Applied Statistics
 Mean and Width

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Defining the mean

There are several ways of defining "a typical" value from a dataset:
a) Arithmetic mean
b) Mode (most probably)
c) Median (half below, half above)
d) Geometric mean
e) Harmonic mean
f) Truncated mean (robustness)

Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

For the width of the distribution (a.k.a. standard deviation or RMS) it is:

$$
\hat{\sigma}=\sqrt{\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}}
$$

Note the "hat", which means "estimator". It is sometimes dropped...

Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

For the width of the distribution (a.k.a. standard deviation or RMS) it is:

$$
\hat{s}=\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

Note the "hat", which means "estimator". It is sometimes dropped...

How incorrect is the naive RMS?

Such questions can most easily be answered by a small simulation...
Produce $\mathrm{N}=5$ numbers from a unit Gaussian, and calculate the RMS estimate:
Distribution of RMS estimates on five unit Gaussian numbers

So, the "naive" RMS underestimates the uncertainty a bit...

Relation between RMS and Gaussian width...

When a distribution is Gaussian, the RMS corresponds to the Gaussian width σ :

Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with more data?

$$
\begin{gathered}
\text { Example: } \\
\text { Cavendish Experiment } \\
\text { (measurement of Earth's density) } \\
\mathrm{N}=29 \\
\mathrm{mu}=5.42 \\
\operatorname{sigma}=0.333 \\
\operatorname{sigma}(\mathrm{mu})=0.06 \\
\text { Earth density }=5.42 \pm \mathbf{0 . 0 6}
\end{gathered}
$$

Mean and Width

Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?

For measurements with varying uncertainty, there is no meaningful RMS! The uncertainty on the mean is:

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

Skewness and Kurtosis

Higher moments reveal something about a distributions asymmetry and tails:

Negative Skew

Positive Skew

$$
\kappa=\frac{\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{4}}{\left(\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}-3
$$

MESOKURTIC
(normal tails)

PLATYKURTIC
(thinner tails)

