
Applied Statistics 
Advanced fitting

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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Defining the Chi-Square
Problem Statement: Given N data points (x,y), adjust the parameter(s) θ
                                    of a model, such that it fits data best.

The best way to do this, given uncertainties σi on yi is by minimising:

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting 
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

�2(✓) =
NX

i

(yi � f(xi, ✓))2

�2
i
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Chi-Square probability interpretation
The Chi-Square probability can roughly be interpreted as follows:
• If χ2 / Ndof ≃ 1 or more precisely if 0.01 < p(χ2,Ndof) < 0.99,
    then all is good.
• If χ2 / Ndof ≫ 1 or more precisely if p(χ2,Ndof) < 0.01,
    then your fit is bad, and your hypothesis is probably not correct.
• If χ2 / Ndof ≪ 1 or more precisely if 0.99 < p(χ2,Ndof),
    then your fit is TOO good and you probably overestimated the errors.

If the statistics behind the plot is VERY high (great than 106), then you
might have a hard time finding a model, which truly describes all the 
features in the plot (as now tiny effects become visible), and one hardly 
ever gets a good Chi-Square probability.
However, in this case, one should not worry too much, unless very high 
precision is wanted.
Anyway, the Chi-Square still allows you to compare several models, 
and determine which one is the better.
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The fact that there are several minima makes fitting difficult/uncertain!
Always give good starting values!!!

Example of Chi-Square
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Example of Chi-Square
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Especially fitting oscillatory data requires a good starting value for omega.
Even a small offset may result in a Chi2, which is not sensitive to omega!



Example of Chi-Square
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Especially fitting oscillatory data requires a good starting value for omega.
Even a small offset may result in a Chi2, which is not sensitive to omega!
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Lowest value in scan:
   ω = 9.60000
   𝜒2 = 30972.6
Lowest value from fit:
   ω = 9.60179 ± 0.00002
   𝜒2 = 3867.8



When to use what type of fit?
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Fitting a set of points:
When fitting a set of points, each with values for x, y, σy (and possibly σx), I 
would always choose a ChiSquare fit:
1) It is equivalent to a likelihood fit (errors are Gaussian) and thus optimal.
2) It yields a goodness-of-fit measure and thus the essential p-value.

Fitting distribution of values::
When fitting a histogram with high statistics, the situation reduces to that 
above, since the bins will have Gaussian errors. However, care has to be taken 
to the choice of binning.

However, if the statistics is (very?) small, the likelihood is preferable. If 
possible, one should use the unbinned likelihood fit. The binned likelihood 
is “only” to be used in one of the following cases:
1) When you don’t have unbinned data!
2) When the data is not continuous, but categorical i.e. binned (e.g. integers).

It is very often smart to start with a ChiSquare, as this has better convergence.



Using Angular Variables 
to disentangle 
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H → ZZ* → eeee?

Correlations between parameters
The fit parameters should have as little correlation as possible. If two (or more) 
are very correlated, then they represent the same feature in the model, and one 
should possibly be fixed or a relation made between them.

Example 1 - Fitting two Gaussians with common mean:
The “naive” approach would probably be:

But here N1 and N2 will be very correlated, avoided by:

Now, N represents the overall number of events, while f is the fraction of G1.

In any case, f, sigma1 and sigma2 will be correlated, which can not be avoided.
If any knowledge about their values or relation is known, this can with great 
advantage be included, e.g.
a) Fixing one of the parameter values, i.e. f = 0.8.
b) Fixing the relation between sigma1 and sigma2, i.e. sigma2 = 3 x sigma1. 

N ⇥ (fG1(x, µ,�1) + (1� f)G2(x, µ,�2))
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Using Angular Variables 
to disentangle 
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H → ZZ* → eeee?

Global fits
Occasionally, one has several samples to be fitted, which have overlapping 
parameters. In this case, one can make a “global” fit of all parameters. Both for 
a ChiSquare and a Likelihood fit. 

The advantage is that all parameters are determined simultaneously, including 
all correlations and their effects.

The down side is that the fit gets more complicated (see advanced example 
later).

An example could be, that you have two samples:
1. Signal sample (i.e. the one of interest).
2. A larger calibration sample, which also includes some of the parameters to 

be determined in the signal sample.

In this case, including the calibration sample in the fit will help constrain the 
parameters, which the calibration sample are sensitive to. Example: Large 
calibration (C) peak next to much smaller signal (S) peak, where σC = σS.



Using Angular Variables 
to disentangle 
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H → ZZ* → eeee?

ChiSquare penalty terms
If a parameter θn is known (θn = X), it should (of course) be fixed:

However, what to do, if a parameter θn  is partially known (θn= X ± σX) from 
some other source?

�2(✓) =
NX

i

(yi � f(xi,✓))2

�2
i

, ✓n = X

<latexit sha1_base64="qRoOyvNIRZ4cjXIU3HQhD+/Tels="></latexit>



Using Angular Variables 
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ChiSquare penalty terms
If a parameter θn is known (θn = X), it should (of course) be fixed:

However, what to do, if a parameter θn  is partially known (θn= X ± σX) from 
some other source?

The trick is to include a “penalty” term, which penalises the fit for choosing a 
value of θn  far from the known range:

�2(✓) =
NX

i

(yi � f(xi,✓))2

�2
i

, ✓n = X

<latexit sha1_base64="qRoOyvNIRZ4cjXIU3HQhD+/Tels="></latexit>
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Very complicated fitting
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Sometimes, one has several samples (signal, control, validation, background, 
etc.) to fit, and one would like to include the full information in all of these.

If one (input) sample dominates in size, then there is no reason not to fit this 
sample separately, and then just fix the parameters to the result of this fit.

However, if they are of similar size, then a simultaneous fit of the samples is 
the optimal solution. This can grow quite large…

In 2002 the BaBar collaborations fit for CP-violation (sin2β)
included 98 floating parameters applied to four datasets.

In 2005 the BaBar collaborations fit for mixing in the D0-system
included 120 floating parameters applied to six datasets.

But that was nothing compared to…

Very advanced fitting
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The ATLAS Higgs discovery fit
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The ATLAS Higgs discovery fit
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Several datasets can be combined in a “global” Chi-square or likelihood fit, 
which simultaneously minimises the combined problem.



Fitting tips & tricks
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There are a few tips & tricks that will make your (fitting) life a bit easier:
• Always give good initial values!!!
• Never start with an advanced fit - make a simple one work and expand!
• Try to make your parameters as little correlated as possible.
• Let the parameters represent the quantities of interest.
• Start with a ChiSquare fit, as these usually has better convergence.

When a fit refuses to work, try the following:
• Draw function on top of data to check formula and quality of initial values.
• Check the correlations between the parameters.
• Try to fix one or more parameter to a value you find reasonable.

Even with all of this advice, there is no guaranty that your fit will work.
It is after all a bit of an art….



Fitting equations/constraints
Examples…
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Using Angular Variables 
to disentangle 

18
H → ZZ* → eeee?

Fitting with templates
Sometimes, the shape to be fitted can not be expressed as a function, but 
obtained through a histogram from simulation/data.

For each template, one calculates the ChiSquare between the data and the 
template. You then repeat it for all templates, and subsequently obtain a 
parabola with a minimum (central value) and a curvature (uncertainty).



Using Angular Variables 
to disentangle 
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H → ZZ* → eeee?

Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:
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Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:

So this is a model, 
not a “classic” function!



Using Angular Variables 
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Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

An example outbreak of Covid-19 in Denmark happened in Aarhus early 
August:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with
the SEIR model above,
fixing most parameters.

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:
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Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

An example outbreak of Covid-19 in Denmark happened in Aarhus early 
August:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with
the SEIR model above,
fixing most parameters.
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E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:
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Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

An example outbreak of Covid-19 in Denmark happened in Aarhus early 
August:

The number of tests
and positives are given,
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Fitting with a model
Occasionally, the model is not a function, but a more advanced model. One 
example could be the SEIR-model for epidemics, here with 4 E and I stages:

An example outbreak of Covid-19 in Denmark happened in Aarhus early 
August:

The number of tests
and positives are given,
from which a “scaled”
number of infected can
be calculated and fitted.

The fit is exactly with
the SEIR model above,
fixing most parameters.

S λEβji
E1 E2 E3 E4 I1 I2 I3 I4 RλIλE λE λE λI λI λI

Exposed phase: Infected phase:
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Setting the momentum scale
A well known type of event in particle physics (at he LHC accelerator) is the
Z ➛ μ+ μ- decay, which has two muons flying out through the detector.

As the Z-mass is well known,
these events can be used to check
and correct the reconstruction.



Using Angular Variables 
to disentangle 
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Setting the momentum scale
There are many ways in which this reconstruction can be biased due to the 
detector not being aligned correctly.



Using Angular Variables 
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Charge dependent fit
The approach follows ATLAS-CONF-2012-141:

There is a charge independent (radial):

The charge and pT dependent (sagitta):

The improvement is that the charge dependent should take the momentum into 
account, as the effect changes with momentum.

I chose the eta binning of the fit to have 24 or 51 bins.
The fit thus provides 24/51 values for δr and 24/51 for δs.

p ! p (1 + �radial)

q/p ! q/p (1 + qpT �sagitta)



H → ZZ* → eeee?

Introduction to idea
In order to use all Z ➛ ll events, the idea is to:
• Divide leptons into bins in eta, pt, phi, charge.
    Bin definition should match variables we are interested in [here: 51 in eta, 2 in charge] 
• For lepton pair of bins ij, plot Z mass for data and MC (i.e. N2 plots).
    The N2 plots limits number of bins to about 100. Not all ij-values are filled, which is OK.
• For each ij data-MC pair, determine value αij:

    The problem is: “from which lepton i or j” does the bias come from?
• Non-unit values are from lepton bins i and j. Obtain them, by minimizing:

From this we obtain the momentum/energy scales β for each bin i.
There are N2 αij values (perhaps a bit less) to constrain the N β values.

↵ij = mMC
Z /mdata

Z

�2(�i) =
X

ij

 
↵ij �

p
�i�j

�(↵ij)

!2
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Outline of the method

H → ZZ* → eeee?

24x24 = 576 Z mass distributions in total!For each bin in η+η-,
fit the mass peak:

Data: mZ = 89.93 ± 0.13 GeV

MC: mZ = 90.31 ± 0.09 GeV

Ratio:  = 0.9971 ± 0.0009 GeV
29



Using Angular Variables 
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Inspection of eta distribution

H → ZZ* → eeee?

Data: 1.64M events, MC: 4.7M events
At first sight, they seem pretty consistent. However, a closer look reveals 
differences. What is causing the difference at |η| = 0.95?

504 out of the 576 η+η- has enough data (N > 25) and a good fit in both data
and MC. These values are then used in the further fit. 30

DATA MC
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Charge dependent fit
The 504 ratios of Z masses
looks like this:

p ! p (1 + �radial)

q/p ! q/p (1 + qpT �sagitta)

These values are used in a χ2 as follows:

In short, the dr and ds values should minimise the expected
difference between data and MC Z mass ratio.

�2 =
X

ij

 
R(mZ)ij �

p
(1 + �ri)(1 + pT �si)⇥ (1 + �rj)(1� pT �sj)

�(R(mZ)ij)

!2
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Result for Inner Detector
This is what out detector looks like for Inner Detector Muons:
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Result for Inner Detector
This is what out detector looks like for Inner Detector Muons:
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Corrected result
Rerunning with the correction applied to MC, I get:

<dr> = -0.000023 +- 0.000063
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