Solution for Applied Statistics take-home exam 2016

Problem 1.1

This is a problem of probability calculation, though one can use a Binomial distribution for solving (and even a Poisson distribution for the second problem).
In Game 1 the probability of NO six in 4 rolls is $(5 / 6)^{4}=\mathbf{0 . 4 8 2 3}$, which means that (at equal odds) this game is advantages to play (player has more than 50% chance of winning).
In Game 2 the probability of NO double six in 24 rolls is $(35 / 36)^{24}=$ $\mathbf{0 . 5 0 8 6}$, which means that (at equal odds) this game is not advantages to play (player has less than 50% chance of winning).

- Thus Game 1 is worth playing ($p_{\text {winning }}=0.5177$), while

Game2 is not ($p_{\text {winning }}=\mathbf{0 . 4 9 1 4}$).
One can also just consider the number of possibilities (pos):
In Game 1 there are 671 pos of winning and 625 pos of loosing out of 1296 in total.
In Game 2 there are approximately $11.033 .126 .465 .280 \times 10^{24}$ pos of winning and 11.419.131.242.070 $\times 10^{24}$ pos of loosing out of 22.452.257.707. 350×10^{24} in total.

Notes on points for problem 1.1: 4, 4:

Essentially, one gets 4 points for each of the two probabilities calculated correctly.
There is 1 extra point for mentioning Binomial distribution (though not needed for calculation).
There is 1 minus point for making wrong interpretation of results. The misunderstand that it is exactly one/two sixes also costs 1 point, unless argued well.

Problem 1.2

- The daily rate should follow a Poisson distribution with $\lambda=$ 18.90.

The probability of 42 or more (extreme) events is:

$$
\begin{equation*}
p(42+\text { events })=\sum_{i=42}^{i=\infty} \operatorname{Pois}(i, \lambda)=0.00000317 \tag{1}
\end{equation*}
$$

Thus the probability of observing 42 events in a day is very low. However, the significance of a daily rate of 42 would a combination of probability and trial factor! The trial factor (i.e. number of days possible) is 1730 .

- Thus the overall probability is:

$$
\begin{equation*}
p=1-(1-p(42+\text { events }))^{\text {Ntrials }}=\mathbf{0 . 0 0 5 4 7 4 2 7} \tag{2}
\end{equation*}
$$

This is still very low, but the significance is not quite as great, as some might think.

For comparison, Gaussian approximation gives a probability of $p(42+$ events $)=0.00000005$, which shows that for the tail, the Gaussian is not a good approximation at this low λ.

Notes on points for problem 1.2: 3, 4:

1.2.1: Minus 1 for arguing wrongly for the Poisson.
1.2.2: Minus 1 for forgetting Trial Factor of 1730 , but "knowing" (i.e.
writing interpretation), while minus 2 if not thinking of this at all.
The global probability is low (i.e. no signal), but other conclusion OK if argued well.
Gaussian approximation is not accurate (but a typical thing to do), thus minus 1 point.

Problem 1.3

- The fraction of women taller than 1.85 (i.e. $(1.85-1.68) / 0.06=$ 2.83 sigma, one sided) is:

$$
\begin{equation*}
f=\int_{1.85}^{\inf } \operatorname{Gaus}(1.68,0.06)=\int_{2.83}^{\mathrm{inf}} \operatorname{Gaus}(0,1)=\mathbf{0 . 0 0 2 3 0 3 2 7} \tag{3}
\end{equation*}
$$

- The cut to get top 20% tallest women is obtained from inverting the above integral to yield 20%, the result being 0.842σ, which corresponds to $1.68 m+0.06 m * 0.842=1.730 m$, though one can also "just" take the top 20% of randomly produced numbers. The average height of the 20 percent highest women is $\mathbf{1 . 7 6 4} \mathbf{~ m}$. Note that if solved nummerically, the result should preferably have an uncertainty or a mention of this (the size of which of course depends on the number of points used).

Notes on points for problem 1.3: 3, 5:
1.3.1: All or "nothing". Of course, right integral but wrong value gives minus 1 point.
1.3.2: All or "nothing". Again, the right integral alone (easy) gives only minus 1 point.
Also, if solved numerically, there should be either a source or an uncertainty!

Problem 2.1

- As the radius r appears squared, while the length L appears linearly, the radius r has to be determined with twice the relative precision compared to the length.

$$
\begin{equation*}
2 \times\left(\frac{\sigma(r)}{r}\right)=\left(\frac{\sigma(L)}{L}\right) \tag{4}
\end{equation*}
$$

Notes on points for problem 2.1: 5:

2.1: Right use of error propagation formula, but wrong result gives minus 1-2 points.

Problem 2.2

- The mean velocity is $310.4 \pm 28.1 \mathrm{~m} / \mathrm{s}$, but should be given without decimals as $310 \pm 28 \mathbf{m} / \mathbf{s}$ or actually $(0.31 \pm 0.03) \times 10^{3} \mathbf{m} / \mathbf{s}$.
- The kinetic energy of a bullet is then on average: $E_{k i n}=$ 404.7 ± 24.1 (mass) ± 73.3 velocity $=404.7 \pm 77.2$
- For the two uncertainties to be equal, the uncertainty on velocity should drop by a factor $73.3 / 24.1=3.04$, requiring a factor $3.04^{2}=9.25$ more experiments, thus a total number of experiments of $10 \times 9.25=92.5 \simeq 93$.

Notes on points for problem 2.2: 3, 3, 3:

2.2.1: Missing the sqrt(N) from RMS to error on mean costs 2 points (and all my respect!).
2.2.2: Right formula, wrong result gives minus 1 point.
2.2.3: They should know that the uncertainty goes like $1 / \operatorname{sqrt}(\mathrm{N})$...

Problem 3.1

- We consider the function $f(x)=C x^{-0.9}$ defined in the range $x \in[0.005 ; 1.0]$. The normalisation constant C should equal $C=$ $1 /(10 \times(\sqrt[10]{1}-\sqrt[10]{0.005}))=0.2431$.
- In order to generate random numbers according to this, one can use both the Transformation method and the Accept-Rejection method. The transformation method is preferable, as the efficiency of the Accept-Rejection method is very low. If the range is enlarged down to zero, then only the transformation method works, as the function is then no longer bounded (in y).
- Then generated random numbers are shown in Figure 2.

- The distribution of t can be seen in Figure 3. It looks rather Gaussian, but that is in fact not really the case (I get $p=0.99$, but it depends on the random numbers generated!). However, the mean (of course) matches the analytical expectation (which is $\mu(t)=50 \times$ $\left.C / 1.1 \times\left(1-0.005^{1.1}\right)=11.01901 \ldots\right)$, but the student should consider the error on the mean, and quantify this (I get 11.035 ± 0.058).
${ }^{0}$ Note for censors
We have discussed the efficiency of the Accept-Rejection method, but I said that as long as it is still fast, there is no need to be alarmed by a low efficiency. "Fast computers breed lazy programmers".

Figure 2: Distribution of random numbers x according to $f(x)$ with an overlaying fit.

Notes on points for problem 1.3: 3, 4, 4, 4:

3.1.1: They typically get C from Matematica...
3.1.2: One method for the first case gives full points. Then 1 extra for saying that both works.
3.1.3: Here we just want to see it work.
3.1.4: There is statistics enough for a Chi2 fit, but commenting on it gives 1 extra point.

Problem 4. 1

- The distribution is very consistent with being a Gaussian, despite the one "jumpy" point around $15 \cdot 5-16.0$. The p-value is 0.66 .
- The linear correlation between B and C for ill people is:
$\rho_{B, C}=-0.39630$
- Each of the three variables have some degree of separation, while their combination (fx . through a Fisher Discriminant) is much stronger. Among the three single variables, C is the strongest, and choosing a cut at 0.2 , the error rates are:

Type I error: $\alpha=223 / 3000=0.074$
Type II error: $\beta=263 / 2000=0.132$
If the variables are combined in a Fisher Discriminant, then the combined covariance matrix becomes:

$$
\left[\begin{array}{ccc}
15.558 & 31.586 & -0.595 \\
31.586 & 86.184 & -1.147 \\
-0.595 & -1.147 & 0.362
\end{array}\right]
$$

Figure 3: Distribution of random numbers t according to $\sum_{20} f(x)$ with an overlaying Gaussian fit.

Figure 4: Fit with Gaussian, which shows that it fits well.

Figure 5: There is correlation, but it is not linear.

Inverted combined covariance matrix yields:

$$
\left[\begin{array}{ccc}
0.2568 & -0.0924 & 0.1291 \tag{6}\\
-0.0924 & 0.0454 & -0.0081 \\
0.1291 & -0.0081 & 2.9473
\end{array}\right]
$$

In the end, the Fisher coefficients come out to be:

$$
\left(\begin{array}{c}
-1.326 \tag{7}\\
0.627 \\
2.100
\end{array}\right)
$$

The total separation between the samples using the Fisher is 3.24σ, and in terms of error rates using a selection cut of 18, one gets:

Type I error: $\alpha=29 / 3000=0.010$
Type II error: $\beta=30 / 2000=0.015$

> | Notes on points for problem $4.1: 4,4,9:$ |
| :--- |
| 4.1.1 Requires Gaussian Chi2 fit (enough stat.). Subtract 1 point for |
| not commenting on p-value. |
| 4.1.2 Simple calculation from data. Give 1 extra point for showing |
| plot and commenting on non-linearity of correlation. |
| 4.1.3 Can be solved very simply. Subtract 3 points for not choosing |
| best variable (C). Subtract 1 point for "only" choosing C without |
| commments. Give 1 extra point for Fisher and 2 extra for other MVA |
| methods. Judge yourself how well the problem has been solved! |

Problem 5.1

The first two answers depends on which criteria one rejects hypothesis by, but in this (non-controversial) case, I would say that 5% is reasonable, with $1-2 \%$ as alternatives.

- The constant income (well, deficit) can hardly be upheld for the first year, given a p-value of $\mathbf{0 . 0 2 5}$.
- The linear relation for the first 12 months is likely (p-value o.068), and can be extended to cover 14 months (p-value o.057) but not 15 months (p-value 0.016).
- From a full fit (see Figure 6) the size of the "jump" is estimated to be $\Delta=0.708 \pm 0.079$, but could take different values for different fits.
- The full fit is a challenge, and the fits needs to be build up! The initial questions are leading up to this, and the last step is to add some sort of an "onset" function, here a sigmoid, but many other
similar functions will also work (atan, Gompertz, piecewise linear, etc.). Finally, a constant offset is introduced at 31.5 .

$$
\begin{array}{ll}
f(t)=c_{0}+c_{1} t+\left(c_{2}-c_{0}\right) /\left(1+\exp \left(-\left(t-c_{3}\right) / c_{4}\right)\right) & \text { for } t<31.5 \\
f(t)=c_{0}+c_{1} t+\left(c_{2}-c_{0}\right) /\left(1+\exp \left(-\left(t-c_{3}\right) / c_{4}\right)\right)+c_{5} & \text { for } t>31.5 \tag{8}
\end{array}
$$

Figure 6: Fit to the income vs. months.

Notes on points for problem 5.1: $3,4,4,4$:

5.1.1 It is OK to accept, if criterium (p-critical) is stated.
5.1.2 It is OK to expand further/less, if criterium (p-critical) is stated.
5.1.3 It is perfectly alright to do linear fit (or similar) in a small range around jump to get it. 5.1.4 A high-degree polynomial will not do the trick and gives only 1-2 points, depending on discussion! Other bad fits followed by (correct) comments gives only 1 minus point.

Problem 5.2

- Given an RMS of $0.0878 \pm 0.0014 \mathrm{sec}$, this would be considered the typical timing uncertainty. However, the RMS is affected by a few outliers, and a Chiz fit (which is not too sensitive to outliers) yields $\sigma(t)=0.066 \mathrm{sec}$, which could also be an answer, if described. The mean is 0.0007 ± 0.0021, and thus in perfect agreement with zero, as it should be.
- Using the RMS and data size, one would expect to see about one event with 5% probability at a residual of $t_{c u t}=4 \sigma \times 0.0878=$ ± 0.351 (obtained by solving $\left.1-\left(1-P\left(|t|>t_{\text {cut }}\right)\right)^{1726} \simeq 0.05\right)$. Using Chauvenet's criterion with $p_{\text {reject }}=0.01$ (i.e. excluding events with a global probability less than this), three data points are excluded:

Measurement	Residual (s)	$\mathrm{N} \sigma$	$p_{\text {global }}$	Conclusion
537	0.606	6.90	0.00000000	Rejected
946	0.482	5.56	0.00002266	Rejected
428	0.463	5.38	0.00006271	Rejected
42	0.354	4.15	0.02786367	Accepted

After excluding these three points, the RMS is 0.0852 s .

- The single Gaussian does not yield a satisfactory fit. If one performs a Chiz fit, the p-value is about 3×10^{-31}, and it is very clear from the plot, that it does not fit. If anyone tests it with a (high stat.) Kolmogorov-Smirnov-test, because of the somewhat lower statistics, that would be fantastic (+2 points).
- Clearly, there is a mixture of resolution, and a two Gaussian fit does much better (p-value 0.041, and 0.045 if cleaned). As the mean was consistent with zero, this parameter should be eliminated, yielding a four parameter fit. Also, to minimise correlations, there should be one common normalisation constant and a fraction of each of the two normalised Gaussians.

$$
\begin{equation*}
f(t)=N\left(f_{\text {core }} \times G_{\text {core }}\left(0, \sigma_{\text {core }}\right)+\left(1-f_{\text {core }}\right) \times G_{\text {tail }}\left(0, \sigma_{\text {tail }}\right)\right) \tag{9}
\end{equation*}
$$

The Voigtian (Lorentz distributed folded with a Gaussian) and the Student's t distribution are even better descriptions than the double Gaussian. All the fits can be seen in Figures 7 and 8. One can venture beyond this to include a e.g. third Gaussian, but that is probably speculation, though we will of course award the courages students with extra points, if they dare tread this path.

Figure 7: Fit to the time residuals. The single Gaussian is clearly not satisfactory, while the double Gaussian, Student's t , and Voigtian is.

Distribution	Npar	$\operatorname{Prob}\left(\chi^{2}\right)$	Comment
Gaussian $(\mu=0)$	2	4.7×10^{-17}	Very poor model
$2 \times \operatorname{Gaussian}(\mu=0)$	4	0.045	Reasonable and interpretable model
Student's $\mathrm{t}(\mu=0)$	3	0.305	Best model, also matching outliers
Voigtian $(\mu=0)$	3	0.104	Good model, though large tails

Notes on points for problem 5.2: 4, 4, 3, 4:

5.2.1 This should be standard and done on the data itself or possibly the histogram. 5.2.2 1 extra point for applying Chauvenet's criterion or mentioning it. Rough exclusion gives near full points (as this is hard!), however the cut should not be lower than 3σ.
5.2.3 1 extra point for fitting both with Chis and likelihood (or mentioning it). 5.2.4 Fit with any double Gaussian gives full points, but 1 extra point for fixing mean to zero, and 1 extra point for using optimal parametrisation with fractions and normalisation in place. Check of this: Norm is the total number of entries (requires binwidth to also be included).

