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This article uses two different experimental setups in the same location to determine the gravita-
tional acceleration. The first experiment is a simple pendulum and the other is a ball on an incline.
For each of the experiments all measurements are performed by each group member independently,
and each person estimates their uncertainties on that measurement. For most parts these uncer-
taintites are underestimated and therefore replaced by RMS values in the data analysis. For the
pendulum experiment g = 9.83±0.02 m

s2
is obtained and for the ball on incline experiment a value of

g = 9.67± 0.05 m
s2

is obtained. The pendulum experiment is therefore the most accurate and precise
of the two experiments compared to the gravitational acceleration of 9.82 m

s2
in Copenhagen, where

the measurements where performed.

INTRODUCTION

In this project, two unique experiments are conducted
in order to measure the gravitational acceleration g with
the highest achievable precision. In the first experiment,
the period of a pendulum of length L is measured:

T = 2π

√
L

g
(1.1)

From this equation, g can be determined:

g = L

(
2π

T

)2

(1.2)

In the second experiment, the time it takes for a ball to
roll down an incline is measured at five different points.
Using the distances and times between the points of mea-
surement, g can be derived as (assuming the acceleration
to be constant):

g =
a

sin(θ + ∆θ)

[
1 +

2

5

D2

D2 − d2

]
(1.3)

where a is the measured acceleration of the ball, θ is the
angle of the incline with respect to the table, ∆θ is the
angle of the table with respect to level, D is the diameter
of the ball, and d is the width of the track it is rolling
on. For clarification, see figure 2.

Figure 1: Schematic of
the pendulum experiment.

Figure 2: Schematic of
the ball on incline
experiment.

METHOD

All of the following measurements are conducted in-
dividually and independently by each of the four group
members. To avoid biasing, results of other members’
measurements are not disclosed until all members have
completed their measurements. Along with each mea-
surement, each group member must provide their best
estimate on their uncertainty, taking into account the
error on the equipment used.

Pendulum

The period of the pendulum is obtained by conduct-
ing timing measurements of the pendulum while it freely
swings back and forth. As the small angle approximation
has been used in equation 1.1, the pendulum motion is
initiated by displacing it slightly from equilibrium, and
letting go. The time is then measured using the provided
stopwatch python-script over 25 periods of the pendu-
lum’s swings. The resulting data is then fitted with a
straight line, and the period T is extracted as the slope
of the fit, as seen in figure 3.

The height of the pendulum mass is measured using
a caliper. The length of the pendulum, L, is measured
in two ways: first using a tape measure, measured from
the hook the pendulum wire is attached to, to the top
of the pendulum. Secondly using a laser distance mea-
surer. Here the distance from a spot as close as possible
to the hook to the floor is measured, then subtracting the
distance from the floor to the bottom of the pendulum.
As the center-of-mass of the pendulum is assumed to be
exactly in the center, half the height of the pendulum is
then added/subtracted, respectively, to the two measur-
ing methods. The influence of the hook on the pendulum
weight is assumed negligible for the center-of-mass.
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Ball on an incline

To calculate the gravitational acceleration g from the
ball-on-an-incline experiment requires the measurement
of five different quantities. First, the diameters D of the
balls are measured using a caliper. Two balls of differing
sizes are used in this experiment. The width of the track
d is then measured using a caliper. The distance between
the timing gates is measured using a long ruler and not-
ing where the center of the lasers emitted from the gates
hit the ruler. The ruler is kept in the same place, while
each member reads off the positions. The angle of the
incline θ is measured using a goniometer. To correct for
the any errors related to the goniometer not being per-
fectly centered, the measurements are conducted twice,
with the goniometer facing opposite directions. The table
on which the incline stands will most likely have a minor
angle ∆θ to the floor on which it is placed. This minor
angle will contribute to the measurement of the incline
angle, and the actual measurement is θ±∆θ (± depend-
ing on the direction of the entire setup). Another way to
measure the angle of the incline (without the contribu-
tion from the table’s angle), is to measure a well-defined
length and height in the incline, that should be exactly
parallel and normal to the table, respectively. The angle
of the incline can then be extracted using trigonometry.

The measured acceleration of the ball a as it rolls down
the incline is obtained by combining the measurements
of the gate positions with timing measurements from the
gate. Fitting the resulting data to the equation

x =
1

2
at2 + vt+ x0, (1.4)

the acceleration can thus be extracted. To measure the
size of the angle of the table with respect to the floor, the
entire setup is then turned 180 degrees. The table angle
∆θ can then be extracted in two ways. Both methods
require a new angle measurement using the goniometer,
again done twice facing opposite directions. Using these
measurements, the table angle is given by:

θm,norm − θm,rev = 2∆θ (1.5)

where θm are the measured angles. Taking time mea-
surements of the ball going down the incline again, the
angle can also be calculated as:

∆θ =
(anorm − arev) sin(θ)

(anorm + arev) cos(θ)
(1.6)

where anorm and arev are the fitted accelerations for the
setup in opposite directions.

RESULTS

A complete collection of all measurements and results
are provided in the appendix.

Pendulum

Figure 3: Plot of timing measurements with overlayed linear fit
from which the period is extracted as the slope. Furthermore the
residuals and their distribution is showed.

For the measuring tape a weighted average of the pen-
dulum mass height and a weighted average of the pen-
dulum length is added and gives Ltape = 18.553 ± 0.002
m, where σ has been error propagated from the individ-
ual uncertainties. When doing a weighted average one
should check whether the measurements are in agreement
with each other, which was done with a χ2-test, giving
χ2 = 3.41 and p = 0.33. This χ2 and p suggests that our
measurements are in agreement with each other and that
our uncertainties are neither over- or underestimated.
For the laser measuring device, a weighted average for
both hook-to-floor distance, floor-to-pendulum distance
and height of pendulum weight were found and then
combined to give Llaser = 18.5752 ± 0.0009 m with
χ2 = 435.13 and p = 0.00. This high χ2 and low p sug-
gests that our uncertainties have been underestimated,
which is maybe not that surprising as they were more or
less guessed by us. Therefore Llaser is re-calculated as an
arithmic mean with an uncertainty as the RMS, which
gives Llaser = 18.57 ± 0.02 m. The RMS is calculated
with 1

N−1 to take the low statistics into account. The
values of Ltape and Llaser are within each others uncer-
tainties, so a weighted average of the two values gives the
length of the pendulum to be L = 18.553± 0.002 m with
χ2 = 0.73 and p = 0.39. This seems reasonable as the
degrees of freedom is 1.
Fitting the timing measurements gave 4 different peri-
ods with different uncertainties, which were combined in
a weighted average to give T = 8.6231 ± 0.0008 s with
χ2 = 73.74 and p = 0.00. One of the fits is seen in figure
3. The high χ2 and low p suggests that there is a sys-
tematic error that is not being taken into account and
that the uncertainties should therefore be inflated. The
new systematic uncertainty is found by calculating the
difference between all of the periods, finding the biggest
difference and adding a systematic uncertainty such that
all the periods are within each others uncertainties. Cal-
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culating a new weighted average with the new uncertain-
ties gives T = 8.6322 ± 0.0008 ± 0.0058 s with χ2 = 2.90
and p = 0.41. This is a quite reasonable χ2, as our de-
grees of freedom are 3 and therefore this period will be
used for the calculation of g.
The value of g can now be computed according to eq. 1.2,
which gives g = 9.83±0.02 m

s2 , where the uncertainty has
been calculated by the error propagation formula.

Ball on an incline

During the initial data analysis we found that using the
estimated uncertainties on e.g. D, d and the angles, gave
extremely large χ2-values and associated probabilities p
close to 0. We therefore opted to estimate uncertain-
ties by calculating the RMS instead, which gave us much
more sensible χ2- and p-values. See tables in appendix.

By measuring the angle of the track with the goniome-
ter and turning the experiment 180◦ we determined the
angle of dθ = 0.101 ± 0.023◦. To cross-check this value,
we use (1.6), and get dθ = 0.329 ± 0.024◦. Since these
two obviously do not agree, we inflated our errors with
a systematic uncertainty of ±0.11◦ to get χ2 = 1.35 and
p = 0.24. The weighted average of these two values for
dθ was calculated to be dθ = 0.215 ± 0.097◦.

To find the time at which a ball passes through a gate,
we wrote a script that extracted a subset of the tim-
ing measurements, corresponding to the totality period,
when the laser light is completely obscured by a passing
ball, see figure 5. We believe the subset is approximately
uniform, so we take the passing times and their errors,
to be the mean µ = b−a

2 , where b and a is the end and
start time respectively, and error on the mean σ√

N
, where

σ = b−a√
12

, of a uniform distribution.

Figure 4: Example voltage peak as the ball passes a timing gate.
A subset of the timing data, corresponding to the totality period,
is shown in red. The mean and error on the mean of this subset
are shown by the solid black line and the blue dashed lines,
respectively.

We collected 16 data sets in total, half of which were
collected after rotating the entire experiment 180◦, which

are further split between using a big- and medium-
sized balls. A distance-time graph can now be con-
structed. We fit the data with a quadratic polynomial
using iminuit[1], and extract the acceleration, see fig-
ure 5. We get four accelerations in total: 2 for each ball
size, and 2 for each direction of the experiment. Using
these accelerations, along with weighted averages of the
remaining measurements, gives us g = 9.68 ± 0.05 m

s2 .

Figure 5: One distance-time graph with the quadratic fit
overlayed on top for Lasse with a big ball before the experiment
was reversed. χ2 = 4.206 and p = 0.122 between the data and the
fit. Bottom part of the graph shows the time residuls.

DISCUSSION

Obtaining g = 9.83 ± 0.02 m
s2 from the pendulum ex-

periment and g = 9.67 ± 0.05 m
s2 from the ball on in-

cline experiment is respectively 0.5σ and 2.8σ away from
the official gravitational accerelation in Copenhagen of
9.82 m

s2 , calculated by using the International Gravity
Formula and the values of the GRS80 reference system
[2].
For the pendulum experiment the result is therfore both
quite accurate and precise, whereas the ball on incline
experiment is less accurate and precise. One of the rea-
sons for this is due to the fact that there are a lot more
variables to measure in the ball on incline experiment,
which leads to more terms in the error propagation for-
mula. The error propagation formula for the pendulum
experiment is

σ2
g,pend =

64L2π4

T 6
σ2
T +

16π4

T 4
σ2
L (1.7)

Looking in table I it can be seen that the first term is
the largest and if one wanted a more precise measure-
ment one should aim for better timing measurements.
Initially there was a smaller uncertainty on T, but it had
to be inflated due to inconsistencies in the measurements.
One should therefore work on taking better timing mea-
surements, e.g. filming the experiment, or having more
people take the timing measurements and then use an
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arithmic mean of their periods and the RMS as the uncer-
tainty. This was also attempted for our calculations, but
lead to a less accurate and less precise result and there-
fore the inflation of uncertainties was chosen instead.
The error propagation formula for the ball on incline is
given by

σ2
g,ball =

(
1 +

2D2

5(D2 − d2)

)
1

sin(θ ± ∆θ)2
σ2
a

+ a2

(
1 +

2D2

5(D2 − d2)

)
cos(θ ± ∆θ)2

sin(θ ± ∆θ)4
σ2
θ

+ a2

(
1 +

2D2

5(D2 − d2)

)
cos(θ ± ∆θ)2

sin(θ ± ∆θ)4
σ2

∆θ

+
a2

sin(θ + ∆θ)2

(
4D

5(D2 − d2
− 4D3

5(D2 − d2)

)2

σ2
D

+
a216D4d2

25sin(θ + ∆θ)2(D2 − d2)4
σ2
d

(1.8)

As seen in table I the largest contribution comes from the
third term, which is the contribution for the uncertainty
on the table angle. A more precise result could therefore
be obtained by minimising this uncertainty, e.g. with
more measurements, which would lead to a smaller RMS.
This angle was also not very well determined, as we got
two very different answers from the cross-checks.
Ultimately one could calculate a final g from the values
from the two experiments. Taking a weighted mean then
gives g = 9.82 ± 0.01 m

s2 with a χ2 = 8.89 and p = 0.003.
It is a small p value, but still above 1% and we choose
therefore not to inflate the uncertainties. This final value
is then equal to the official value of g to this number of
decimal points.

CONCLUSION

In conclusion the gravitational acceleration was deter-
mined to be g = 9.83± 0.02 m

s2 for the pendulum experi-
ment and 9.68±0.05 m

s2 for the ball on incline experiment.
Comparing to the official value of g = 9.82 m

s2 , we can con-
clude that the pendulum experiment gave more accurate
and precise measurements. Taking a weighted average of
the two accelerations from the two experiments, we ob-
tain a value a final value for g of 9.82 ± 0.01 m

s2 , which is
in agreement with the official value.
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Variable Value Error Impact

Pendulum

Period T 8.632 s 0.007 s 0.000227 m2/s4

Length L 18.553 m 0.002 m 7.173 · 10−7 m2/s4

Resulting g 9.83 m/s2 0.02 m/s2

Ball on incline (big ball, normal)

Acceleration a 1.522 m 0.005 m 0.0010 m2/s4

Incline Angle θ 14.04◦ 0.04◦ 0.0026 m2/s4

Table Angle ∆θ 0.22◦ 0.10◦ 0.0041 m2/s4

Diameter Ball D 14.99 mm 0.0015 mm 1.36e-06 m2/s4

Diameter Rail d 6.02 mm 0.13 mm 0.0006 m2/s4

Resulting g 9.67 m/s2 0.05 m/s2

Table I: Variables used in the two experiments, their values,
uncertainties, and the impact they have on the uncertainty on g.
The impact is the size of the respective term in the error
propagation formulas (1.7 and 1.8) associated with that variable.
It should be noted that the resulting g is the weighted average of
four different g’s from different ball sizes and directions. The
variables given in this table is for just one of the g’s as an
example.
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APPENDIX

Pendulum measurements

Period [s]

Value Statistical Systematical

8.6206 ± 0.0009 ± 0.01

8.617 ± 0.005 ± 0.01

8.649 ± 0.004 ± 0.01

8.637 ± 0.003 ± 0.007

Mean: 8.6322 ± 0.0008 ± 0.0058

Table II: Measurements of the pendulum period extracted from
fits of the data

Mass height [cm]

Value Error

3.00 ± 0.1

3.00 ± 0.5

3.00 ± 0.1

3.00 ± 0.05

Mean: 3.00 ± 0.03

Table III: Measurements of the mass height using a caliper

Laser, top → ground [m]

Value Error

18.769 ± 0.001

18.733 ± 0.010

18.736 ± 0.005

18.725 ± 0.001

Mean: 18.7467 ± 0.0007

Table IV: Measurements of the distance from the top of the
pendulum wire to the ground using the laser

Laser, ground → bottom [cm]

Value Error

15.7 ± 0.1

15.7 ± 0.1

15.6 ± 0.1

15.6 ± 0.1

Mean: 15.6500 ± 0.0005

Table V: Measurements of the distance from the ground to the
bottom of the mass using the laser

Pendulum length (tape) [m]

Value Error

18.534 ± 0.005

18.532 ± 0.004

18.541 ± 0.005

18.539 ± 0.002

Mean: 18.538 ± 0.002

Table VI: Measurements of the pendulum length using a tape
measure. Note that these go to the top of the swinging mass, not
the center-of-mass, which must be included in the final pendulum
length

Ball on incline measurements

Ball diameters [mm]

Value Error

Big ball

15.00 ± 0.03

14.95 ± 0.03

15.02 ± 0.03

14.99 ± 0.03

Mean: 14.99 ± 0.015

Medium ball

12.71 ± 0.02

12.70 ± 0.02

12.75 ± 0.02

12.72 ± 0.02

Mean: 12.72 ± 0.01

Table VII: Diameter measurements of the three different balls

Rail width [mm]

Value Error

6.08 ± 0.25

5.78 ± 0.25

6.36 ± 0.25

5.89 ± 0.25

Mean: 6.02 ± 0.13

Table VIII: Measurements of the rail width using a caliper
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Incline angle [◦]

Value Error Value Error

Track normal

Gonio norm Gonio rev

14.1 ± 0.1 14.6 ± 0.1

14.0 ± 0.2 14.6 ± 0.2

13.9 ± 0.3 14.2 ± 0.1

14.0 ± 0.2 14.2 ± 0.1

Overall mean: 14.04 ± 0.04

Track reversed

Gonio norm Gonio rev

13.95 ± 0.1 13.8 ± 0.1

13.90 ± 0.1 13.5 ± 0.2

13.90 ± 0.1 13.7 ± 0.1

13.80 ± 0.1 13.6 ± 0.2

Overall mean: 13.84 ± 0.03

Table IX: Measurements of the angle using the goniometer

Lengths used for θtrig [cm]

Value Error

Length

88.9 ± 0.1

88.9 ± 0.1

88.9 ± 0.1

88.9 ± 0.05

Mean: 88.90 ± 0.04

Height

22.3 ± 0.24

21.8 ± 0.24

22.3 ± 0.24

22.25 ± 0.24

Mean: 22.16 ± 0.12

Height offset

0.5 ± 0.1

0.5 ± 0.1

0.48 ± 0.05

0.5 ± 0.1

Mean: 4.88 ± 0.38

Table X: Length measurements of the triangle formed by the
incline

Gate positions [cm]

Value Error

Gate 1

19.3 ± 0.1

19.2 ± 0.1

19.05 ± 0.1

19.05 ± 0.05

Mean: 19.11 ± 0.038

Gate 2

34.3 ± 0.1

34.1 ± 0.1

34.0 ± 0.1

33.92 ± 0.02

Mean: 33.94 ± 0.019

Gate 3

49.4 ± 0.1

49.3 ± 0.1

49.19 ± 0.05

49.15 ± 0.02

Mean: 49.16 ± 0.018

Gate 4

64.1 ± 0.1

64.15 ± 0.1

64.1 ± 0.1

64.15 ± 0.02

Mean: 64.15 ± 0.019

Gate 5

79.8 ± 0.1

79.7 ± 0.1

79.75 ± 0.05

79.75 ± 0.02

Mean: 79.75 ± 0.018

Table XI: Measurements of the gate positions.
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