
Applied Statistics 
Multivariate Analysis - part II  

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

Fisher Discriminant



The details of the formula are outlined below:
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~w = (⌃A +⌃B)
�1 (~µA � ~µB)

F = w0 + ~w · ~x F is what you base 
your decision on.

Given weights (w), 
you take your input 
variables (x) and 
combine them 
linearly as follows:

For each input variable (x), 
you calculate the mean (µ), 
and form a vector of these.

Using the input variables (x), 
you calculate the covariance 
matrix (Σ) for each species 
(A/B), add these and invert.

Fisher Discriminant



Non-linear MVAs
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While the Fisher Discriminant uses all separations and linear correlations,
it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.

But this is very rarely the case, and therefore more “tough” methods are needed...

✓
?



Todays goal: Introduction
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MultiVariate Analysis (MVA) is a huge subject, and it is impossible to go into any
detail in one day.

The goal of todays exercise is to:
• Give you an introduction to more advanced MVA methods.
• Be able to recognise problems, where MVA is applicable.
• Wet your appetite for advanced MVA methods.

So let us dive into the world of extracting knowledge from information.



In machine learning and related fields, artificial neural networks (ANNs) are 
computational models inspired by an animal's central nervous systems (in particular 
the brain) which is capable of machine learning as well as pattern recognition.
Neural networks have been used to solve a wide variety of tasks that are hard to 
solve using ordinary rule-based programming, including computer vision and 
speech recognition.
                                       [Wikipedia, Introduction to Artificial Neural Network]
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Neural Networks (NN)



Neural Networks
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Neural Networks combine the input 
variables using a “activation” function 
s(x) to assign, if the variable indicates 
signal or background.

The simplest is a single layer perceptron:

This can be generalized to a multilayer 
perceptron:

Activation function can be any
sigmoid function.



Boosted Decision Trees (BDT)
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Decision tree learning uses a decision tree as a predictive model which maps 
observations about an item to conclusions about the item's target value. It is one of 
the predictive modelling approaches used in statistics, data mining and machine 
learning.
                                            [Wikipedia, Introduction to Decision Tree Learning]



Boosted Decision Trees

9

A decision tree divides the parameter 
space, starting with the maximal 
separation. In the end each part has a 
probability of being signal or 
background.
• Works in 95+% of all problems!
• Fully uses non-linear correlations.

But BDTs require a lot of data for 
training, and is sensitive to 
overtraining (see next slide).

Overtraining can be reduced by 
limiting the number of nodes and 
number of trees.



Boosting...
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There is no reason, why you can not 
have more trees. Each tree is a simple 
classifier, but many can be combined!

To avoid N identical trees, one assigns 
a higher weight to events that are hard 
to classify, i.e. boosting:

First classifier

Parameters in event N

Boost weight

Individual tree



Boosting...
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There is no reason, why you can not 
have more trees. Each tree is a simple 
classifier, but many can be combined!

To avoid N identical trees, one assigns 
a higher weight to events that are hard 
to classify, i.e. boosting:

First classifier

Parameters in event N

Boost weight

Individual tree

Rerun…
increasing the weight 

of misclassified entries 



Test for overtraining
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In order to test for overtraining, half the sample is used for training, the other for testing:



Test for overtraining
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In order to test for overtraining, half the sample is used for training, the other for testing:



Method’s (dis-)advantages

14



Example of method comparison
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Left figure shows the distribution of signal and background used for test.
Right figure shows the resulting separation using various MVA methods.

The theoretical limit is known from the Neyman-Pearson lemma using the
(known/correct) PDFs in a likelihood.
In all fairness, this is a case that is great for the BDT...



The XKCD survey/sample
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The cartoon XKCD had a fun survey…

I wanted to have included this as an example of using MVA on complex data, but 
unfortunately it was not made public yet! Next year, I hope…



The XKCD survey/sample
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Decision tree learning

“Tree learning comes closest to meeting
the requirements for serving as an

off-the-shelf procedure for data mining”,
because it:
•  is invariant under scaling and various other transformations of feature values,
•  is robust to inclusion of irrelevant features,
•  produces inspectable models.

HOWEVER…  they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Prof. of Mathematics & Statistics, Stanford]
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Housing Prices decision tree
Decision tree for estimating the price in the housing prices data set: 
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SIZE_OF_HOUSE  462.0
mse = 1.3836907023e+13

samples = 7014
value = 2028954.3037

POSTAL_CODE  3110.0
mse = 1.16202252824e+13

samples = 6986
value = 1963348.0471

True

CONSTRUCTION_YEAR  1812.0
mse = 2.97888770906e+14

samples = 28
value = 18397715.3214

False

CONSTRUCTION_YEAR  2008.5
mse = 3.24355593067e+13

samples = 2045
value = 3009605.7873

SIZE_OF_HOUSE  144.5
mse = 2.36452076724e+12

samples = 4941
value = 1530318.8873

SIZE_OF_HOUSE  93.5
mse = 1.21226579817e+13

samples = 2017
value = 2856024.2117

SIZE_OF_HOUSE  75.5
mse = 1.37159288618e+15

samples = 28
value = 14072964.2857

SIZE_OF_HOUSE  69.5
mse = 9.6302785191e+11

samples = 1044
value = 1835135.3046

SIZE_OF_HOUSE  197.5
mse = 2.17784790424e+13

samples = 973
value = 3951407.5817

POSTAL_CODE  2150.0
mse = 3.01262236943e+11

samples = 628
value = 1448233.1497

POSTAL_CODE  2250.0
mse = 1.39491834099e+12

samples = 416
value = 2419208.75

(...) (...) (...) (...)

POSTAL_CODE  3025.0
mse = 2.18472117891e+13

samples = 888
value = 3643273.0574

CONSTRUCTION_YEAR  1920.0
mse = 9.70590670627e+12

samples = 85
value = 7170507.0824

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  43.455
mse = 4.71096888889e+15

samples = 3
value = 98966666.6667

SIZE_OF_HOUSE  119.0
mse = 2.2549352416e+12

samples = 25
value = 3885720.0

mse = 0.0
samples = 1

value = 1900000.0

mse = 0.0
samples = 2

value = 147500000.0

POSTAL_CODE  2530.0
mse = 4.67412066116e+11

samples = 11
value = 2693454.5455

CONSTRUCTION_YEAR  2009.5
mse = 1.66497053571e+12

samples = 14
value = 4822500.0

(...) (...) (...) (...)

SCHOOL_DISTANCE_1  1695.405
mse = 9.79228685447e+11

samples = 3444
value = 1259853.806

SIZE_OF_HOUSE  235.5
mse = 4.99606026506e+12

samples = 1497
value = 2152551.1784

CONSTRUCTION_YEAR  1992.5
mse = 1.11305113191e+12

samples = 2466
value = 1381273.9976

CONSTRUCTION_YEAR  1985.5
mse = 5.10892846075e+11

samples = 978
value = 953696.1452

POSTAL_CODE  7995.0
mse = 1.12755765182e+12

samples = 2220
value = 1319770.4707

SIZE_OF_HOUSE  116.5
mse = 6.39941890563e+11

samples = 246
value = 1936305.8252

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  1224.845
mse = 4.37090668214e+11

samples = 802
value = 856331.2918

SIZE_OF_HOUSE  97.5
mse = 6.07151144402e+11

samples = 176
value = 1397370.0795

(...) (...) (...) (...)

POSTAL_CODE  3680.0
mse = 3.68022716583e+12

samples = 1345
value = 2019988.1539

POSTAL_CODE  7980.0
mse = 1.51080057315e+13

samples = 152
value = 3325559.5197

POSTAL_CODE  3395.0
mse = 2.25780802539e+12

samples = 116
value = 3138769.319

CONSTRUCTION_YEAR  1993.5
mse = 3.68519260761e+12

samples = 1229
value = 1914391.2335

(...) (...) (...) (...)

POSTAL_CODE  4230.5
mse = 4.84879610682e+12

samples = 100
value = 2580827.09

SUPERMARKET_DISTANCE_1  2506.5801
mse = 3.17195326885e+13

samples = 52
value = 4757737.2692

(...) (...) (...) (...)

mse = 0.0
samples = 1

value = 74000000.0

CONSTRUCTION_YEAR  1952.0
mse = 1.90176566644e+14

samples = 27
value = 16338371.4444

POSTAL_CODE  3700.0
mse = 7.16446841277e+13

samples = 24
value = 12953411.8333

POSTAL_CODE  2790.0
mse = 3.13459113818e+14

samples = 3
value = 43418048.3333

SUPERMARKET_DISTANCE_1  152.015
mse = 6.46729877876e+13

samples = 10
value = 18529888.4

POSTAL_CODE  9670.0
mse = 3.85463967398e+13

samples = 14
value = 8970214.2857

SCHOOL_DISTANCE_1  242.72
mse = 4.95428753902e+13

samples = 5
value = 24129776.8

SCHOOL_DISTANCE_1  194.09
mse = 1.70856e+13

samples = 5
value = 12930000.0

(...) (...) (...) (...)

CONSTRUCTION_YEAR  1908.0
mse = 2.67103595385e+13

samples = 13
value = 7942000.0

mse = 0.0
samples = 1

value = 22337000.0

(...) (...)

mse = 0.0
samples = 1

value = 18500000.0

POSTAL_CODE  4360.5
mse = 4.50682117026e+12

samples = 2
value = 55877072.5

mse = 0.0
samples = 1

value = 58000000.0

mse = 0.0
samples = 1

value = 53754145.0

SIZE_OF_HOUSE  462.0
mse = 1.3836907023e+13

samples = 7014
value = 2028954.3037

POSTAL_CODE  3110.0
mse = 1.16202252824e+13

samples = 6986
value = 1963348.0471

True

CONSTRUCTION_YEAR  1812.0
mse = 2.97888770906e+14

samples = 28
value = 18397715.3214

False

CONSTRUCTION_YEAR  2008.5
mse = 3.24355593067e+13

samples = 2045
value = 3009605.7873

SIZE_OF_HOUSE  144.5
mse = 2.36452076724e+12

samples = 4941
value = 1530318.8873

SIZE_OF_HOUSE  93.5
mse = 1.21226579817e+13

samples = 2017
value = 2856024.2117

SIZE_OF_HOUSE  75.5
mse = 1.37159288618e+15

samples = 28
value = 14072964.2857

SIZE_OF_HOUSE  69.5
mse = 9.6302785191e+11

samples = 1044
value = 1835135.3046

SIZE_OF_HOUSE  197.5
mse = 2.17784790424e+13

samples = 973
value = 3951407.5817

POSTAL_CODE  2150.0
mse = 3.01262236943e+11

samples = 628
value = 1448233.1497

POSTAL_CODE  2250.0
mse = 1.39491834099e+12

samples = 416
value = 2419208.75

(...) (...) (...) (...)

POSTAL_CODE  3025.0
mse = 2.18472117891e+13

samples = 888
value = 3643273.0574

CONSTRUCTION_YEAR  1920.0
mse = 9.70590670627e+12

samples = 85
value = 7170507.0824

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  43.455
mse = 4.71096888889e+15

samples = 3
value = 98966666.6667

SIZE_OF_HOUSE  119.0
mse = 2.2549352416e+12

samples = 25
value = 3885720.0

mse = 0.0
samples = 1

value = 1900000.0

mse = 0.0
samples = 2

value = 147500000.0

POSTAL_CODE  2530.0
mse = 4.67412066116e+11

samples = 11
value = 2693454.5455

CONSTRUCTION_YEAR  2009.5
mse = 1.66497053571e+12

samples = 14
value = 4822500.0

(...) (...) (...) (...)

SCHOOL_DISTANCE_1  1695.405
mse = 9.79228685447e+11

samples = 3444
value = 1259853.806

SIZE_OF_HOUSE  235.5
mse = 4.99606026506e+12

samples = 1497
value = 2152551.1784

CONSTRUCTION_YEAR  1992.5
mse = 1.11305113191e+12

samples = 2466
value = 1381273.9976

CONSTRUCTION_YEAR  1985.5
mse = 5.10892846075e+11

samples = 978
value = 953696.1452

POSTAL_CODE  7995.0
mse = 1.12755765182e+12

samples = 2220
value = 1319770.4707

SIZE_OF_HOUSE  116.5
mse = 6.39941890563e+11

samples = 246
value = 1936305.8252

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  1224.845
mse = 4.37090668214e+11

samples = 802
value = 856331.2918

SIZE_OF_HOUSE  97.5
mse = 6.07151144402e+11

samples = 176
value = 1397370.0795

(...) (...) (...) (...)

POSTAL_CODE  3680.0
mse = 3.68022716583e+12

samples = 1345
value = 2019988.1539

POSTAL_CODE  7980.0
mse = 1.51080057315e+13

samples = 152
value = 3325559.5197

POSTAL_CODE  3395.0
mse = 2.25780802539e+12

samples = 116
value = 3138769.319

CONSTRUCTION_YEAR  1993.5
mse = 3.68519260761e+12

samples = 1229
value = 1914391.2335

(...) (...) (...) (...)

POSTAL_CODE  4230.5
mse = 4.84879610682e+12

samples = 100
value = 2580827.09

SUPERMARKET_DISTANCE_1  2506.5801
mse = 3.17195326885e+13

samples = 52
value = 4757737.2692

(...) (...) (...) (...)

mse = 0.0
samples = 1

value = 74000000.0

CONSTRUCTION_YEAR  1952.0
mse = 1.90176566644e+14

samples = 27
value = 16338371.4444

POSTAL_CODE  3700.0
mse = 7.16446841277e+13

samples = 24
value = 12953411.8333

POSTAL_CODE  2790.0
mse = 3.13459113818e+14

samples = 3
value = 43418048.3333

SUPERMARKET_DISTANCE_1  152.015
mse = 6.46729877876e+13

samples = 10
value = 18529888.4

POSTAL_CODE  9670.0
mse = 3.85463967398e+13

samples = 14
value = 8970214.2857

SCHOOL_DISTANCE_1  242.72
mse = 4.95428753902e+13

samples = 5
value = 24129776.8

SCHOOL_DISTANCE_1  194.09
mse = 1.70856e+13

samples = 5
value = 12930000.0

(...) (...) (...) (...)

CONSTRUCTION_YEAR  1908.0
mse = 2.67103595385e+13

samples = 13
value = 7942000.0

mse = 0.0
samples = 1

value = 22337000.0

(...) (...)

mse = 0.0
samples = 1

value = 18500000.0

POSTAL_CODE  4360.5
mse = 4.50682117026e+12

samples = 2
value = 55877072.5

mse = 0.0
samples = 1

value = 58000000.0

mse = 0.0
samples = 1

value = 53754145.0



Housing Prices decision tree
Decision tree for determining, if a house will be sold for more or less than 2Mkr.
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POSTAL_CODE  3615.0
gini = 0.4521

samples = 7014
value = [2422, 4592]

class = 1

SIZE_OF_HOUSE  75.5
gini = 0.4875

samples = 2477
value = [1434, 1043]

class = 0

True SIZE_OF_HOUSE  136.5
gini = 0.3407

samples = 4537
value = [988, 3549]

class = 1

False

POSTAL_CODE  2150.0
gini = 0.2997

samples = 839
value = [154, 685]

class = 1

POSTAL_CODE  2975.0
gini = 0.3416

samples = 1638
value = [1280, 358]

class = 0

SIZE_OF_HOUSE  60.5
gini = 0.4997

samples = 170
value = [87, 83]

class = 0

CONSTRUCTION_YEAR  1906.5
gini = 0.1802

samples = 669
value = [67, 602]

class = 1

POSTAL_CODE  1515.0
gini = 0.375

samples = 76
value = [19, 57]

class = 1

CONSTRUCTION_YEAR  1921.5
gini = 0.4002
samples = 94

value = [68, 26]
class = 0

SIZE_OF_HOUSE  39.0
gini = 0.4592
samples = 14
value = [9, 5]

class = 0

SCHOOL_DISTANCE_1  527.9399
gini = 0.2706
samples = 62

value = [10, 52]
class = 1

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  29.51
gini = 0.162

samples = 45
value = [41, 4]

class = 0

SIZE_OF_HOUSE  70.5
gini = 0.4948
samples = 49

value = [27, 22]
class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  54.5
gini = 0.4922
samples = 48

value = [21, 27]
class = 1

CONSTRUCTION_YEAR  1998.0
gini = 0.1372

samples = 621
value = [46, 575]

class = 1

SCHOOL_DISTANCE_1  153.245
gini = 0.2975
samples = 22
value = [4, 18]

class = 1

POSTAL_CODE  3200.0
gini = 0.4527
samples = 26
value = [17, 9]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  67.5
gini = 0.1141

samples = 609
value = [37, 572]

class = 1

SUPERMARKET_DISTANCE_1  42.965
gini = 0.375

samples = 12
value = [9, 3]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  88.5
gini = 0.256

samples = 1221
value = [1037, 184]

class = 0

SIZE_OF_HOUSE  116.5
gini = 0.4863

samples = 417
value = [243, 174]

class = 0

POSTAL_CODE  2350.0
gini = 0.4435

samples = 232
value = [155, 77]

class = 0

POSTAL_CODE  2550.0
gini = 0.193

samples = 989
value = [882, 107]

class = 0

SIZE_OF_HOUSE  77.5
gini = 0.0915

samples = 104
value = [99, 5]

class = 0

POSTAL_CODE  2725.0
gini = 0.4922

samples = 128
value = [56, 72]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  161.5
gini = 0.0454

samples = 301
value = [294, 7]

class = 0

POSTAL_CODE  2695.0
gini = 0.2484

samples = 688
value = [588, 100]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  3395.0
gini = 0.4359

samples = 162
value = [52, 110]

class = 1

POSTAL_CODE  3395.0
gini = 0.376

samples = 255
value = [191, 64]

class = 0

POSTAL_CODE  3085.0
gini = 0.32

samples = 110
value = [22, 88]

class = 1

SIZE_OF_HOUSE  98.5
gini = 0.4882
samples = 52

value = [30, 22]
class = 0

(...) (...) (...) (...)

POSTAL_CODE  3175.0
gini = 0.4717

samples = 126
value = [78, 48]

class = 0

CONSTRUCTION_YEAR  1970.5
gini = 0.2173

samples = 129
value = [113, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  7995.0
gini = 0.21

samples = 2885
value = [344, 2541]

class = 1

CONSTRUCTION_YEAR  1994.5
gini = 0.4757

samples = 1652
value = [644, 1008]

class = 1

SIZE_OF_HOUSE  118.5
gini = 0.1306

samples = 1752
value = [123, 1629]

class = 1

POSTAL_CODE  8285.0
gini = 0.314

samples = 1133
value = [221, 912]

class = 1

CONSTRUCTION_YEAR  2005.5
gini = 0.0904

samples = 1349
value = [64, 1285]

class = 1

POSTAL_CODE  4045.0
gini = 0.2499

samples = 403
value = [59, 344]

class = 1

CONSTRUCTION_YEAR  1954.5
gini = 0.0788

samples = 1290
value = [53, 1237]

class = 1

POSTAL_CODE  4025.0
gini = 0.3034
samples = 59

value = [11, 48]
class = 1

(...) (...) (...) (...)

POSTAL_CODE  3895.0
gini = 0.4938
samples = 36

value = [16, 20]
class = 1

CONSTRUCTION_YEAR  2012.5
gini = 0.2069

samples = 367
value = [43, 324]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  76.5
gini = 0.4982

samples = 249
value = [117, 132]

class = 1

CONSTRUCTION_YEAR  1993.0
gini = 0.2076

samples = 884
value = [104, 780]

class = 1

SIZE_OF_HOUSE  65.5
gini = 0.29

samples = 125
value = [22, 103]

class = 1

POSTAL_CODE  8245.0
gini = 0.3584

samples = 124
value = [95, 29]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  8435.0
gini = 0.1584

samples = 784
value = [68, 716]

class = 1

SIZE_OF_HOUSE  105.5
gini = 0.4608

samples = 100
value = [36, 64]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  223.0
gini = 0.4441

samples = 1409
value = [469, 940]

class = 1

SUPERMARKET_DISTANCE_1  3380.5151
gini = 0.4031

samples = 243
value = [175, 68]

class = 0

SUPERMARKET_DISTANCE_1  1352.8049
gini = 0.4199

samples = 1227
value = [368, 859]

class = 1

SIZE_OF_HOUSE  372.5
gini = 0.494

samples = 182
value = [101, 81]

class = 0

POSTAL_CODE  4160.0
gini = 0.4479

samples = 942
value = [319, 623]

class = 1

SIZE_OF_HOUSE  175.5
gini = 0.2847

samples = 285
value = [49, 236]

class = 1

(...) (...) (...) (...)

POSTAL_CODE  7895.0
gini = 0.5

samples = 157
value = [78, 79]

class = 1

CONSTRUCTION_YEAR  1903.0
gini = 0.1472
samples = 25
value = [23, 2]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  166.5
gini = 0.3833

samples = 236
value = [175, 61]

class = 0

gini = 0.0
samples = 7
value = [0, 7]

class = 1

POSTAL_CODE  8025.0
gini = 0.4624

samples = 124
value = [79, 45]

class = 0

SCHOOL_DISTANCE_1  664.175
gini = 0.2449

samples = 112
value = [96, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  3615.0
gini = 0.4521

samples = 7014
value = [2422, 4592]

class = 1

SIZE_OF_HOUSE  75.5
gini = 0.4875

samples = 2477
value = [1434, 1043]

class = 0

True SIZE_OF_HOUSE  136.5
gini = 0.3407

samples = 4537
value = [988, 3549]

class = 1

False

POSTAL_CODE  2150.0
gini = 0.2997

samples = 839
value = [154, 685]

class = 1

POSTAL_CODE  2975.0
gini = 0.3416

samples = 1638
value = [1280, 358]

class = 0

SIZE_OF_HOUSE  60.5
gini = 0.4997

samples = 170
value = [87, 83]

class = 0

CONSTRUCTION_YEAR  1906.5
gini = 0.1802

samples = 669
value = [67, 602]

class = 1

POSTAL_CODE  1515.0
gini = 0.375

samples = 76
value = [19, 57]

class = 1

CONSTRUCTION_YEAR  1921.5
gini = 0.4002
samples = 94

value = [68, 26]
class = 0

SIZE_OF_HOUSE  39.0
gini = 0.4592
samples = 14
value = [9, 5]

class = 0

SCHOOL_DISTANCE_1  527.9399
gini = 0.2706
samples = 62

value = [10, 52]
class = 1

(...) (...) (...) (...)

SUPERMARKET_DISTANCE_1  29.51
gini = 0.162

samples = 45
value = [41, 4]

class = 0

SIZE_OF_HOUSE  70.5
gini = 0.4948
samples = 49

value = [27, 22]
class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  54.5
gini = 0.4922
samples = 48

value = [21, 27]
class = 1

CONSTRUCTION_YEAR  1998.0
gini = 0.1372

samples = 621
value = [46, 575]

class = 1

SCHOOL_DISTANCE_1  153.245
gini = 0.2975
samples = 22
value = [4, 18]

class = 1

POSTAL_CODE  3200.0
gini = 0.4527
samples = 26
value = [17, 9]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  67.5
gini = 0.1141

samples = 609
value = [37, 572]

class = 1

SUPERMARKET_DISTANCE_1  42.965
gini = 0.375

samples = 12
value = [9, 3]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  88.5
gini = 0.256

samples = 1221
value = [1037, 184]

class = 0

SIZE_OF_HOUSE  116.5
gini = 0.4863

samples = 417
value = [243, 174]

class = 0

POSTAL_CODE  2350.0
gini = 0.4435

samples = 232
value = [155, 77]

class = 0

POSTAL_CODE  2550.0
gini = 0.193

samples = 989
value = [882, 107]

class = 0

SIZE_OF_HOUSE  77.5
gini = 0.0915

samples = 104
value = [99, 5]

class = 0

POSTAL_CODE  2725.0
gini = 0.4922

samples = 128
value = [56, 72]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  161.5
gini = 0.0454

samples = 301
value = [294, 7]

class = 0

POSTAL_CODE  2695.0
gini = 0.2484

samples = 688
value = [588, 100]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  3395.0
gini = 0.4359

samples = 162
value = [52, 110]

class = 1

POSTAL_CODE  3395.0
gini = 0.376

samples = 255
value = [191, 64]

class = 0

POSTAL_CODE  3085.0
gini = 0.32

samples = 110
value = [22, 88]

class = 1

SIZE_OF_HOUSE  98.5
gini = 0.4882
samples = 52

value = [30, 22]
class = 0

(...) (...) (...) (...)

POSTAL_CODE  3175.0
gini = 0.4717

samples = 126
value = [78, 48]

class = 0

CONSTRUCTION_YEAR  1970.5
gini = 0.2173

samples = 129
value = [113, 16]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  7995.0
gini = 0.21

samples = 2885
value = [344, 2541]

class = 1

CONSTRUCTION_YEAR  1994.5
gini = 0.4757

samples = 1652
value = [644, 1008]

class = 1

SIZE_OF_HOUSE  118.5
gini = 0.1306

samples = 1752
value = [123, 1629]

class = 1

POSTAL_CODE  8285.0
gini = 0.314

samples = 1133
value = [221, 912]

class = 1

CONSTRUCTION_YEAR  2005.5
gini = 0.0904

samples = 1349
value = [64, 1285]

class = 1

POSTAL_CODE  4045.0
gini = 0.2499

samples = 403
value = [59, 344]

class = 1

CONSTRUCTION_YEAR  1954.5
gini = 0.0788

samples = 1290
value = [53, 1237]

class = 1

POSTAL_CODE  4025.0
gini = 0.3034
samples = 59

value = [11, 48]
class = 1

(...) (...) (...) (...)

POSTAL_CODE  3895.0
gini = 0.4938
samples = 36

value = [16, 20]
class = 1

CONSTRUCTION_YEAR  2012.5
gini = 0.2069

samples = 367
value = [43, 324]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  76.5
gini = 0.4982

samples = 249
value = [117, 132]

class = 1

CONSTRUCTION_YEAR  1993.0
gini = 0.2076

samples = 884
value = [104, 780]

class = 1

SIZE_OF_HOUSE  65.5
gini = 0.29

samples = 125
value = [22, 103]

class = 1

POSTAL_CODE  8245.0
gini = 0.3584

samples = 124
value = [95, 29]

class = 0

(...) (...) (...) (...)

POSTAL_CODE  8435.0
gini = 0.1584

samples = 784
value = [68, 716]

class = 1

SIZE_OF_HOUSE  105.5
gini = 0.4608

samples = 100
value = [36, 64]

class = 1

(...) (...) (...) (...)

SIZE_OF_HOUSE  223.0
gini = 0.4441

samples = 1409
value = [469, 940]

class = 1

SUPERMARKET_DISTANCE_1  3380.5151
gini = 0.4031

samples = 243
value = [175, 68]

class = 0

SUPERMARKET_DISTANCE_1  1352.8049
gini = 0.4199

samples = 1227
value = [368, 859]

class = 1

SIZE_OF_HOUSE  372.5
gini = 0.494

samples = 182
value = [101, 81]

class = 0

POSTAL_CODE  4160.0
gini = 0.4479

samples = 942
value = [319, 623]

class = 1

SIZE_OF_HOUSE  175.5
gini = 0.2847

samples = 285
value = [49, 236]

class = 1

(...) (...) (...) (...)

POSTAL_CODE  7895.0
gini = 0.5

samples = 157
value = [78, 79]

class = 1

CONSTRUCTION_YEAR  1903.0
gini = 0.1472
samples = 25
value = [23, 2]

class = 0

(...) (...) (...) (...)

SIZE_OF_HOUSE  166.5
gini = 0.3833

samples = 236
value = [175, 61]

class = 0

gini = 0.0
samples = 7
value = [0, 7]

class = 1

POSTAL_CODE  8025.0
gini = 0.4624

samples = 124
value = [79, 45]

class = 0

SCHOOL_DISTANCE_1  664.175
gini = 0.2449

samples = 112
value = [96, 16]

class = 0

(...) (...) (...) (...)



Cross Validation
In case your data set is not that large (and perhaps anyhow), one can train on 
most of it, and then test on the remaining 1/k fraction.

This is then repeated for each fold… CPU-intensive, but smart for small data 
samples.
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Overtraining…
To test for overtraining, try to increase the number of parameters of your ML.
If performance on Cross Validation (CV) sample drops, decrease complexity!
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Random Forests
The many trees in a (forest of) decision trees increases the power of the decision 
tree algorithm.
To classify a new object from an input vector, give the input vector to each each of 
the trees in the forest. Each tree gives a classification, and we say the tree "votes" 
for that class. The forest chooses the classification having the most votes (over all 
the trees in the forest).

However, in (boosted) decision trees, the output is correlated, which leads to a 
decreased performance. The solution is to train on a Random Forest!
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Random Forests
Each tree is grown as follows:
• If the number of cases in the training set is N, sample N cases at random - but 

with replacement. This sample will be the training set for growing the tree.
• If there are M input variables, a number m<<M is specified such that at each 

node, m variables are selected at random out of the M and the best split on 
these m is used to split the node. The value of m is held constant.

• Each tree is grown to the largest extent possible. There is no pruning.

The forest error rate depends on two things:
• The correlation between any two trees in the forest. Increasing the correlation 

increases the forest error rate.
• The strength of each individual tree in the forest. A tree with a low error rate is 

a strong classifier. Increasing the strength of the individual trees decreases the 
forest error rate.

Reducing m reduces both the correlation and the strength. Increasing it increases 
both. Somewhere in between is an "optimal" range of m - usually quite wide. This 
is the only adjustable parameter to which random forests is somewhat sensitive.
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Random Forests
Features of Random Forests:
• It is unexcelled in accuracy among current algorithms.
• It runs efficiently on large data bases.
• It can handle thousands of input variables without variable deletion.
• It gives estimates of what variables are important in the classification.
• It has an effective method for estimating missing data and maintains accuracy 

when a large proportion of the data are missing.
• It has methods for balancing error in class population unbalanced data sets.
• It computes proximities between pairs of cases that can be used in clustering, 

locating outliers, or (by scaling) give interesting views of the data.
• The capabilities of the above can be extended to unlabeled data, leading to 

unsupervised clustering, data views and outlier detection.
• It offers an experimental method for detecting variable interactions.

For these reasons, the Random Forest algorithm has lately been in vogue.
However, when it comes to images, Deep Learning (on GPUs) is “the shit”.
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XGboost - a neat little story!

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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The HiggsML Kaggle Challenge

27

CERN analyses its data using a 
vast array of ML methods. CERN 
is thus part of the community 
that developpes ML!

After 20 years of using Machine 
Learning it has now become very 
widespread (NN, BDT, Random 
Forest, etc.)

A prime example was the Kaggle 
“HiggsML Challenge”. Most 
popular challenge of its time! 
(1785 teams, 6517 downloads, 
35772 solutions, 136 forums)



XGBoost history
The many algorithms, 

28

While Tianqi Chen did not win
himself, he provided a method 
used by about half of the teams, 
the second place among them!

For this, he got a special award 
and XGBoost became instantly 
known in the community.



XGBoost history
The many algorithms, 
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While Tianqi Chen did not win
himself, he provided a method 
used by about half of the teams, 
the second place among them!

For this, he got a special award 
and XGBoost became instantly 
known in the community.



XGBoost algorithm
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The algorithms is documented on the arXiv: 1603.02754



XGBoost algorithm
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The algorithms is an extension of the decision tree idea (tree boosting), using 
regression trees with weighted quantiles and being “sparcity aware” (i.e. 
knowing about lacking entries and low statistics areas of phase space).

Unlike decision trees, each regression tree contains a continuous score on each 
leaf:



XGBoost algorithm
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The method’s speed is partly 
due to an approximate but fast 
algorithm to find the best splits.



XGBoost algorithm
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In order to “punish” complexity, the cost-function has a regularised term also: 



XGBoost
As it turns out, XGBoost is not only very performant but also very fast…

34

But this will of course only last for so long - new algorithms see the light of day 
every week… day?



(Deep) Neural Networks

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Recurrent NN
Normally, the information from one layer is fed forward to the next layer in a 
feedforward Neural Network (NN).

However, it may be of advantage to allow a network to give feedback, which is 
called a recurrent NN:
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Feedback network
There is nothing that prohibits the 
use of feedback in the network.

In this way, one can pass 
information “back” in the network,
allowing for input of “more 
advanced” neurons to earlier 
neurons.

Note, that it requires skill and 
knowledge (and time and hard 
work) to design the network that 
suits your problem!
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Networks with “memory”
So-called Elman and Jordan networks

Allowing for feedback, one can 
also use this for providing 
“memory” of the last state(s) of 
the network.

This can be used for including 
“context” or “environment” in 
the network.

This can be used in case of e.g. a 
new user regarding adds, a new 
context regarding translation, 

The keyword is Long Short-
Term Memory (LSTM), if you 
want to look for more…
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Deep Neural Networks

Instead of having just one (or few) 
hidden layers, many such layers are 
introduced.
This gives the network a chance to 
produce key features and use them 
for many different specialised tasks.

39

Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

Currently, DNNs can have up to 
millions of neurons and 
connections, which compares to 
about the brain of a worm.



Deep Neural Networks

Instead of having just one (or few) 
hidden layers, many such layers are 
introduced.
This gives the network a chance to 
produce key features and use them 
for many different specialised tasks.
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Deep Neural Networks (DNN) are simply (much) extended NNs in terms of layers!

Currently, DNNs can have up to 
millions of neurons and 
connections, which compares to 
about the brain of a worm. DropOut technique 

…to mimimise overtraining



Deep Neural Networks
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Deep Neural Networks likes to get both raw and “assisted” variables:



Examples from
“the real world”

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!

42



A great early example

43

A company producing bricks considered using Machine Learning 
in the quality control of the bricks. Until now, this had been done 
manually, with workers discarding about 4-7% of bricks.

Based on color, surface and strength of the bricks, a very basic 
algorithm was trained/optimised and put in place to do the 
quality control. This worked reasonably well, but unlike the 
workers, the machine was discarding 2-30% of bricks!

How could that be? WHY?!?



Examples: 
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Who should be released on bail:
In an attempt to find out, who should be released
on bail, a group at University of Chicago (CrimeLab)
looked into the data of setting bail.
They could decrease the fraction of re-offenders from
18.6% to 14.9%. This corresponds (they claim) to what
would require 20.000 police officers (2.6 billion $).

Heart attack predictions (4 hours in advance):
A study suggested that succes rate would go from 30% to 80% with Big Data.

Flagging “at risk officers” in US police force:
Using current data, and increase in correct predictions would increase by 12%, while 
the number of wrong predictions would be reduced by 1/3. (Cop pulling gun at pool).

Chicago is trying to predict, which children have high levels of lead in their blood.

India does actually predict, when it is the best time to sow, and tell farmers.  



Ideas: 
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Turning the Big Data idea with myself and (similar minded) tech friends, I’ve 
thought of the following ideas (list not exhaustive):

SKAT (ministry of taxation):
SKAT has very large amounts of data on all Danish tax payers going back in time.
With supervised learning (i.e. based on experience from known cases), it would 
be very interesting to see, if Big Data could provide SKAT with a list of suspects, 
to be investigated further!
Also with unsupervised learning, one could divide tax payers into categories, and 
see if those “alike” (as defined by the clustering) a fraud are also themselves!

Doctors reports:
Doctors have to write a report for every patient visited, and they are typically 
very standard.
Could one from recording speech (and possibly camera, accelerometer, etc.), 
create an outline of the necessary report, of course to be checked by the doctor?

Transparency: For transparent answers, use associated Fisher to explain factors.



What to expect?
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Typically, businesses are already good at what they are doing (or they would not 
be in business anymore!), so the improvements one can expect are typically not 
that large. A study looked into this, by considering 179 businesses:

The study found, that there was a significant improvement going data-driven, 
that it was not due to reverse causality, and that the general level was…

5-6%



Which method(s) to use?
179 methods on 121 data sets

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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179 methods vs. 121 data sets
“Tree learning comes closest to meeting the requirements for serving as an off-
the-shelf procedure for data mining", because it:
•  is invariant under scaling and various other transformations of feature values,
•  is robust to inclusion of irrelevant features,
•  produces inspectable models.
•  HOWEVER…  they are seldom accurate (i.e. most performant)!

[Trevor Hastie, Professor of Mathematics & Statistics, Stanford University]

In a quite interesting paper, four authors investigated the performance of many 
Machine Learning (ML) methods (179 in total) on a large variety of data sets (121 
in total).

The purpose was to see, if there was any general pattern, and if some type of 
classifiers were more suited for some problems than others.

Their findings were written up in the following paper…
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179 methods vs. 121 data sets
The many algorithms, 
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What are the data sets?
The data sets are 
all quite smallish 
(< 150000 entries).

There are most 
often between 
4-100 input 
parameters.

The standard 
problem is to 
divide into two 
classes.
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179 methods vs. 121 data sets
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179 methods vs. 121 data sets
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179 methods vs. 121 data sets
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179 methods vs. 121 data sets
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Random Forests implementations
Given the succes of the RandomForests algorithm, it has naturally been 
implemented in many languages (the original one being Fortran!!!).

I managed to find it in both Python and R:

Python: scikit-learn package

R: randomForests package
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http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://cran.r-project.org/web/packages/randomForest/index.html


The results in more detail…
The many good algorithms are ranked according to probability of achieving:
• Maximum Accuracy (PAMA)
• 95% accuracy on all data sets (P95) 

As can be seen, the Random
Forest (parRF_t) is not the most
likely to be the best.
Rather it is the one, which most
often is ranked high.

But this just shows, that there is
no guarantee that parRF_t is the
most powerful method. In fact
far from it.

This is a general problem,
which must be considered…  

56


