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Advanced fitting

\ ’/&

Troels C. Petersen (NBI)

“Statistics is merely a quantisation of common sense”



Defining the Chi-Square

Problem Statement: Given N data points (x,y), adjust the parameter(s) 6
of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!

Not only does it provide a simple, elegant and unique way of fitting
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!



Chi-Square probability interpretation

The Chi-Square probability can roughly be interpreted as follows:
e If x2/ Ndof = 1 or more precisely if 0.01 < p(x2,Ndof) < 0.99,
then all is good.
o If x2/ Ndof » 1 or more precisely if p(x2Ndof) < 0.01,
then your fit is bad, and your hypothesis is probably not correct.
o If x2 / Ndof « 1 or more precisely if 0.99 < p(x2,Ndof),
then your fit is TOO good and you probably overestimated the errors.

If the statistics behind the plot is VERY high (great than 10¢), then you
might have a hard time finding a model, which truly describes all the
features in the plot (as now tiny effects become visible), and one hardly
ever gets a good Chi-Square probability.

However, in this case, one should not worry too much, unless very high
precision is wanted.

Anyway, the Chi-Square still allows you to compare several models,
and determine which one is the better.



Example of Chi-Square
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The fact that there are several minima makes fitting difficult/uncertain!
Always give good starting values!!!



Example of Chi-Square

specially fitting oscillatory data requires a good starting value for omega.

en a small offset may result in a Chi2, which is not sensitive to omega!

333333333

000000

Time elapsed [s]



Example of Chi-Square

Especially fitting oscillatory data requires a good starting value for omega.
Even a small offset may result in a Chi2, which is not sensitive to omega!
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When to use what type of fit?

Fitting a set of points:

When fitting a set of points, each with values for X, y, oy (and possibly o), I
would always choose a ChiSquare fit:

1) Itis equivalent to a likelihood fit (errors are Gaussian) and thus optimal.
2) Ityields a goodness-of-fit measure and thus the essential p-value.

Fitting distribution of values::

When fitting a histogram with high statistics, the situation reduces to that
above, since the bins will have Gaussian errors. However, care has to be taken
to the choice of binning.

However, if the statistics is (very?) small, the likelihood is preferable. If
possible, one should use the unbinned likelihood fit. The binned likelihood
is “only” to be used in one of the following cases:

1) When you don’t have unbinned data!

2) When the data is not continuous, but categorical i.e. binned (e.g. integers).

It is very often smart to start with a ChiSquare, as this has better convergence.



Correlations between parameters

The fit parameters should have as little correlation as possible. If two (or more)
are very correlated, then they represent the same feature in the model, and one
should possibly be fixed or a relation made between them.

Example 1 - Fitting two Gaussians with common mean:

The “naive” approach would probably be:
N1G1 (SC, s 0-1) =+ NQGZ(J;) My 0-2)

But here N1 and N> will be very correlated, avoided by:

N X (fGl(ajmuao-l) + (1 ~ f)G2(£E7:M70-2))

Now, N represents the overall number of events, while f is the fraction of G;.

In any case, f, sigmal and sigma2 will be correlated, which can not be avoided.
If any knowledge about their values or relation is known, this can with great
advantage be included, e.g.

a) Fixing one of the parameter values, i.e. f =0.8.

b) Fixing the relation between sigmal and sigma?2, i.e. sigma2 = 3 x sigmal.



Global fits

Occasionally, one has several samples to be fitted, which have overlapping

parameters. In this case, one can make a “global” fit of all parameters. Both for
a ChiSquare and a Likelihood fit.

The advantage is that all parameters are determined simultaneously, including
all correlations and their effects.

The down side is that the fit gets more complicated (see advanced example
later).

An example could be, that you have two samples:

1. Signal sample (i.e. the one of interest).

2. Alarger calibration sample, which also includes some of the parameters to
be determined in the signal sample.

In this case, including the calibration sample in the fit will help constrain the
parameters, which the calibration sample are sensitive to. Example: Large
calibration (C) peak next to much smaller signal (S) peak, where oc = os.



ChiSquare penalty terms

If a parameter 0, is known (6, = X), it should (of course) be fixed:

XQ(H) i EN: (yz > f;fue))Q’ Hn Y

i

However, what to do, if a parameter 0, is partially known (0,= X + 0x) from
some other source?



ChiSquare penalty terms

If a parameter 0, is known (6, = X), it should (of course) be fixed:

XQ(H) i EN: (yz > f;fue))Q’ Hn S 5%

i

However, what to do, if a parameter 0, is partially known (0,= X + 0x) from
some other source?

The trick is to include a “penalty” term, which penalises the fit for choosing a
value of 0, far from the known range:

XQ(H) 7 Z (yz vy fa(jz', 9))2 | (9n U—%(X)

i



Very complicated fitting
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Very advanced fitting

Sometimes, one has several samples (signal, control, validation, background,
etc.) to fit, and one would like to include the full information in all of these.

If one (input) sample dominates in size, then there is no reason not to fit this
sample separately, and then just fix the parameters to the result of this fit.

However, if they are of similar size, then a simultaneous fit of the samples is
the optimal solution. This can grow quite large...

In 2002 the BaBar collaborations fit for CP-violation (sin2(3)
included 98 floating parameters applied to four datasets.

In 2005 the BaBar collaborations fit for mixing in the D0-system
included 120 floating parameters applied to six datasets.

But that was nothing compared to...
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The ATLAS Higgs discovery fit
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Events / GeV

Events / 50 GeV

Events /10 GeV

The ATLAS Hi
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Fitting tips & tricks

There are a few tips & tricks that will make your (fitting) life a bit easier:
* Always give good initial values!!!
e Never start with an advanced fit - make a simple one work and expand!

* Try to make your parameters as little correlated as possible.
e Let the parameters represent the quantities of interest.
e Start with a ChiSquare fit, as these usually has better convergence.

When a fit refuses to work, try the following:

e Draw function on top of data to check formula and quality of initial values.

e Check the correlations between the parameters.
* Try to fix one or more parameter to a value you find reasonable.

Even with all of this advice, there is no guaranty that your fit will work.
It is after all a bit of an art....
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Fitting equations/constraints
Examples...
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Fitting with templates

Sometimes, the shape to be fitted can not be expressed as a function, but
obtained through a histogram from simulation/data.

Hist_temp_scale1.00000_pt_scale1.100 | x*/ndf 1.748e+04/22
Hist_temp_scale1.00000_pt_scale1.100 9 1 4 O __ Prob 0
- Entries 296920 @ - p0 27.88 + 0.03004
6000 — Mean 30.39 g— : p1 -756.7 + 6.934
- RMS 11.62 3 120 — p2 1.54e+06 + 2694
5000/— o B 7
C > 100~ / ]
C o) B
L © B N
4000 — o] 80— |
- kS C ]
- () - ]
3000{— g 60— —
— =
C (‘/J)' C ]
2000 ;— S 40 ; E
: 20— .
1000 — C ]
: C L1 | L1 1 | 111 l 111 | 11| | 11 | L1 I 111 | 11| | 11
L e S 0999 0.9920.9940.9960.998 1 1.0021.0041.0061.008 1.01
% 0 70 80
Scale of template

For each template, one calculates the ChiSquare between the data and the
template. You then repeat it for all templates, and subsequently obtain a
parabola with a minimum (central value) and a curvature (uncertainty).



Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One

example could be the SEIR-model for epidemics, here with 4 E and I stages:

——>

Bii

Eq

—

AE

E»

—

AE

E3

—

AE

E4

Infected phase:

AE Al Al A Al




Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

Infected phase:

—» E1 > E2 | E; | E4

Bii AE AE AE AE Al Al Al Al

SEIR model with time variation in beta:

+* H#EQ

# SEIR model, including modelling of time delays and varying beta:
def func_SEIRmodel(x, dayLockdown, nI@, beta@d, betal, lambdaE, lambdaI) :

# Initial numbers:
N_tot = 5800000
S = N_tot - nI0

# The initial number of exposed and infected are scaled to match beta®d. Factors in front are ad hoc!
Norm = np.exp(0.8xlambdaE * beta@d) + np.exp(0@.7xlambdaE * beta@d) + np.exp(@.6xlambdaE * betad) + np.exp(@.5k%lambdaE * betad) +\
np.exp(0.4xlambdal * betad) + np.exp(@.3xlambdal * betad) + np.exp(@.2xlambdal * betad) + np.exp(0.1xlambdal * betad)

E1l = nI0 * np.exp(0.8xlambdaE * beta@) / Norm

E2 = nI@ * np.exp(0@.7xlambdaE * beta®) / Norm

E3 = nI0 * np.exp(0.6xlambdaE * beta®) / Norm

E4 = nI0 x np.exp(0.5klambdaE * beta@) / Norm

I1 = nI0 % np.exp(0.4xlambdal * beta@) / Norm

I2 = nI0 * np.exp(0@.3xlambdal * betad) / Norm

I3 = nI0 * np.exp(0.2xlambdal * betad) / Norm

I4 = nI0 * np.exp(0.1xlambdal * beta@) / Norm

E1l = nI0/8

E2 = nI0/8 . .

E3 - nlo/s So this is a model,

E4 = nI0/8

I1 = nIo/8 k6 i’ I |
il not a “classic” function!
I3 = nIo/8

14 = nIo/8

R =0

Tot = S + E1+E2+E3+E4 + I1+I2+I3+I4 + R




Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

—>» E1 > E2

Bi AE AE

{ Fu b pn el

Infected phase:

An example outbreak of Covid-19 in Denmark happened in Aarhus early

August:

The number of tests

and positives are given,

from which a “scaled”
number of infected can

be calculated and fitted.

The fit is exactly with
the SEIR model above,

fixing most parameters.

—— Fit med SEIR Model - uden tiltag
| —— Fit med SEIR Model - med tiltag
t  Nye positive (skaleret til 3000 tests/day)

T T T
150 160 170
Dag (1. Marts er dag 0)
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Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

—>» E1 > E2

e
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Infected phase:

An example outbreak of Covid-19 in Denmark happened in Aarhus early

August:

The number of tests

and positives are given,

from which a “scaled”
number of infected can

be calculated and fitted.

The fit is exactly with
the SEIR model above,

fixing most parameters.
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Fitting with a model

Occasionally, the model is not a function, but a more advanced model. One
example could be the SEIR-model for epidemics, here with 4 E and I stages:

Infected phase:

—» B, | E: >
Bi A L1 Ag

E3

—
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e o A I

An example outbreak of Covid-19 in Denmark happened in Aarhus early

August:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with

the SEIR model above,
fixing most parameters.
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Setting the momentum scale

A well known type of event in particle physics (at he LHC accelerator) is the
Z > u+ p- decay, which has two muons flying out through the detector.

As the Z-mass is well known,
these events can be used to check

(R

-

and correct the reconstruction.

CEST

Run: 154822, Event: 14321500
Date: 2010-05-10 02:07:22 CEST

p,() =27 GeV n(u)= 0.7
p; (") =45 GeV n(u) = 2.2
MNl =87 GeV

Z>uu candidate
in 7 TeV collisions



Setting the momentum scale

There are many ways in which this reconstruction can be biased due to the
detector not being aligned correctly.

AR A AZ
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(distance scale) (Charge asymmetry) (COM boost)
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Charge dependent fit
The approach follows ATLAS-CONF-2012-141:

There is a charge independent (radial):
p — p(1+0radial)

The charge and pr dependent (sagitta):

q/p — q/p(1+ qudsagitta)

The improvement is that the charge dependent should take the momentum into
account, as the effect changes with momentum.

I chose the eta binning of the fit to have 24 or 51 bins.
The fit thus provides 24 /51 values for dr and 24 /51 for 0s.



Introduction to idea

In order to use all Z > 1l events, the idea is to:
e Divide leptons into bins in eta, pt, phi, charge.
Bin definition should match variables we are interested in [here: 51 in eta, 2 in charge]
e For lepton pair of bins ij, plot Z mass for data and MC (i.e. N2 plots).
The N2 plots limits number of bins to about 100. Not all ij-values are filled, which is OK.
e For each ij data-MC pair, determine value a;:

MC data
Qi =My~ /my

The problem is: “from which lepton i or j” does the bias come from?
e Non-unit values are from lepton bins i and j. Obtain them, by minimizing;:

() = T | B

From this we obtain the momentum/energy scales 3 for each bin i.
There are N2 oi;j values (perhaps a bit less) to constrain the N 3 values.




Outline of the method

A 24x24 = 576 Z mass distributions in total!
For each bin in n+n-, 25

fit the mass peak: -
21—
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Ratio: =0.9971 £ 0.0009 GeV
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Ihspection of eta distribution

Data: 1.64M events, MC: 4.7M events
At first sight, they seem pretty consistent. However, a closer look reveals
differences. What is causing the difference at In| =0.95?
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504 out of the 576 n+n- has enough data (N > 25) and a good fit in both data

and MC. These values are then used in the further fit. 30



Charge dependent fit

The 504 ratios of Z masses Pe— D (1 3 51- adi al)
looks like this:

0.9936 0.0028 Q/p — Q/p (1 S qu&sagitta)

A.99386 0.08823
A.9974 0.08621
A.9948 06.0617
A.9946 0.0817
8.9931 06.8817
A.9957 0.8613

a.9977 8.68817
A.993A A AR1A

These values are used in a x2 as follows:

N OO0 00O ®
M- ;s WOMNPFPE @

2

= Y R(mz)i; — /(14 0r;)(1+ prds;) x (1+0r;)(1 — prds;)
o(R(mz)ij)

©J

1.0886 W.8825
a.9979 08.68019

orooes aave Inshort, the dr and ds values should minimise the expected

8.9968 ©.0013 difference between data and MC Z mass ratio.
5.9969 0.0A14

A.9971 06.68613
A.9962 0.68813
A.9959 08.8812
A.9965 0.0812
A.99306 06.0812
A.9936 0.08815 31
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Result for Inner Detector

This is what out detector looks like for Inner Detector Muons:

ID Momentum scale factor §(radial)
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0.002

0.001

N
-0.001
-0.002,
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-0.004,
-0.005

Zuu 2011 Data ¥? = 2099.8, Ndof = 2212, Prob = 0.96 é
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2 e 0 - 2 :
1 of muon
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Result for Inner Detector

This is what out detector looks like for Inner Detector Muons:
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ID Momentum scale factor §(radial)

Corrected result

Rerunning with the correction applied to MC, I get:
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