finally we find:

Sx(f) = 2 |x̃(f)|2

=
4γkBT

κ2 + 4γ2π2f2

=
kBT

γπ2 (f2
c + f2)
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where in the last line we have substituted in fc = κ
2πγ .

As described in the main text we can use this theoretical expectation value for the power
spectrum to find the calibration factor β from volts to distance. Ideally (but not with the
Nanotracker noise) we would also be able to find the trap stiffness κ and the calibration
factor α = β κ from volts to force. To find β we need to use theoretical predictions of the
temperature, T , and viscosity, η, of the medium surrounding the bead, as well as the radius,
r, of the bead:

β = sqrt(
kBT

6π2ηrSQPD
).

where SQPD is the experimentally measured power spectrum which has units of

A.3 Selection of the best power spectrum fitting routine

Figure A.1 shows fits to the experimental power spectrum using three different fitting
routines together with the test plots of force-extension curves to evaluate which routine
was most accurate:

• Figure A.1 (a) shows calibration performed by a weighted least squares fit to the
power spectrum region of high frequency only, f � fc, where Sx(f) ≈ kBT

γπ2f2 .
• Figure A.1 (b) shows the corresponding test plot of a force-extension curve for the

pulling of an inelastic polystyrene tether, which should be a vertical line that increases
in force but not extension.

• Figure A.1 (c) shows calibration performed by a weighted least squares fit of the low
and high frequency data regions to the full equation for the power spectrum. This fit
excludes only the noisiest data region. Like the fit in Figure A.1 (a), it was performed
in Gnuplot.

• Figure A.1 (e) shows unweighted fits of the low and high frequency portions of the
experimental power spectrum to the theoretical one. This fit was carried out using a
fitting routine implemented in IgorPro by Jesper Tholstrup.

• Figures A.1 (d) and (f) show the test force-extension curve plots of the pulling of the
same inelastic tether as in Figure A.1 (b). It is seen that the force-extension curve is
closest to vertical in Figure A.1 (f) corresponding to the unweighted fit.

A.3.1 Quantification of Nanotracker noise

For the experiment shown in Figure 2.3.2, we can calculate the “extra” noise caused by
the system beyond the expected thermal motions in the trap. Using Stokes and Power
Spectrum calibration we find the conversion factors α and β for the traps which yield κ
and thus the predicted standard deviation, σ2

xPredict, for Trap 1 and Trap 2 from thermal
motion:

κ1 = 133pN/um =⇒ σ2
x1Predict =

kBT

κ1
= 31nm2

κ2 = 229pN/um =⇒ σ2
x2Predict =

kBT

κ2
= 18nm2

and
σx1Predict = 5.6nm, σx2Predict = 4.2nm

The actual σ2
x is found from the measured σ2

QPD, using β found using the power spectrum
calibration:

σ2
x1 = β2

1σ
2
QPD1 = (80nm/V)2 · (0.21V)2 = 282nm2
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FIGURE A.1: Left: Fits to the power spectra of the two NanoTracker traps.
Right: Tests of the calibration factors through plots of the force-extension
curve for an inelastic polystyrene tether joining two beads. The three
curves on the right should show a vertical line of zero extension for all
forces. The fitting regions for the power spectra on the left are demarcated
by black lines and the values found for β2 for each trap is shown on the
graphs.
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σ2
x2 = β2

1σ
2
QPD1 = (155nm/V)2 · (0.22V)2 = 1162nm2

and

σx1 = 17nm, σx2 = 34nm

Thus the noise from the system increases the standard deviation of the bead positions in
Trap 1, σx1, by a factor of three compared to that predicted from thermal motion alone,
σx1Predict, while the standard deviation of the bead motion in trap 2, σx2, is increased by
a factor of eight compared to σx2Predict. The magnitude of the standard deviation due to
noise is thus quite significant. The total noise experienced by the molecule attached to both
beads is the combination of noise in both traps and has a standard deviation of

√
(172+342)

= 38 nm. This is on the order of the lenght of the unfolding of the pseudoknots.





B Frameshift and stall efficiency
investigation

Frameshifting is the defining characteristic of mRNA pseudoknots that this thesis attempts
to correlate with their mechanical properties. It is therefore important to understand how
the frameshift efficiencies of the pseudoknots are quantified even though this analysis was
not performed by the author.

Images from a gel analysis done by Michael Sørensen to evaluate the frameshift and stalling
efficiencies of PK 6/11 are shown in Figure B.1. This figure illustrates the general procedure
used by Jesper Tholstrup and Michael Sørensen to investigate the frameshifting of the
pseudoknots studied here. Similar images for PK 11/6 are shown in Figure S5 in Tholstrup
et al. [20]. For clearer understanding of the figure, this is the conceptual outline of the
frameshifting assays performed by Jesper and Michael: The pseudoknots were expressed
in vivo in E. coli, meaning that a gene coding for the pseudoknot and a frameshifted or
non-frameshifted protein product was transcribed into mRNA by the E. coli’s cellular
machinery and subsequently translated into protein products by the E. coli’s ribosomes.
When the ribosome was not frameshifted, a relatively short protein was produced before
the ribosome encountered a stop codon in the original readin frame. If frameshifting
occurred, either the ribosome might get stuck within the pseudoknot, producing a very
short protein product, or it would proceed through the opened pseudoknot, producing a
large protein product before reaching a stop codon in the -1 reading frame. The protein
products were labelled radioactively so that they could be extracted from the cells. Then
they were separated on SDS-gels by size and pH, i.e., in two dimensions in contrast
to the conventional frameshift measurement assay, which separates the products in one
dimension only, namely by size. This procedure allows determination of the relative
amounts of each product type. See Figure 2A in [20] for a clear theoretical illustration
of the locations of the expected products on the gel and see the same source for a complete
description of how the frameshift assays were carried out.
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FIGURE B.1: Comparison of 2D SDS-PAGE frameshift assays for protein
products from an mRNA with no pseudoknot (PK421, not otherwise
discussed here), PK 6/11, and a pseudoknot which frameshifts very much
(PK 22/6a, also not otherwise discussed here). The different types of
protein product are separated on the SDS gel according to size (top:
larger, bottom: smaller) and isoelectric point (increasing pH from left to
right). “Stop” indicates non-frameshifted ribosomes which encountered
a stop codon downstream from the pseudoknot. “Stall” marks products
from stalled frameshifted ribosomes and “Frameshift” marks full protein
products from frameshifted ribosomes. Also seen on the gel are short
polypeptide fragments (left part of bottom blobs) and markers of known
peptide length (middle dots). Assays and illustration kindly made by
Michael Sørensen.



C Biochemical methods

As described briefly in Chapter 4.3, for this thesis, the author participated in synthesizing
the downstream DNA handles and the mRNA pseudoknot strand, annealing handles to
RNA and preparing RNA-handle constructs with beads for pulling. Below the routine
for preparing RNA-handle constructs will be described in detail. As mentioned, all of
the protocols were suggested by and carried out with the guidance of Jesper Tholstrup,
who also synthesized plasmids, finished upstream handles and DNA oligos used for
downstream handle synthesis which were used in the processes described below.

C.1 Preparing RNA-handle constructs: downstream handle preparation

Downstream handles were prepared from DNA oligos which had digoxigenin attached to
the 5’ end of the strand that would become the handle strand.

Double-stranded (ds) DNA oligos had been generated by PCR by Jesper Tholstrup. They
were extracted with phenol and digested with λ-exonuclease which breaks down DNA
strands from the 5’ end. Since digoxigenin protected the handle strand, the exonuclease
only removes the opposite single strand, leaving single stranded handle. After digestion,
the handles are washed with EDTA and sarcosyl to remove the exonuclease, then again
carefully extracted with phenol, washed with salt, measured and frozen for later use.

Detailed protocol starting from purified handle oligos:

• DNA pellet from PCR is diluted with 40 µm Millipore water
• measure concentration of ds handle oligos in NanoDrop
• save 0.5 µl ds oligo solution (“pre-λ”) for gel testing
• Add water (first!), 10 µl 10xλ-exonuclease buffer (Fermentas), and 4 µl λ-exonuclease

(Fermentas) to a total of 100 µl
• Incubate for 24 minutes at 37 . The resulting solution is called “λ-exo“
• Prepare an agarose gel and run marker (GeneRuler), “λ-exo“ and “pre-λ” solution to

check that the handles have been produced satisfactorily
• The remaining “λ-exo“ handle solution is labelled ”5’ dig“ handle solution plus name

and date and frozen at −20

C.2 DNA plasmids and transcription of DNA to make RNA

The DNA template for the pseudoknot is an artificial sequence that has been designed,
purchased and inserted in a plasmid. A plasmid is a relatively small double stranded
circular piece of DNA often found in bacteria. It can be replicated independently of the
rest of the DNA in the cell in which it is found and can also be picked up from solution by
bacteria which then express the genes found on the plasmids. This plasmid property was
used for the in vivo frameshifting assays made by Jesper Tholstrup.
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Before the DNA template is transcribed into RNA it is amplified by PCR. During this
process lots of linear copies are made of the pseudoknot-encoding section of the plasmid
that is needed. This is then used to synthesize RNA. The process is as follows:

• We start with solutions of circular plasmid DNA with PK sequence + primers + T7
DNA polymerase

• → PCR is performed to copy DNA
• → Linear DNA template is extracted and purified
• →We add linear DNA template + T7 RNA polymerase
• → RNA is extracted, purified and frozen

C.2.1 Preparing RNA-handle constructs: template amplification

PCR is a simple sequence of heating and cooling reactions that create many copies of a
DNA template. The principles of the PCR routine used here are: Heating to 95 denatures
the circular plasmid DNA, separating the double strand into single strands. Cooling to 58
allows primer to bind. Reheating to 72 allows Taq-DNA polymerase to copy the desired
strand (Taq polymerase was originally purified from Thermophilus aquaticus bacteria who
live at very high temperatures). The cycle is performed automatically and is continued
until the DNA has been copied sufficiently.

Protocol for template amplification by PCR:

• A plasmid solution is prepared for PCR: water, Fermentas buffer (Dream Taq),
nucleotides, primer, plasmid and polymerase are added in correct amounts in that
order

• PCR is done in an incubator which can be programmed to turn the temperature up
and down at specific intervals so that the recommendations from Fermentas for the
PCR reaction are followed

• The resulting linear template DNA is run on an agarose gel with a marker to check
that the reaction worked as expected

• The template is extracted and washed with the buffers provided by Fermentas
• The concentration of the resulting purified DNA template is measured by NanoDrop.
• The remaining DNA template is labelled and frozen at −20

C.2.2 Preparing RNA-handle constructs: RNA synthesis

RNA is transcribed from the DNA template using T7 RNA polymerase (this is a polymerase
originally found in T7 phage). This process requires great care, since RNA is easily
destroyed by RNA-ase enzymes that are everywhere. To counteract this, RNA-ase
inhibitor, RNA-sin, is added to the reaction mixture.

The protocol for transcription is:

• Water, transcription buffer (Fermentas), nucleotieds, template DNA, RNA-sin and T7
DNA polymerase are mixed

• The mixture is incubated for 1.5-2 hours at 37
• The reaction is stopped by cooling to 15
• The resulting RNA mixture is run on an agarose gel together with a marker and with

DNA template to check that the reaction has succeeded
• The RNA is extracted with phenol, chloroform, salt (NaCl) and ethanol:
∗ phenol is added (under a fume hood!) to the solution and mixed on a whirl

mixer, then the supernatant is removed (that’s where the RNA is) and the phenol
is properly disposed of
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∗ chloroform is added (also under a fume hood) and mixed, the supernatant
including the RNA is again removed and the chloroform properly disposed of

∗ 96 % ethanol is added along with NaCl to 200 µM in 1 µl volume
∗ freeze at −20 for 30 minutes
∗ centrifuge at 0 for 20 minutes
∗ remove the solution, taking care not to disturb the pellet of salt and RNA at the

bottom of the Eppendorf tube
∗ dry under exhaust and mix with TE-buffer

• The resulting RNA is again measured on an agarose gel against a marker (to see if
the reaction worked). Some template DNA will also be left behind in solution, but
should not be a problem

C.3 Preparing RNA-handle constructs: annealing handles to RNA

RNA is annealed to DNA handles by heating. The process is not always succesful and
the relative amounts of RNA solution and either handle solution may need to be adjusted,
so careful checking using an agarose gel to examine the partial products of the process is
necessary. See Figure 4.4 for an example.

Protocol:

∗ Mix 10 µl control samples of RNA, RNA plus biotin handle, and RNA plus digoxigenin
handle, and 40 µl RNA plus both handles in buffer R. Order of mixing: Buffer R, water
to dilute if necessary, RNA, handle
∗ Use very little RNA, 1 % of the total volume may be enough - or even too much. The

amount of handle needed depends on concentration
∗ Heat RNA-handle solution to 75 for 5 minutes
∗ Cool slowly to 15 over the course of about 1 hour
∗ Test the outcome on an agarose gel
∗ Store the RNA-handle constructs at −20 or even −70

C.4 Annealing RNA constructs to beads for pulling experiments

The basic protocol for sample preparation for the pulling experiments was:

∗ 5 µl 1x buffer R was mixed with 0.3 µl 3.05 µ diameter streptavidin coated polystyrene
beads (Spherotech, SVP-30-5) and 0.1-0.5 µl RNA construct
∗ Mix by tapping with a finger and leave for 10-25 minutes at room temperature
∗ Dilute with 250 µl 1x buffer R
∗ Add 0.5-1.5 µl 3.05 µ diameter anti-digoxigenin-coated polystyrene beads (Spherotech,

DIGP-20-2)

All components were kept at 5 except for the RNA construct, which was kept at −20 . It is
important to be aware that anti-digoxigenin degrades over the time of a few months at this
temperature. Again, the RNA construct also may degrade over the course of a few months,
though the exact time scale is not known.





D Testing bias from super tethers

The data for unfolding and refolding forces and distances rely heavily on data from only a
few experiments. This is simply because the molecular tethers caught in some experiments
survived pulling without breaking far better and at much higher forces than the others.
A few of the very resistant molecular tethers also displayed many more clear pseudoknot
openings and closings than the others, and these "super tethers" which survived many
pulls with many clear rips or zips consequently dominate the results.

For pseudoknot PK 11/6 molecular tethers were caught in 14 experiments, but only eight
displayed clear molecular transitions (rips or zips). Of these eight, two super tethers gave
rise to respectively 108 and 50 out of 171 pulls with rips and/or zips recorded. In the case
of pseudoknot PK 6/11a, a single experiment gave rise to the majority of the data: 51 out of
altogether 64 pulls with rips and zips. The remaining thirteen pulls with rips and/or zips
occurred in five different experiments.

To examine how the individual super tether characteristics might have influenced the
overall results, the unfolding and refolding forces and rip/zip lengths for the subsets of the
data deriving from super tethers and non-super tethers were examined. The average values
are shown in tables D.1 and D.2. Unfortunately, for both pseudoknots so few data derived
from non-super tethers that it was very difficult to determine whether their distribution
differed significantly from the super-tether distributions. Though the average rip and zip
forces observed for the non-super tethers are lower than those of the super tethers, this
might simply be a consequence of the higher forces applied to the super tethers. The non-
super tethers usually broke before such high force could be applied; if not, they did not
display any large number of clear rips or zips.

The most striking observation in the super tether data is that the distribution of unfolding
forces deriving from the data for the PK 11/6 super tether "2011-05-05-Ex4" is bimodal. This
stands out in contrast to the data for the other PK 11/6 super tether, "2011-04-26-Ex2", and
the overall unfolding force data, which appear unimodal. If the data for the super tether
"2011-04-26-Ex2" were ignored, the overall unfolding force data for PK 11/6 would appear
bimodal just as the unfolding force data for PK 6/11, which is dominated by a single super
tether. It must thus be kept in mind that more data for PK 6/11 a might have changed the
observed distributions somewhat.

To provide a visual comparison to the distributions for the overall unfolding force data,
the distributions of unfolding and refolding forces for super tether "2011-04-26-Ex2" and
for the remaining tethers (super tether "2011-05-05-Ex4" plus non-super tethers) are shown
in Figure D.2. They may be compared to the entire force distributions for PK 11/6 in Figure
E.1 and the force distributions for PK 6/11 a in Figure E.2.

It did not make sense to examine the subsets of the data from super tethers and non-super
tethers which occurred in one or two steps in detail since the number of two-step transitions
was so low. Note however that all high force and most long rips for PK 11/6 were observed
in "2011-04-26-Ex2". Thus the force-extension scatter plot for the subset of data excluding
"2011-04-26-Ex2" is quite similar to that deriving from PK 6/11 a. See figure D.1
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122 Testing bias from super tethers

TABLE D.1: Super tether unfolding/refolding forces and rip/zip lengths: PK
11/6

nu nr Fu±sem(pN) Fr±sem (pN) Xu±sem (nm) Xr±sem (nm)

All 1st rips 169 113 19.8±0.5 13.5±0.3 15.4±0.4 12.4±0.3

No super
tethers 13 8 13.9±1.3 9.7±1.7 16±2 13±2

"2011-04-26-
Ex2" 106 63 21.3±0.7 13.6±0.4 15.4±0.4 11.3±0.4

"2011-05-05-
Ex4"

50 42 20.3±1.1 14.0±0.4 15.3±0.5 14.0±0.4
10.6±2.5

"2011-05-05-
Ex4" and
non-super
tethers

63 50 20.4±1.3 13.3±0.5 15.4±0.5 13.8±0.5
11.5±2.8

TABLE D.2: Super tether unfolding/refolding forces and rip/zip lengths: PK
6/11 a

nu nr Fu±std(pN) Fr±sem (pN) Xu±sem (nm) Xr±sem (nm)

All 1st rips 64 51 16.8±0.5 13.8±0.5 12.7±0.4 12.6±0.6
10.1±2.8

No super
tethers

14 7 15.5±2.9 9±1 14±1 11±2
6.6±0.8

"2011-11-03-
Ex6" 50 44 16.9±1.1 14.6±0.6 12.5±0.4 12.7±0.6

11.0±2.2

The reason the super tethers did not break is not known.

In the case of "2011-05-05-Ex4", a PK 11/6 super tether, the stiffness of trap 1 was
significantly lower than usual at about 106 pN/µm compared to an average of about
153 pN/µm (there was large variation from experiment to experiment, however; see
description of trap stiffness in Methods and Materials). It could be that the lower trap
stiffness, which would reduce the trap-induced vibrations, strained the molecule less than
usual. Certainly the lower effective trap stiffness experienced by the molecule, 75 pN/µm
versus an average of 91 ± 13 pN/µm, would lower the expected force at which the
molecule unfolds. For the other PK 11/6 super tether, "2011-04-26-Ex2", the trap stiffness
experienced by the molecule, 93 pN/µm, was very close to the average. The same was true
for the PK 6/11 super tether, "2011-11-03-Ex6"; the effective trap stiffness was 107 pN/µm
versus an average of 108 ± 14 pN/µm.
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FIGURE D.1: PK 11/6 excluding data for "2011-04-26-Ex2": Scatter plots
of a) unfolding force versus rip length and b) refolding force versus zip
length. Black dots represent rips/zips classified as occurring in one step,
red triangles represent the first step of two-step transitions and blue
triangles represent the completing step of two-step transitions.
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FIGURE D.2: Super tether influence on unfolding force distributions for PK
11/6: Histogram (a) and cumulative functions (c) for "2011-04-26-Ex2" as
well as histogram (b) and cumulative functions (d) for the remaining data
for the pseudknot. The latter are dominated by data from another super
tether, "2011-05-05-Ex4". Compare to figure ?? a) and c).



E Additional data for separating Rip and
Zip subdistributions

E.1 Force distributions of rips and zips

The distributions shown in Figures E.1 and E.2 are not used directly to separate rip
subdistributions but do add some insight into the distributions that are also seen in two
dimensions in the scatter plots in Figures 5.8 and 5.9.

E.2 Results of statistical tests

TABLE E.1: Results of model comparison testing for PK 11/6 one-step rips
and zips. 1G, 2G, 3G, 4G stand for single, double, tripple and quadruple
Gaussian. The method numbers refer to the test methods listed above.
Gray highlights the criteria that were used most in final evaluation.

rips zips

Method lengths forces lengths forces

1 Simple χ2 testa 1G rejected 1G rejected 1G not rejected 1G rejected

2 Best R2 valueb 2G best 1G best 1G best 1G best

3 F-test of extra
model term

3G best 4G best 2G best 1G best

4 AIC test 3G best 4G best 2G best 2G best

5 Multivariate
Gaussian Mixture
fit

2G/3G (unstable) usually 2G (unstable)

6 Visual inspection
(scatter plots)

2G or 3G 1G

Conclusion 2G or 3G 1G

a Rejection evaluated at 5 % level.
b The best R2 value was the one closest to 1. Most of the fits had R2 values within a

few percent of unity.
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FIGURE E.1: Rip (left) and zip (right) force distributions for PK 11/6: (a)
Histogram of first one-step elongation rip forces fit by single, double, and
tripple Gaussians. (b) Histogram of first one-step relaxation zip forces
with single, double and tripple Gaussian fits. (c) and (d) Cumulative
distributions of data and fits (note x-scales are adjusted so that maximum
detail of the distribution can be discerned). (e) and (f) Residuals between
fitted curves and experimental cumulative distribution.
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FIGURE E.2: Rip (left) and zip (right) force distributions for PK 6/11: (a)
Histogram of first one-step elongation rip forces fit by single, double, and
tripple Gaussians. (b) Histogram of first one-step relaxation zip forces
with single, double and tripple Gaussian fits. (c) and (d) Cumulative
distributions of data and fits (note x-scales are adjusted so that maximum
detail of the distribution can be discerned). (e) and (f) Residuals between
fitted curves and experimental cumulative distribution.
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TABLE E.2: Results of model comparison testing for PK 6/11 one-step rips
and zips. 1G, 2G, 3G, 4G stand for single, double, tripple and quadruple
Gaussian. The method numbers refer to the test methods listed above.
Gray highlights the criteria that were used most in final evaluation.

rips zips

Method lengths forces lengths forces
1 Simple χ2 testa 1G not rejected 1G rejected 1G not rejected 1G not rejected

2 Best R2 valueb 1G best 2G best 1G best 2G best

3 F-test of extra
model term

2G best 2G best 2G best 1G best

4 AIC test 2G best 2G best 2G best 3G best

5 Multivariate
Gaussian Mixture
fit

usually 2G (unstable) usually 3G (unstable)

6 Visual inspection
(scatter plots)

2G 1G

Conclusion 2G 1G

a Rejection evaluated at 5 % level.
b The best R2 value was the one closest to 1. Most of the fits had R2 values within a few

percent of unity.



F Additional data on work and kinetics

F.1 Work distributions - single distribution for all work data treated
with simple approach

The simple approach work energy analysis and Gibbs Free Energy calculation was first
done for the full set of one-step rips and zips observed for each pseudoknot, i.e., not divided
according to the subdistributions found in Chapter 5.4.2. Subsequently, the analysis was
extended to individual subdistributions

Using the simple area-under-rip/zip method, distributions including all unfolding and
refolding work values in P (WF ) and P (−WR) were obtained which were fairly well
approximated by Gaussian distributions as may be seen in figures F.1 and 7.3. For P (WF ),
the Gaussian fit was improved by excluding the top two work value data points for PK
11/6, so this fit is used for the remaining analysis (compare the full black curve to the
dash-dotted in Figure F.1 (a)). These two high outlier data points probably represent the
two one-step data points (light blue crosses) furthest to the top and right in the scatter plot
in Figure 5.8 (a). Since most of the other data points at this high force and rip length in
the scatter plot are part of two-step transitions, they are not included in this version of the
work analysis. The simple approach used here therefore quite possibly "misses" part of the
dataset in the work analysis.

It was realized that it made more sense to use rip subdistributions for the analysis of the
work for PK 11/6 since a single distribution of transitions was effectively rejected for this
pseudoknot sequence. The original figure is still shown below.

For both pseudoknots the Gibbs free energy of the equilibrium full transition was
found using the Crooks Fluctuation Theorem (CFT) as the intersection of the Gaussian
approximations to the full opening and closing transition work distributions (see Chapter
3.4.3). From ∆G for the full transition was subtracted an average of 〈Wstretch(f)〉 and
〈Wstretch(r)〉 (for the simple area method, the average is weighted by the number of data
points for the forward and the reverse transition). HowWstretch is found is described briefly
below and in detail in Chapter 3.4.3. An estimate is thus found for ∆GPK , the Gibbs free
energy change for opening/closing the pseudoknot without force.

Using the same work distributions, the Jarzinsky Equality (JE) method of finding the
equilibrium ∆G of the full transition was also attempted. This was done for both the
unfolding and the refolding work distributions, yielding starkly different estimates of the
equilibrium ∆G, as might be expected due to the low number of data points and the
vulnerability of the Jarzinsky method to low value outliers. Following Collin et al. [46]
the average of the two Jarzinsky estimates for ∆G was then found for the full transition.
It was for both pseudoknots surprisingly close to the average found using the Crooks and
averaging methods described above.
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FIGURE F.1: PK 11/6: Simple approach histograms (a) and cumulative
distributions (b) of raw works values for opening and closing transitions
measured as the areas under the rips/zips on the force-extension curves.
For opening transition work, two Gaussian approximations are made, one
which excludes the top two outliers and one which includes all data points.
The fit that excludes the top two outliers appears much better and is the
one used subsequently. Note that although the number of data points in
each distribution is different, the fitted probability distributions have been
multiplied by the same constant in order to be comparable and intersect
at the correct point, which means that they do not completely match the
corresponding data histograms in height.



F.1. Work distributions - single distribution for all work data treated with simple approach 131

TABLE F.1: Calculated ∆G using 1st rips during molecule extension and
1st zips on molecule relaxation. Simple area method. Variable names
explained in text. No uncertainty is given for ∆GJE since its calculation
requires bootstrapping or a similar statistical technique (see [46]).

PK 11/6 ± SEM PK 6/11 ± SEM
nf 151 49
nr 100 45
〈Wf〉 (kCal/mol) 44.8± 1.9 32.6± 1.6
〈Wr〉 (kCal/mol) 26.1± 0.9 28.4± 1.7
(〈Wf〉+ 〈Wr〉)/2 (kCal/mol) 35.4± 1.0 30.5± 1.2
∆GCrooks (kCal/mol) 38.0± 1.0 30.8± 1.9
∆GJE(f) (kCal/mol) 13.0 9.4
∆GJE(r) (kCal/mol) 58.9 45.0
〈∆GJE〉 (kCal/mol) 35.8 27.3
〈Wstretchhandle(f)〉 (kCal/mol) −1.76± 0.06 −1.84± 0.09
〈WstretchPK(f)〉 (kCal/mol) 21.4± 0.5 17.2± 0.5
〈Wstretch(f)〉 (kCal/mol) 19.6± 0.5 15.4± 0.5
〈−Wstretchhandle(r)〉 (kCal/mol) −1.31± 0.04 −1.72± 0.09
〈−WstretchPK(r)〉 (kCal/mol) 16.1± 0.4 16.7± 0.6
〈−Wstretch(r)〉 (kCal/mol) 14.8± 0.4 15.0± 0.5
〈Wstretch〉 (kCal/mol) 17.7± 0.3 15.3± 0.4
∆GPK using 〈W〉 (kCal/mol) 17.7± 1.2 15.3± 1
∆GPK using CFT (kCal/mol) 20.3± 0.5 15.5± 1
∆GPK using JE (kCal/mol) 18.1 12.1
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TABLE F.2: Calculated ∆G using subdistributions, simple area approach
for the PK 11/6 tripple Gaussian distribution subdivision. Calculations are
based on the distributions in Figure 7.2. Variable names explained in text
in section 7.1.1. No uncertainty is given for ∆GJE since its calculation
requires bootstrapping or a similar statistical technique (see [46]). No
∆GCrooks was found for the 3G PK 11/6 distributions since they overlapped
so much that the method was meaningless.

PK 11/6 3G
Subdistr A Subdistr B Subdistr C
± SEM ± SEM ± SEM

nf 10 99 43
nr 3 66 37

〈Wf〉 (kCal/mol) 111± 21 47.6± 1.6 27.0± 1.8
〈Wr〉 (kCal/mol) 27.8± 4.4 26.6± 1.1 24.0± 1.2
(〈Wf〉+ 〈Wr〉)/2 (kCal/mol) 69± 11 37.5± 1.0 25.5± 1.1

∆GCrooks (kCal/mol) NA (too sparse) 37.8± 2.6 NA (overlap)

∆GJE(f) (kCal/mol) NA (too sparse) 20.4 12.2
∆GJE(r) (kCal/mol) NA (too sparse) 59.3 48.4
〈∆GJE〉 (kCal/mol) NA (too sparse) 39.7 30.3

〈Wstretchhandle(f)〉 (kCal/mol) −3.5± 0.4 −1.8± 0.04 −1.2± 0.05
〈WstretchPK(f)〉 (kCal/mol) 27.0± 3.0 21.7± 0.5 19.1± 1.0
〈Wstretch(f)〉 (kCal/mol) 23.5± 3.0 19.9± 0.5 17.9± 2.1

〈−Wstretchhandle(r)〉 (kCal/mol) −1.5± 0.3 −1.34± 0.05 −1.20± 0.06
〈−WstretchPK(r)〉 (kCal/mol) 15.7± 2.0 15.6± 0.4 15.9± 1.8
〈−Wstretch(r)〉 (kCal/mol) 14.2± 2.1 14.3± 0.4 14.7± 1.8

〈Wstretch〉 (kCal/mol) 21.4± 2.8 17.7± 1.0 16.5± 1.3

∆GPK using 〈W〉 (kCal/mol) 48± 11 19.5± 1.5 9.0± 1.8
∆GPK using CFT (kCal/mol) NA (too sparse) 20.2± 2.8 NA (overlap)
∆GPK using JE (kCal/mol) NA (too sparse) 22.0 13.8
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TABLE F.3: Calculated ∆G using subdistributions, simple area approach
for the PK 6/11 double Gaussian distribution subdivision. Calculations are
based on the distributions in Figure 7.4 (c). Variable names explained in
text in section 7.1.1. No uncertainty is given for ∆GJE since its calculation
requires bootstrapping or a similar statistical technique (see [46]). No
∆GCrooks was found for the 3G PK 11/6 distributions since they overlapped
so much that the method was meaningless.

PK 6/11 2G
Subdistr A Subdistr B
± SEM ± SEM

nf 38 11
nr 38 8

〈Wf〉 (kCal/mol) 36.9± 1.4 19.7± 2.3
〈Wr〉 (kCal/mol) 30.8± 1.8 25.0± 4.7
(〈Wf〉+ 〈Wr〉)/2 (kCal/mol) 33.9± 1.1 22.3± 2.6

∆GCrooks (kCal/mol) 31.2± 1.7 NA (overlap)

∆GJE(f) (kCal/mol) 15.3 NA (too sparse)
∆GJE(r) (kCal/mol) 47.6 NA (too sparse)
〈∆GJE〉 (kCal/mol) 31.4 NA (too sparse)

〈Wstretchhandle(f)〉 (kCal/mol) −1.93± 0.09 −1.54± 0.09
〈WstretchPK(f)〉 (kCal/mol) 18.0± 0.4 14.5± 1.6
〈Wstretch(f)〉 (kCal/mol) 16.1± 0.4 12.9± 1.6

〈−Wstretchhandle(r)〉 (kCal/mol) −1.79± 0.09 −0.4± 0.3
〈−WstretchPK(r)〉 (kCal/mol) 17.0± 0.5 3.3± 2.4
〈−Wstretch(r)〉 (kCal/mol) 15.2± 0.5 2.9± 2.4

〈Wstretch〉 (kCal/mol) 15.7± 0.8 8.7± 1.7

∆GPK using 〈W〉 (kCal/mol) 18.2± 1.3 13.6± 2.3
∆GPK using CFT (kCal/mol) 15.5± 1.9 NA (overlap)
∆GPK using JE (kCal/mol) 22.7 NA (too sparse)
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