
Applied Statistics 
Hypothesis Testing  

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Hypothesis testing
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Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?



Hypothesis testing
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Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?

NO!
What we can say is that the result is inconsistent (at some significance 
level) with the hypothesis that the person chooses at random.

This leaves us with the alternative hypotheses, that the person can 
taste the difference or have cheated (consciously or unconsciously).

In statistics one can never prove a hypothesis directly. However, one 
can set up alternative hypotheses and disprove these. That is how one 
works in statistics…



Hypothesis testing
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Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent 
(called H0) and this is the hypothesis we want to test, compared to an 
“alternative” hypothesis, Guilty (called H1).

Innocence is initially assumed, and this hypothesis is only rejected, if enough 
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond a reasonable doubt”), and the hypothesis can be rejected.

Truly innocent
(H0 is true)

Truly guilty
(H1 is true)

Acquittal
(Accept H0)

Right decision
Wrong decision

Type II error
Conviction
(Reject H0)

Wrong decision
Type I error

Right decision

The rate of type I/II errors are correlated, and one can only choose one of these!



Hypothesis terminology
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H0 = Null Hypothesis:
   Definition: The initial/simplest hypothesis. 
   Examples: Data is background, data follows simple model, particle is a pion.

H1 = Alternative Hypothesis:
   Definition: The alternative to the null hypothesis, possibly more advanced. 
   Examples: Data is background + signal, data does not follows simple model,
                      particle is an electron.

α = Significance:
   Definition: Probability to reject H0, even if it is true.
   Example: Finding guilty when innocent. Concluding no signal, even if there.
   Note: The selection efficiency = 1 - α

β = 1 - Power:
   Definition: Probability to accept H0, even if it is false.
   Example: Acquitting, when guilty. Concluding signal, even if not there.
   Note: The misidentification probability = β



You are asked to take a decision or give judgement - it is yes-or-no.
Given data - how to do that best?

That is the basic question in hypothesis testing.

Trouble is, you may take the wrong decision, and there are TWO errors:
• The hypothesis is true, but you reject it (Type I).
• The hypothesis is wrong, but you accept it (Type II).
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Taking decisions



Null Hypothesis Alternative Hypothesis
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Taking decisions



Null Hypothesis Alternative Hypothesis
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The purpose of a test is to yield (calculable/predictable) 
distributions for the Null and Alternative hypotheses, 
which are as separated from each other as possible (in 
order to minimise α and β).
The likelihood ratio can (sometimes!) be the best such test.

Taking decisions



Measuring separation
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Which of these four distributions are most separated? 
How do you “measure” this?



Measuring separation
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Which of these four distributions are most separated?



The Receiver Operating 
Characteristic or just ROC-
curve is a graphical plot of the 
sensitivity, or true positive 
rate, vs. false positive rate.

It is calculated as the integral
of the two hypothesis 
distributions, and is used to 
evaluate the power of a test.

Often, it requires a testing 
data set to actually see how 
well a test is performing.

Dividing data, it can also 
detect overtraining!
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The performance of a test statistic is described fully by the ROC curve itself!

To summarise performance in one single number (i.e. easy to compare!), one 
used Area Under ROC curve.

Alternatively, people use:
- Signal eff. for a given background eff.
- Background eff. for a given signal eff.
 -  Youden’s index (J), defined as shown
    in the figure.

The optimal selection depends entirely
on your analysis at hand!

Which metric to use?
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Which metric to use?



Example of ROC curves in use
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Simple case



Basic steps - distributions

trk 6= `X

�R < 0.4
pT > 1000MeV

ptrk
T / p`T
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Basic steps - ROC curves

trk 6= `X

�R < 0.4
pT > 1000MeV

ptrk
T / p`T

Area of interest in the following!
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Overall improvement
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Recent example (electron PID)
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This example is from identifying 
electrons using Machine Learning in 
the ATLAS experiment.
It is the result of applying ML on data, 
which solves the problem of differences 
between data and simulation.

In addition to the ROC curves, the ratio 
of these are also shown, to illustrate the 
improvement as a function of operating 
point.
The three new methods clearly 
improve on he existing result.



Using Angular Variables 
to disentangle 

H → ZZ* → eeee?

Combined result
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96.3%
signal eff.

4.7%
signal gain
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Testing procedure 
& 

Typical statistical tests
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Testing procedure
1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive the test statistic distribution under null and alternative hypothesis.
     In standard cases, these are well known (Poisson, Gaussian, Student’s t, etc.)
6. Select a significance level (α), that is a probability threshold below which null
     hypothesis will be rejected (typically from 5% (biology) and down (physics)).
7. Compute from (otherwise blinded) observations/data value of test statistic t.
8. From t calculate probability of observation under null hypothesis (p-value).
9. Reject null hypothesis for alternative if p-value is below significance level.
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1. State hypothesis.
2. Set the criteria for a decision.
3. Compute the test statistic.
4. Make a decision.



Hypothesis testing philosophy
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In hypothesis testing, you can never prove a hypothesis.

You can accept a hypothesis, but this does not exclude 
accepting other hypothesis.

However, you can reject a hypothesis on the basis that it’s 
probability of being correct (p-value) is too small.

Thus, in hypothesis testing, the line of reasoning is to 
state a hypothesis opposite of what you want to show, and 

then try to reject this hypothesis.



The spin of the newly discovered “Higgs-like” particle (spin 0 or 2?):

Example of hypothesis test
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PDF of spin 2 
hypothesis

Test statistic (Likelihood ratio [Decay angles])

PDF of spin 0 
hypothesis



Consider a likelihood ratio between the null and the alternative model:

The Neyman-Pearson lemma (loosely) states, that this is the most powerful
test there is.

In reality, the problem is that it is not always easy to write up a likelihood
for complex situations!

However, there are many tests derived from the likelihood...

Neyman-Pearson Lemma

D = �2 ln

likelihood for null model

likelihood for alternative model
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While the likelihood ratio is in principle both simple to write up and powerful:

…it turns out that determining the exact distribution of the likelihood ratio is 
often very hard.
To know the two likelihoods one might use a Monte Carlo simulation, 
representing the distribution by an n-dimensional histogram (since our 
observable, x, can have n dimensions). But if we have M bins in each 
dimension, then we have to determine Mn numbers, which might be too much.

However, a convenient result (Wilk’s Theorem) states that as the sample size 
approaches infinity, the test statistic D will be χ2-distributed with Ndof equal 
to the difference in dimensionality of the Null and the Alternative (nested) 
hypothesis.
Alternatively, one can choose a simpler (and usually fully acceptable test)…

Likelihood ratio problem

D = �2 ln

likelihood for null model

likelihood for alternative model
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Common statistical tests
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 2.99).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

• Wald-Wolfowitz runs test is a binary check for independence.
• Fisher’s exact test calculates p-value for contingency tables.
• F-test compares two sample variances to see, if grouping is useful.
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z =
x̄� µ0

�(x̄)

z =
x̄1 � x̄2p

�(x̄1)2 + �(x̄2)2



Which test to use?
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In principle all statistical tests can be used on every problem, but they are not all 
equally powerful, and some might also be biased (low stat.) or otherwise unfit.
Finally, they may not all be equally easy to implement!

The figure of merit is typically the Power of a Test*, defined as (1 − β), complement 
of the false negative rate, β.

This is thus the test's probability of correctly rejecting the null hypothesis.

Example:
This is a powerful test: Thus, since the result is negative, we can confidently say 
that the null hypothesis is not rejected (e.g. the patient does not have the condition).

In medical science, it is typically important to have a powerful test (i.e. low β), 
while in criminal science it is a low type I error rate (i.e. low α), convicting 
innocents.
In the end, choosing a test comes down to experience, importance of power, ease 
of use, and even standards in the field of research in question.

* Power of a test is often termed sensitivity in biostatistics.



Student’s t-distribution
Discovered by William Gosset (who signed “student”), student’s t-distribution 
takes into account lacking knowledge of the variance.

When variance is unknown, estimating it from sample gives additional error:

z =
x� µ

�

t =
x� µ

�̂

Gaussian: Student’s:
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Simple tests (Z- or T-tests)
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 3.00).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

Things to consider:
• Variance known (Z-test) vs. Variance unknown (T-test).
      Rule-of-thumb: If N > 10-20 or σ known then Z-test, else T-test.

• One-sided vs. two-sided test.
      Rule-of-thumb: If you want to test
      for difference, then use two-sided.
      If you care about specific direction
      of difference, use one-sided.
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z =
x̄� µ0

�(x̄)

z =
x̄1 � x̄2p

�(x̄1)2 + �(x̄2)2



Chi-squared test

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

Without any further introduction...

If the p-value is small, the hypothesis is unlikely...
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Chi-squared test

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

Without any further introduction...
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Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

The Kolmogorov test measures the maximal distance between the integrals of
two distributions and gives a probability of being from the same distribution. 36



Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

“A Kolmogorov–Smirnov test shows that the probability that the two distributions are not drawn randomly 
from the same parent population is greater than 99.96%; that is, the two distributions differ by more than 
3.5σ”. [Quote from figure caption] 37

Nature 486, 375–377 (21 June 2012)

Comparison of host-star 
metallicities for small 
and large planets



Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

“A Kolmogorov–Smirnov test shows that the probability that the two distributions are not drawn randomly 
from the same parent population is greater than 99.96%; that is, the two distributions differ by more than 
3.5σ”. [Quote from figure caption] 38

Nature 486, 375–377 (21 June 2012)

Comparison of host-star 
metallicities for small 
and large planets

Note: 
The KS-test requires, that 
the underlying distribution 
is continuous.



Kuiper test
Is a similar test, but it is more specialised in that it is good to detect SHIFTS
in distributions (as it uses the maximal signed distance in integrals). 
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Common statistical tests
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 3.00).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

• Wald-Wolfowitz runs test is a binary check for independence.
• Fisher’s exact test calculates p-value for contingency tables.
• F-test compares two sample variances to see, if grouping is useful.

These tests you should know by heart!

Those below are for general education,

and you should just know about them

(and the last one is not curriculum).
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A different test to the Chi2 (and in fact a bit
orthogonal!) is the Wald-Wolfowitz runs test.

It measures the number of “runs”, defined as
sequences of same outcome (only two types).

Example:

If random, the mean and variance is known:

N = 12, N+ = 6, N- = 6 
µ = 7, σ = 1.76 

(7-3)/1.65 = 2.4 σ (~1%)

Note: The WW runs test requires N > 10-15 for the output to be approx. Gaussian!

Wald-Wolfowitz runs test

41

Barlow, 8.3.2, page 153



When considering a contingency table (like below), one can calculate the
probability for the entries to be uncorrelated. This is Fisher’s exact test.

Simple way to test categorial data (Note: Barnard’s test is “possibly” stronger).

Fisher’s exact test

p =

✓
A+ C

A

◆✓
B +D

B

◆

✓
N

A+B

◆ =
(A+B)! (C +D)! (A+ C)! (B +D)!

A! B! C! D! N !

Row 1 Row 2 Row Sum
Column 1 A B A+B
Column 2 C D C+D

Column Sum A+C B+D N
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Consider data on men and women dieting or not. The data can be found in the 
below table:

Is there a correlation between dieting and gender?

The Chi-square test is not optimal, as there are (several) entries, that are very
low (< 5), but Fisher’s exact test gives the answer:

Fisher’s exact test - example

p =

✓
10
1

◆✓
14
11

◆
/

✓
24
12

◆
=

10! 14! 12! 12!

1! 9! 11! 3! 24!
' 0.00135
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To test for differences between
variances in two samples, one
uses the F-test:

F-test

Note that this is a two-sided
test. One is generally testing,
if the two variances are the
same.
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How many sigmas?
The number of sigmas (or p-value) required to make a claim should perhaps vary,
according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).
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The more extraordinary the claim, the more extraordinary the evidence needed!


