Applied Statistics

Multivariate analysis III

\Z

Troels C. Petersen (NBI)

“Statistics is merely a quantisation of common sense”

Combining ML answers

Different ML answers

The many algorithms each produce an estimate, which naturally very correlated
with that of the other algorithms. But they are not identical...

Correlation between different models' prediction
Linear

These very high correlations
are of course to be expected.
But they are mostly driven

by values far from the actual

SGD
Ridge [MENOECK]

LS 0.93 0.98

Decision Tree = Rl I8 price. If these are excluded,
Kernel Ridge 0.89 0. . . we get oc

KNN 0.79 081 0.79 0.82 0.84 0.84

XGBoost 0.83

Extremely RF 0.81

(R 0.98 0.98

Random Forest

KNN

- =) © @
3 Q 2 o
S 2 = @
- O
X

Adaboost
Decision Tree
Kernel Ridge
Extremely RF
Random Forest

Different ML answers

The many algorithms each produce an estimate, which are naturally very
correlated, with the estimates of the other algorithms. But they are not identical...

Correlation between different models' prediction within +/- 50%
Linear

sGD 0.092
Ridge 0.091
Adaboost | 0.32 0.32
Decision Tree 0.19 0.23 0.18
Kernel Ridge 0.073 0.16 0.061 0.17 0.31
KNN 0.074 0.28 0.076 0.15
XGBoost 0.2 0.33 0.19
Extremely RF 0.21 0.22 0.19 0.3 . . 0.55 0.61

Random Forest = 0.2 0.29 0.2 0.59 049 062 0.64 0.8

Linear

SGD

Ridge
Adaboost
Decision Tree
Kernel Ridge
KNN

XGBoost
Extremely RF
Random Forest

Different ML answers

The many algorithms each produce an estimate, which are naturally very
correlated, with the estimates of the other algorithms. But they are not identical...

Combined Models and Improvements

Relative Improvement (%). Higher is better

Lower Diagonal: Cl, Higher Diagonal: MSE Absolute Value of Cl-error (%). Lower is better Absolute Value of MSE, (x 107'?). Lower is better
Linear 0.42 2.9 Linear Linear
SGD 2.7 0.61 KN 0.51 0.34 2.6 SGD SGD
Ridge 0.39 2.9 Ridge A6 3.0 3.6 2.9
Adaboost 0.1 0.33 1.6 0.89 9.5 Adaboost Adaboost [SHINECHRVACH 0.6
Decision Tree 2.4 Decision Tree DIVSINIC M 64.1 64.1 64.1 64.1 64.1
Kernel Ridge 7.4 Kernel Ridge (CQERNGIIN 4.4 44 44 44 641 44
KNN 7.8 11 KNN 18.117.6 O'W21.921.921.921.964.121.921.9
XGBoost 15 4 9.3 3.1 XGBoost 16.9 16.9 16.9 16.9 16.7 16.2 16.9 16.9 pLe- N 3.0 3.6 2.9 JUNN64.1 4.4 21.9 k!
Extremely RF 2 34 7.5 2.7 Extremely RF 16.6 16.6 16.6 16.6 16.3 16.1 16.6 15.4 16.6 Extremely RF [SHONIGENZACE 0.6 [ZMUWBpaRe]l 0.5 0.5
Random Forest 0.24 7.5 Random Forest 15.9 15.9 15.9 15.9 15.8 15.9 15.9 14.7 15.9 15.9 Random Forest [HIRRCHRNZAC) 04 05 04
=5 a [} 73 (] () z 0 w 7 = o () 73 (0] [} z 73 w 73 = () [} 73 (] () z 73 w 7
g ¢ 8 8 & 8 2 8 ¢ ¢ 2 o 2 8 2 g2 § ¢ ¢ g ¢ 8 8 &2 8§ 2 8 ¢ ¢
3 r g < & 2 T u 3 r g < 9 © 3 r & < K 2 T u
g ¢ B X § & 2 3 B X § & 2 3 ¢ X 5 &
o 14 o

Different ML answers

The slight differences means, that one can combine them and possibly gain a little
bit more, not unlike the averaging of trees in a forest.

Below are two such examples, where on the left (Decision Tree & AdaBoost) the
goodness measure is “r2” (R squared - coefficient of determination), while on the
right (XGBoost & Random Forest) it is the “Error CI” (width of a Confidence
Interval).

Combination of models, Decision Tree and Adaboost Combination of models, XGBoost and Random Forest

0.84 0.180

0.83
0.175

0.170
Y 0.81

Error Cl

0.165

0.79 0.160

0.155

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Decision Tree to Adaboost Proportion of XGBoost to Random Forest

Overtraining in our case

The random forest on the housing prices show the following pattern as a function
of number of trees. As can be seen, somewhere about 50-80 trees is probably
optimal.

Random Forest Performance as function of # of trees

1.0 N N T AT AN g g E N T L s amm s T m e R e R R 5
“‘l '\l\’t\,'~ ----- AR P X S R et e e i i e ~ -
l"v'
0.8 4
:.O
—
X
S
0.6 3
N °
& . - = = MSE Trfining o
3
o
w
0.4 25
(]
V g
0.2 1
1 L4
0.0] g == L . i R =] 0
0 20 40 60 80 100

Number of trees

Ensemble methods

Combining several methods providing “an answer”, the ensemble of
methods can become at least as performant, as the best of the methods, and
typically even more performant.

To some extend, combining many different trees is in itself an ensemble
method, but this can be done between many different ML (and other)
methods. The combination may be simple voting or (rather) a new ML.

This is also a way of combining different types of ML algorithms and loss

: |
functions! ? Ensemble’s prediction

(e.g., majority vote)

Predictions

Diverse
predictors

New instance

Figure 7-2. Hard voting classifier predictions

Generative Adversarial Networks

Generative Adversarial Networks

Invented (partly) by Ian Goodfellow in 2014, Generative Adversarial Networks
(GANSs) is a method for learning how to produce new (simulated) datasets from
existing data.

The basic idea is, that two networks “compete” against each other:
e Generative Network: Produces new data trying to make it match the original.
e Adversarial (Discriminatory) Network: Tries to classify original and new data.

Typically, the generator is a deconvolutional NN, while the discriminating
(adversarial) is convolutional NN.

“The coolest idea in machine learning in the last twenty years”
[Yann LeCun, French computer scientist]

10

GAN drawing

Imagine that you want to write numbers that looks like hand writing.

Given a large training set, you can ask you GAN to produce numbers. At first it
will do poorly, but as it is “punished” by the discriminator, it improves, and at the
end it might be able to produce numbers of equal quality to real data:

Training set l/

A7 LI
/

Random
noise i

Discriminator

) {Fa ke

vy

— _

Generator —/ N/Fake image

11

GAN drawing

The discriminator/adversarial can also be seen as an addition to loss function,
penalising (with A) an ability to see differences between real and fake:

LOSS — LOSS _|_)\) LAdversarial

Training set V Discriminator

IR
— {Fa ke

Random

- — N

%
AR\ \;
vy

Generator Fake image

\

12

Latent space

Latent variables are variables that are inferred instead of directly observed. They
may correspond to some physical reality, e.g. temperature, (then also called
hidden variables) but can also correspond to abstract concepts, e.g. mental state.

One advantage of using latent variables is that they can serve to reduce the
dimensionality of data. Also, latent variables link observable data in the real
world to symbolic data in the modelled world.

A latent space is one spanned by latent variables, thus containing the main

featureS- Input image Reconstructed image

Latent Space
~._ Representation

- y
- y
- 4
- -
.=
L - '~
L - "~
Lt ~
. .,
~
‘-,

| | |

Encoder Bottleneck Decoder 1 3

\

Example: Latent space for PCA

Consider a 3 dimensional space on which we
apply a PCA analysis. 4

Then the principle component will fall in some
direction spanned by the three dimensions.

If we choose only to use this component, then

this 1D direction forms the latent space:

e All 3D points can be boiled down to this line, and

e this line can give an approximation to all 3D points.

This is a linear example in low dimensionality.

Typically, ML-problems are non-linear and in high dimensionality. Therefore, the
latent spaces can also have significant dimensionality, though it should of course
always have a (much) lower dimensionality than the problem itself.

14

Variable AutoEncoders

An auto-encoder is a method (typically neural network) to learn efficient data

codings in an unsupervised manner (hence the “auto”).

This dimensionality reduction is schematically shown below, and closely related
to Generative Models.

Input «------------ooe Ideally they are identical. ~ ---------------------- >
X~ x
Probabilistic Encoder
99 (2/x)
Mean W Sampled
latent vector
Probabilistic
X VA Decoder
po(x|z)
o
Std. dev
_ An compressed low dimensional
z=p+toQe representation of the input.

e ~N(0,I)

Reconstructed
input

15

Latent space illustration

The below animation shows how latent spaces are a simplified representation of
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Arithmetic in Latent Space
e B o=

! !

Shape
—=
space

16

Latent space illustration

The below animation shows how latent spaces are a simplified representation of
the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Interpolation in Latent Space

ol A

17

GANs producing face images

In 2017, Nvidia published the result of their “Al” GANs for producing celebrity
faces. There is of course a lot of training data...

Evolution in facial GANs

There is quiet a fast evolution in GANs, and their ability to produce realistic
results....

19

Ranking input variables

20

Input Feature Ranking

It is of course useful to know, which of your input features/variables are
useful, and which are not. Thus a ranking of the features is desired.

And this is actually a generally nice feature of ML and feature ranking:
It works as an automation of the detective work behind finding relations.

In principle, one could obtain a variables ranking by testing all combinations
of variables. But that is not feasible on most situation (N features > 7)...

Most algorithms have a build-in input feature ranking, which is based on the
very simple idea of “permutation importance”.

Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the
model’s loss function after permuting the feature.

A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.

https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

One of the most used methods is “permutation importance” (below quoting
Christoph M.: "Interpretable ML" chapter 5.5). The idea is really simple:

We measure the importance of a feature by calculating the increase in the
model’s loss function after permuting the feature.

A feature is “important” if shuffling its values increases the model error,
because in this case the model relied on the feature for the prediction.

A feature is “unimportant” if shuffling its values leaves the model error
unchanged, because the model thus ignored the feature for the prediction.

Height at age 20 (cm) Height at age 10 (cm) Socks owned at age 10
182 155 . 20
175 147 e 10
156 142 . 8

153 130 24

https://christophm.github.io/interpretable-ml-book/feature-importance.html

Permutation Importance

Input: Trained model f, feature matrix X, target vector y, loss function L(y,f).
[Fisher, Rudin, and Dominici (2018)]

e Estimate the original model error eqig = L(y, £(X))
e For each featurej=1,...,p do:
— Generate feature matrix Xperm by permuting feature j in the data X.
This breaks the association between feature j and true outcome y.
— Estimate error eperm = L(Y,f(Xperm)) based on the predictions of Xperm.

— Calculate permutation feature importance Flj= €perm/ €orig (Or €perm - €orig).
* Sort features by descending FI.

X_A X_B X_C Y
xat xb1 xc y1
xa2 - xb2 xc2 y2
xal3 xb3 . xc3 V3
xa4 | xb4 xc4 v4
xab xb5 xch y5
xab xb6 xch y6

Feature importance with Neural Networks (Towards Data Science)

https://towardsdatascience.com/feature-importance-with-neural-network-346eb6205743

Shapley Values

A better approximation was developed by Scott Lundberg with SHAP values:

SHAP (SHapley Additive exPlanations):
https:/ / github.com /slundberg/shap

This algorithm provides - for each entry - a ranking of the input variables, i.e.
a sort of explanation for the result.

One can also sum of the SHAP values over all entries, and then get the overall
ranking of feature variables. They are based on Shapley values.

https://github.com/slundberg/shap

Shapley values

Shapley values is a concept from corporative game theory, where they are
used to provide a possible answer to the question:

“How important is each player to the overall cooperation,
and what payoff can each player reasonably expect?”

The Shapley values are considered “fair”, as they are the only distribution
with the following properties:
e Efficiency: Sum of Shapley values of all agents equals value of grand coalition.

® Linearity: If two coalition games described by v and w are combined, then the
distributed gains should correspond to the gains derived from the sum of v and w.

* Null player: The Shapley value of a null player is zero.
e Stand alone test: If v is sub/super additive, then i(v) </ > v({i})
* Anonymity: Labelling of agents doesn't play a role in assignment of their gains.

* Marginalism: Function uses only marginal contributions of player i as arguments.

From such values, one can determine which variables contribute to a final result. And
summing the values, one can get an overall idea of which variables are important.

SHAP value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

i IR il =4

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values are calculated as:

)= Y BRI 60 40y~ w(s)

SCN\{i}

To formula can be understood, of we imagine a coalition being formed one
actor at a time, with each actor demanding their contribution v(S U {i}) — v(S)
as a fair compensation, and then for each actor take the average of this
contribution over the possible different permutations in which the coalition
can be formed.

SHAP value calculation

Consider a set N (of n players) and a (characteristic or worth) function v that
maps any subset of players to real numbers:

i IR il =4

If S is a coalition of players, then v(S) yields the total expected sum of payoffs
the members of S can obtain by cooperation.

The Shapley values can also be calculated as:
1 .
pi(v) = — > P u{i}) —o(P)]
" R

where the sum ranges over all n! orders R of the players and PR is the set of
players in N which precede i in the order R. This has the interpretation:

1 marginal contribution of ¢ to coalition C

pi(v) = NplayeI‘S red number of coalitions excluding ¢ of this size

Input Feature Ranking

Here is an example from SHAP’s github site.

Clearly, LSTAT and RM are the best variables (whatever they are!).

shap.summary_plot(shap_values, X, plot_type="bar")

saT I
RV .
criv [
nox |
pis [N
pTRATIO |
s |l
TAX]
AGE ||
INDUS |
RAD |
ZN
CHAS

0.0 0.5 1.0 15 2.0 2.5
mean(|SHAP value|) (average impact on model output magnitude)

Input Feature Ranking

Here is an example from particle physics. The blue variables were “known”,
but with SHAP we discovered three new quite good variables in data.

p_Rhad

p_Reta

p_Rhadl

p_nTracks
p_deltaEtal
p_core57cellsEnergyCorrection
p_Eratio

p_Rphi
p_deltaPhiRescaled2
p_E7x11_Lr3
p_TRTPID

p_EptRatio

p_weta2

p_et_calo

p_dPOverP

p_wtotsl

p_E3x5 Lrl
p_E3x5_Lr0

p_E7x11 _Lr2
p_fracsl

p_eta

p_pt_track
p_deltaEta2
NvtxReco
p_ambiguityType
p_flcore
p_numberOfinnermostPixelHits
p_f3

p_deltaEta0

p_fl

p_dO0Sig

p_do
averagelnteractionsPerCrossing
p_numberOfPixelHits

p_numberOfSCTHits 1
0.0

LightGBM Model SHAP Value Rankings

LH PDF variables
+Binning vars
+Selection vars
+Extra vars
+Abundant vars

2.5

Input Feature Ranking

We could of course just add all variables, but want to stay simple, and
training the models, we see that the three extra variables gives most of gain.

Electron ROC Curve Trained in Data

1071

FPR (Background Efficiency)

10—3 1

Reference Likelihood (LH) (AUC = 0.99711)
LightGBM (LH PDF varibles) (AUC = 0.99838)
LightGBM (LH +Binning vars) (AUC = 0.99879)
LightGBM (LH +Selection vars) (AUC = 0.99897)
LightGBM (LH +Extra vars) (AUC = 0.99915)
LightGBM (LH +Abundant vars) (AUC = 0.99923)

1.000

0.800

0.825

0.850

0.875

0.900
TPR (Signal Efficiency)

0.925

0.950

0.975

Individuel estimates

Shapley-values also opens up for the possibility of giving variable rankings
for individuel estimates, i.e. the exact reason behind each estimate!

SHAP plot for #489266

8.00
6.86
- Y= 6.35
L- 6.00
~ 5.00 5
S 3.35 4.00 &
N kS,
o 250 1.35 2.00 O
< 104 065 058 g3g % O
T 0.00 B O m o 932 014 013 @& &
0.00
m . -_—_——47—___,
' -0.14 -0.15
-0.78 500
2% (@0 oast \Bo\o ordtt |>\(ea\ W00yt oW oV get e a0 N
\] o S) NG A4 \ A e de \0 A\
E\eﬂdo S&o('\"‘\(/s * P\ge(\doms %e(eg%eo\’ :C(\e@ P‘S‘aﬂ ot ue 9(09“:;\?%0&0/ y
S
et

Above is shown, which factors influenced (and to what degree) the final price
estimate (here 6.86 MKr. compared to the actual sales price of 6.35 MKr.)

This is a really useful tool to have.

32

Bonus slides

33

. P -
sAm.

»
e 1\
"

f:x oxrn:- LA
- “[.. \TA;(,'";;,I.LUD

8 /.

’.:, . W R A= s .. 8 L ’ S A - Wbl iy vt S b :
S B -
> % - -:'

& - = -
35 3% -
- = -
= Y3 *> - 2V
s - — = O
e = - -~
- * X~ :
_— e s * — - -
- - = —
. - ? Ny
. ol - &N 3
3 B .
> - - 3 0 ~
- ~ 03 ~
- \‘ SN
<
< ~
. % » . ‘.‘
-~ OJ /',‘ 4 \v “\ ~\\
’ e 7 / KA > ~°
'. s, E ’ 3\ \\\ \\\.
% ’ / \ s \ 2 0‘, 3
’ /'i. / \ \ o \-\\ -
’ " ' W N
7 1y ! | ! \ . " 4
i /™ T Y W\
™y " beje g (L) "
., C N
. aa) . .
f \ \‘.\
r
/‘ ’ \ '.\'\.
v ! A\ 0
v Y \ W ¥
/ W\

| 34

