
Applied Statistics 
Systematic Uncertainties

“Statistics is merely a quantisation of common sense”

Troels C. Petersen & Jason Koskinen
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Systematic uncertainties

“Everything is vague to a degree you do not realise 
  till you have tried to make it precise.” 

[Bertrand Russell, 1872-1970]
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Systematic Errors

Everything is vague to a degree you do not realise till you have tried to make it precise. [Bertrand Russell]

Even with infinite statistics, the error on a result will never be zero!
Such errors are called “systematic uncertainties”, and typical origins are:
• Imperfect modeling/simulation
• Lacking understanding of experiment
• Uncertainty in parameters involved
• Uncertainty associated with corrections
• Theoretical uncertainties/limitations

While the statistical uncertainty is Gaussian and scales like            ,
the systematic uncertainties do not necessarily follow this rule.

When statistical uncertainty is largest, more data will improve precision. 
When systematic uncertainty is largest, more understanding will improve precision.

The finding/calculation of systematic errors is hard work.
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Biased measurements

Those who forget good and evil and seek only the facts are more likely to achieve good,
than those who view the world through the distorting medium of their own desires. [Bertrand Russell]

Why does my experiment find a lower value than others?

It is questions like these, that makes you start looking
for effects that could yield a higher value, leading to…

Biases!
When measuring a parameter for which
there are already expectations/predictions,
the result can be biased. Examples:
• Millikan’s oil-drop experiment.
• Epsilon prime (CERN vs. FNAL).
• Most politically influenced decisions!
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Neutron lifetime
measurement bias!



> ./FitSin2beta 
Result is: sin(2beta) = x.xx +- 0.37 
Do you wish to unblind (y/n)?

To avoid experimenters biases, blinding
has been introduced.

One method is for a computer to add a random
number to the result, which is not removed
before the analysis has been thoroughly
checked.

Example:

This was used in the epsilon-prime measurements, and has since become
standard procedure in many particle physics experiments.

In this way experimenters bias is removed, and the results become truly
independent and unaffected by wishful thinking and “common belief”.

Blinding of results
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How to find systematic errors?
Look for ANY effect that can have an influence on your results.

Divide your data in any way you can (space, period, condition, analysis, etc.).

Large statistical error 
Small systematic error

Small statistical error 
Large systematic error

Medium stat. error 
??? syst. error

Often, systematic errors are also studied using simulation. However, this requires
that the simulation is accurate! To check this, one studies known phenomena.

!6

Not precise, 
but accurate

Not accurate, 
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Medium precise, 
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Cross check of data
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Classic check of systematic
errors, by dividing the data
according to:
• Period of data taking
• Direction of regulator
• Direction of B-field

If any of these showed an
inconsistency between the
subsamples, one would
know that this had an
impact on the result.

This type of cross checks is
at the heart of data analysis.



Example of systematic error
Measurements are taken with a steel ruler, the ruler was calibrated at 15 C, the 
measurement is done at 22 C.

This is a systematic bias and not only a systematic uncertainty! To neglect this effect 
is a systematic mistake.

Effects can be corrected for! If the temperature coefficient and lab temperature is 
known (exactly), then there is no systematic uncertainty.

If we correct for effect, but corrections are not known exactly, then we have to 
introduce a systematic uncertainty (error propagation!).

In practice (unfortunately): Often not corrected for such effects, but then just 
“included in sys. uncertainties”.

Often, one can see in data, that
“something” strange is going on.

One should of course work hard to
understand the effect, but occasionally
one must give up, and suffer a large
systematic uncertainty.
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Evaluating systematic errors
Known sources:

• Error on factors in the analysis, energy calibration, efficiencies, corrections, ...

• Error on external input: theory error, error on temperature, masses, ...
Evaluate from varying conditions, and compute result for each. Error is RMS.

Unsuspected sources:
Repeating the analysis in a different form helps to find such systematic effects.

• Use subset of data, or change selection of data used in analysis.

• Change histogram binning, change parameterisations, change fit techniques.

• Look for impossibilities.

If you do not a priori expect a systematic effect and if the deviation is not significant, 
then do not add this in the systematic error.
If there is a deviation, try to understand where the mistake is and fix it!
Only as a last resort include non-understood discrepancy as systematic error.
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Unchecked biases
No method of checking for biases or systematics errors is foolproof. 
Overconfidence that all dominant systematic errors are included can result in 
wrong results.

Measuring the cosmic microwave background requires many subtractions of 
unwanted foregrounds. Missing a single systematic contribution ruins results.



Cleaning data
Example of experimental error, which would be a disaster if not corrected for.
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Removing data points
One should always be careful about removing data points, yet at the same to be 
willing to do so, if very good arguments can be found:
• It is an error measurement.
• Measurement is improbable.

Removing improbable data points
is formalised in Chauvenet’s
Criterion, though many other
methods exists (Pierce, Grubbs,
etc.)

The idea is to assume that the distribution is Gaussian, and ask what the probability
of the farthest point is. If it is below some value (which is preferably to be determined
ahead of applying the criterion), then the point is removed, and the criterion is
reapplied until no more points should be removed.

However, ALWAYS keep a record of your original data, as it may contain more effects
than you originally thought.
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Removing data points
An example could be today’s data…
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Entries  286
Mean    3.347
RMS    0.1903

 / ndf 2χ   1585 / 117
Prob       0
Constant  1.38± 18.96 
Mean      0.009± 3.354 
Sigma     0.0063± 0.1499 
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Lengths estimates by 30cm ruler

What!?!



The good experimenter
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The good experimenter
The good experimenter will always:
• inspect data visually.
• test assumptions.
• keep an accurate record.
• perform cross checks.
• do a ChiSquare test (also).
• plan the experiments carefully.
• try to “blind” results until final.

The good experimenter will never:
• rely on untested assumptions.
• “just let someones program do it”.
• make changes in data.
• look for only some effects.
• not look at the raw data.
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