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Applied Statistics:

Detection and characterization of the most distant
galaxies

Gabriel Brammer
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Under the hood - standard imaging

+ Images from a telescope sample the brightness
distribution of the sky

+ Calibration, background, noise model

+ Typically sources of interest are much fainter
than the background, so take many exposures
and average them (central limit theorem)

* S/N ~ sqrt(t)



Under the hood - standard imaging

+ Basic "astronomy” done with 2D images that
sample the (projected) brightness distribution of
sources on the sky

1923
E. Hubble




Under the hood - standard imaging

+ Modern digital detectors are ~linear photon-
counting devices that can be calibrated to an
apbsolute scale (e.g. W/ m2)

2004, Hubble Space Telescope
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Imaging statistics

+ S - Signal rate from source of interest (e.g., photons / s)

+ B - "background” rate

+ Ne2 - Random noise reading the charge on the detector N times
+ t - "open shutter” integration time

+ Variance Var = (S + B) t + Ne?

+ For B >> S, Nez (faint sources, expensive detectors),
Signal-to-noise = t / t-1/2 =~ /2

*+ Increasing signal-to-noise by a factor of two requires four
times the integration time

+ Central limit theorem provides approximately Gaussian statistics,
but this should be verified and preserved!



[ ~ 10 minutes

I ~ 2 hours

I ~ 9hours




Source detection and characterization
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Source detection and characterization

+ Point sources in an image (stars) have a finite
size set by the telescope diameter and optics

* "Point spread function®

+ Basic weighted source detection

* [ =(S/ Var «

PSk) /(1 /7 Var « PSF2)

*Var() =1/ / Var « PSF2)

+ Essentially, a least squares fit for the intensity of
a point source anywhere in an image




Source detection and characterization

+ But be careful! Large images can be provide
many "trials” for detecting sources, so "30" can be
risky.

+ E.g., relatively small HST images are 2400x2400
"PSFs" in size, so p=0.01 can still be a very big
numboer.

+ Worse still in presence of uncontrolled systematics.



Source detection and characterization

+ Image segmentation assigns regions of the
image to discrete sources (e.9., scikit-image)

+ Measure moments of the light distribution for
discrete sources, e.g., sum, FVWWHM



A third dimension: spectral shape /(A)

+ Imaging: bandpass filters

+ (Much more complicated optics can provide full
spectra across the 2D spatial field)




Crude distance estimates: "dropouts”

+ Neutral Hydrogen along the line-of-sight to distant galaxies
absorbs all light below 1216 A

+ Creates a step-function signal that can be an effective distance
indicator ("Lyman break")

* Simply observe an object in multiple filters and the bluest
wavelength in which that object is detected ~1216A

F435W F606W F775W F105W  F125W F140W Fi60W

z2=565 L 1] \ , =11.05 b

04 06 1.0 15 04 06 1.0 15
Observed Wavelength (microns) Observed ngth ( ons)

(firstgalaxies.org, Magee et al.)



http://firstgalaxies.org

Data Reduction and Machine Learning

+ The procedures above are done as objectively
as possible, inevitably involve data compression
and loss of information

+ Image moments are essentially features a
(semi-)intelligent machine —the researcher—
has chosen as important

+ Speed, efficiency vs. interpretability



Data Reduction and Machine Learning

+ Example, just give a machine the images themselves and
let it figure out the mapping between Image =¥ redshift

HESER

z=0.258 z=0.039 z=0.094 z=0.163 z=0.078

0.30} CNN

<Az>=0.00010.
025}  9map=0.00912 L
n=0.31% -

Predicted |

0.05 0.10 0.15 0.20 0.25 0.30

ZSPEC Pasquet et al. https://arxiv.org/abs/1806.06607
Truth



https://arxiv.org/abs/1806.06607

Candidate #2 (GN-z10): z~107 Oesch+15
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Candidate #2 (GN-z10): z~107?
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Candidate #2 (GN-z11): z=11.1+0.1

Oesch,Brammer+16

+ Deep HST spectrum supports Lyman-break @ z=11

-1.0— Model =

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Wavelength [um]



10° ¢

Normalized Number of Pixels

10_3 UL

Candidate

2 (GN-z11):

z=11.1£0.1

Oesch,Brammer+16

+ Deep HST spectrum supports Lyman-break @ z=11
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Candidate

Distance:

Radius:

Mass In stars:

Star formation rate:

GN-Z11
13.4b light years

2500 light years

10° Mo
25 Mo /yr

z=11.1x0.1

Oesch,Brammer+16

Milky Way

25 x larger

50 x larger

50 x lower



—Xpected counts at z>10

+ Should have needed a survey >15x larger to find
GN-z11 based on extrapolations from lower z!
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Cosmic Star

-ormation History: Cosmic Dawn
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Cosmic Star Formation History: Cosmic Dawn
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Ground-based observatories *
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Automated "pipeline” processing for more comprehensive
search.




Aside: a UV burst in GNz117

+ Jiang et al. (Nature Astronomy, Dec. 2020, https://arxiv.org/
abs/2012.06937) reported detection of a transient burst
while they were observing GN-z11 in 2017/

NEWSLETTERS - -
Sign up to read our regular email ew ‘ Ien Is
newsletters

News Podcasts Video Technology Space Physics Health More ¥ Shop Courses Events

We may have seen a huge explosion
in the oldest galaxy in the universe

Q00OMOO0O

SPACE 14 December 2020


https://arxiv.org/abs/2012.06937
https://arxiv.org/abs/2012.06937
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Aside: a UV burst in GNz117

+ [s it above the atmosphere?

+ Was it a known artificial satellite”? . but the website used to
check is now down

+ Was it a known asteroid or other natural body?
+ So it's a Gamma Ray Burst 400 Myr after the Big Bang”

Long GRBs reside 1n active star-forming galaxies. GN-z11 is a luminous star-forming
galaxy with a UV star formation rate of ~26 solar masses per year!’. During the observations
of GN-z11, the chance probability of detecting one GRB as bright as GN-z11 1n the
UV/optical is estimated to be (0.3 ~ 60) x 107!° (Methods). This probability is low, but is
roughly 10° -10° times higher than the chance probability of detecting a random GRB, and is

at least 2 orders of magnitude higher than the probabilities from other sources considered



However....

+ At least 10 similar "flashes" observed in a search of archival
datasets from the same instruments In different fields
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Aside: a UV burst in GNz117

+ [s it above the atmosphere?
+ Was it a known artificial satellite”? Probably
+ Was it a known asteroid or other natural body?
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Long GRBs reside 1n active star-forming galaxies. GN-z11 is a luminous star-forming
galaxy with a UV star formation rate of ~26 solar masses per year!’. During the observations
of GN-z11, the chance probability of detecting one GRB as bright as GN-z11 1n the
UV/optical is estimated to be (0.3 ~ 60) x 107!° (Methods). This probability is low, but is
roughly 10° -10° times higher than the chance probability of detecting a random GRB, and is

at least 2 orders of magnitude higher than the probabilities from other sources considered









