
Applied Statistics 
Principle of maximum likelihood

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Likelihood function

“I shall stick to the principle of likelihood…”
                                                               [Plato, in Timaeus]
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Likelihood function

Given a PDF f(x) with parameter(s) θ, what is the chance that with N 
observations, xi falls in the intervals [xi, xi + dxi]?

L(✓) =
Y

i

f(xi, ✓)dxi
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Given a set of measurements x, and parameter(s) θ, the likelihood function is defined 
as: 

The principle of maximum likelihood for parameter estimation consist of 
maximising the likelihood of parameter(s) (here θ) given some data (here x).

The likelihood function plays a central role in statistics, as it can be shown to be:
• Consistent (converges to the right value).
• Asymptotically normal (converges with Gaussian errors).
• Efficient (reaches the Minimum Variance Bound (MVB, Cramer-Rao) for large N).

To some extend, this means that the likelihood function is “optimal”, that is, if it can 
be applied in practice.

Likelihood function

L(x1, x2, . . . , xN ; ✓) =
Y

i

p(xi, ✓)
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       Likelihood vs. Chi-Square
For computational reasons, it is often much easier to minimise the logarithm of 
the likelihood function:

In problems with Gaussian errors, it turns out that the likelihood function boils 
down to the Chi-Square with a constant offset and a factor -2 in difference.

The likelihood function for fits comes in two versions:
• Binned likelihood (using Poisson) for histograms.
• Unbinned likelihood (using PDF) for single values.

The “trouble” with the likelihood is, that it is unlike the Chi-Square, there is NO
simple way to obtain a probability of obtaining certain likelihood value!
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See Barlow 5.6



Binned Likelihood
The binned likelihood is a sum over bins in a histogram:

N observed

i

N expected

i

i

L(✓)
binned

=

N
binsY

i

Poisson(N expected

i , N observed

i )
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Unbinned Likelihood
The binned likelihood is a sum over single measurements:

i

PDF(xobserved

i )

L(✓)
unbinned

=
N

meas.Y

i

PDF(xobserved

i )
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Notes on the likelihood
For a large sample, the maximum 
likelihood (ML) is indeed unbiased and 
has the minimum variance - that is hard to 
beat! Also, the binned LLH approaches the 
unbinned version. However...

For the ML, you have to know your PDF. 
This is also true for the Chi-Square, but 
unlike for the Chi-Square, you get no 
goodness-of-fit measure to check it!

Also, the small statistics, the ML is not 
necessarily unbiased, but still fares much 
better than the ChiSquare! But be careful 
with small statistics.
The way to avoid this problem is using 
simulation - more to follow.
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The likelihood ratio test
Not unlike the Chi-Square, were one can compare χ2 values, the likelihood between 
two competing hypothesis can be compared (SAME offset constant/factor!).

While their individual LLH values do not say much, their RATIO says everything!

As with the likelihood, one often takes the logarithm and multiplies by -2 to match 
the Chi-Square, thus the “test statistic” becomes:

If the two hypothesis are simple (i.e. no free parameters) then the Neyman-Pearson 
Lemma states that this is the best possible test one can make.

If the alternative model is not simple but nested (i.e. contains the null hypothesis), 
this difference approximately behaves like a Chi-Square distribution with Ndof = 
Ndof(alternative) - Ndof(null). This is called Wilk’s Theorem.
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