Expanding the Optical Trapping Range of Lipid Vesicles to the Nanoscale

Poul M. Bendix and Lene B. Oddershede*

Niels Bohr Institute, The University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen

ABSTRACT: Small unilamellar lipid vesicles with diameters down to 50 nm enclosing high refractive index sucrose cores can be optically trapped individually in three dimensions using a focused laser beam. Combined optical trapping and confocal microscopy allows for simultaneous quantitative measurements of the forces exerted on individual vesicles and of their size and shape. The position of individual vesicles in three dimensions is measured with nanometer spatial and ∼10 μs temporal resolution.

KEYWORDS: Optical trapping, lipid vesicles, liposomes, nanoparticles, force spectroscopy, position detection

 Naturally occurring lipid vesicles are the most commonly used carriers inside living organisms. Therefore, designed lipid containers and different types of liposomes hold great promise as nanocontainers for drug-delivery assays.1–3 To understand vesicle transport and delivery, for example, in the synaptic region, and to develop efficient drug-delivery-containers, it is desirable to be able to optically control individual vesicles and to measure the distances they travel or the forces exerted on them by the cellular machinery. Also, for exploring molecular interactions involving membrane proteins both inside a living cell or in reconstituted assays, it is highly desirable to be able to optically manipulate individual liposomes and quantitatively measure interaction potentials, as commonly done using optical trapping of solid dielectric particles. Optical traps have been quite successful in unraveling the function of individual biomolecules.4,5 This has most often been done in vitro using a micrometer-sized polystyrene bead as force transducer. However, in vitro measurements often face the criticism that experimental conditions are too far from the physiological. Therefore, the next natural step is to take the single molecule manipulation techniques inside the living cell and monitor the actions of cellular machines in their native environment. To this end, it will be advantageous to avoid having a hard micrometer-sized polystyrene sphere near the delicate biological molecules; it would be beneficial rather to use smaller force-transducers for precise force–distance measurements, transducers whose chemical and physical properties more resemble that of the cytoplasm. A lipid vesicle or a liposome is an obvious candidate as a force transducer in a biological nanoscopic assay. As proteins and molecules of interest can be readily reconstituted in the membrane, or encapsulated within the vesicle lumen, a vesicle-based force transducer will facilitate, for example, ultrasensitive and fast measurements of intermolecular interaction potentials.

Vesicles are soft shell-like structures made of lipid bilayers having index of refraction, n_{lip} = 1.48 (measured at λ = 632 nm),6 which is significantly higher than the refractive index of water, n_w = 1.33, thus enabling optical trapping of lipid systems in three-dimension (3D) using a focused laser. Large vesicles with diameters 5–10 μm have been reported optically manipulated,7 and somewhat smaller vesicles, down to 600 nm in diameter, have been investigated by optical trapping Raman microscopy.8,9 Also single secretory vesicles with diameters of 1 μm have been investigated by combined optical trapping and electrophoresis separation.10 A prerequisite for optical trapping is that a dipole moment can be induced in the trapped object. The larger the inducible dipole moment, the larger the gradient force responsible for optical confinement. Because the induced dipole moment scales with particle volume for small particles, optical trapping of nanoscopic objects poses a challenge. Polymeric nanoparticles11 and in particular metallic nanoparticles have a relatively large inducible dipole moment, and optical trapping in 3D of metallic nanoparticles with sizes down to 10 nm has been reported.12–15 To our knowledge, optical control and quantitative force measurements of small unilamellar vesicles (SUVs) has not been reported. This lack in literature probably originates from the fact that SUVs have a relatively small inducible dipole moment as they only consist of a thin membranous shell enclosing an aqueous volume, hence, they are difficult to trap. Moreover, lipid vesicle preparations are naturally polydisperse in

Received: September 14, 2011
Revised: November 2, 2011
Published: November 10, 2011
size, hence, for vesicles below the diffraction limit it is not trivial to quantify the size of each trapped vesicle. This quantification is needed for the most commonly used force calibration procedures.

By using an optimized optical trapping assay in combination with simultaneous confocal microscopy, we optically trapped individual nanoscale SUVs, loaded with a highly concentrated sucrose solution, in 3D using a focused laser beam. The size of vesicles smaller than the diffraction limit was obtained by quantitative confocal fluorescence imaging. Vesicles with sizes comparable to the laser focus were used to assess the effect of the trapping laser on the mechanical stability of the bilayer and on the labeling fluorophores. There was no significant deformation of optically trapped vesicles containing sucrose cores, even at high laser powers. The high index sucrose core caused efficient scattering and refraction of laser light that allowed for back focal plane detection of the vesicle position in 3D by using a quadrant photodiode providing a very high temporal and spatial resolution. We also performed the force calibration using an image-based method. Finally, as a proof of principle, we demonstrated how to use an optically trapped vesicle to probe the interaction between a ligand and its substrate.

The experimental setup allowing simultaneous optical trapping and fluorescent confocal detection is achieved by coupling a Nd:YVO$_4$ (5 W Spectra Physics BL106C, $\lambda = 1064$ nm, TEM$_{00}$) laser into the Hg lamp entrance of a Leica SPS/TCS confocal laser scanning microscope. Details of the setup is described in ref 16. The laser was focused through a high numerical aperture oil immersion objective (Leica HCX, PL APO, 100×, NA = 1.4, oil). To minimize spherical aberration and improve optical trapping, we used an immersion oil with refractive index $n = 1.55$, which provides an optimal focus $5–10\, \mu m$ from the glass coverslip surface. All laser powers noted are measured at the sample using the dual objective method. The position of the focus relative to the sample was accurately controlled using a three-dimensional piezoelectric stage (PI 731.20, Physik Instrumente, Germany). Stokes drag experiments were performed by oscillating the stage with a triangular wave while keeping the laser focus at a fixed position.

Fast position detection was performed using a quadrant photodiode (S5981, Hamamatsu) collecting the forward scattered light from the vesicle. Axial position detection was significantly improved by reducing the numerical aperture of the condenser to approximately 30%. Optically trapped lipid vesicles were imaged using a confocal laser scanning with $\lambda = 488$ nm for exiting Alexa Hydrazide 488 (AH) and dilinoleoylcarboxyamine perchlorate (DiO), (Molecular Probes, Eugene, OR) or scanning with $\lambda = 594$ nm for exciting 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-1-Texas Red hexanoyl (TR-DHPE) (Molecular Probes, Eugene, OR). The emitted light from the fluorophores was collected using photomultiplier tubes. A pinhole of 1 airy was used to reject light out of focus. The glass substrate was passivated by standard protocols as detailed in Supporting Information.

The vesicles were composed of 80% dioleoylphosphatidylcholine (DOPC), 18% dioleoylphosphatidylglycerol (DOPG) purchased from Avanti Polar Lipids, Inc. (Alabaster, AL) and 2% lipophilic dyes, either TR-DHPE or DIO. Encapsulation was achieved by hydration of the lipid film with aqueous sucrose solution with or without AH for labeling the interior solution. This hydration step results in giant unilamellar vesicles (GUVs) that were subsequently extruded using polycarbonate filters with pore sizes of 50 nm, 100 nm, or 1 μm (Avanti Polar Lipids, Inc. Alabaster, AL). The lipid concentration in the vesicle preparation was 1 mg/mL. Depending on the extrusion pore size we subsequently diluted the vesicle stock between 1000× and 10 000× before the experiments with PBS buffer containing NaCl at a concentration iso-osmolar with the sucrose solution. The volume of the vesicle is preserved due to very low membrane permeability of sucrose across the bilayer membrane. Deformation of the vesicle (and hence a volume change) would cause an osmotic imbalance and result in stretching of the bilayer that
is approximately 4 orders of magnitude more energy costly than bending a lipid bilayer (bending modulus of a membrane $\sim 20 k_B T$).

In any translational direction an optical trap exerts a harmonic force, $F = -\kappa \Delta x$, where Δx is the deviation from the equilibrium position and κ is the spring constant characterizing the optical trap. Figure 1a shows a sketch of a vesicle in an optical trap, the inset shows a confocal picture of a trapped vesicle, the membrane is labeled by TR-DHPE (red) and the lumen by AH (green). The forward scattered trapping laser light is collected by a quadrant photodiode (QPD). A prerequisite of standard optical trapping calibration protocols is that the voltage signal from the photodetection system is linearly proportional to the displacement of the object in the trap. For instance, the lateral coordinate x is found by $x \approx (A + B) - (C + D)$, where A, B, C, and D denote the voltages detected in each of the four quadrants, and the position along the axial direction, z, is found by $z \approx A + B + C + D$. These relations should apply to any spherical dielectric scatterer.

In order to test whether these relations also hold true for a trapped vesicle, we translated a vesicle immobilized on a supported lipid bilayer through the laser focus at constant velocity while measuring the output from the photodiode. The resulting difference signal, corresponding to the x direction, is shown in Figure 1b, the sum signal (z direction) is shown in Figure 1c. There is clearly a linear region ($\sim 1 \mu m$ in the axial direction, ~ 500 nm in the lateral direction) confirming a one-to-one correspondence between voltage output and vesicle position; thus, the standard optical trapping detection protocols also apply to systems where a lipid vesicle is used as the force-transducing handle.

Time series of the positions visited by an optically trapped vesicle were recorded over 3 s with a sampling frequency of $f_{\text{sample}} = 22$ kHz, a time series of the positions visited by a trapped vesicle is shown in Figure 1d, the corresponding Gaussian position histogram is shown in Figure 1e. The dynamics in one dimension of an optically trapped object is well described by the Langevin equation, $F(T,t) = \kappa x + \gamma v$, where γ is the Stokes drag coefficient, $\gamma = 6 \pi n R \eta$ (η being the viscosity of water and R vesicle radius) if far from any surfaces, $F(T,t)$ is a stochastic force, typically modeled as white noise, which is dependent on temperature, T, and time, t. The positional power spectrum is well fitted by a Lorentzian function, $S_x = k_B T / (\pi \gamma^2 (f_c^2 + f^2))$, where $f_c = \kappa / 2 \gamma$ is denoted the corner frequency. This formalism was incorporated in a Matlab program that also formalism was incorporated in a Matlab program that also took into account the filtering effect of the photodiode and returned the spring constant of the optical trap, κ. Figure 1f shows the power spectrum of the lateral time series shown in Figure 1d for a $d = 50$ nm vesicle, the Lorentzian fit is shown as a full line. Two examples of power spectra for axial time series taken with different laser powers are shown in Supporting Information Figure S1, which also verifies the expected proportionality between the axial κ and laser power.

The size of an optically trapped vesicle smaller than or similar to the diffraction limit was quantified from the emission of the membrane incorporated fluorophore. The emitted intensity, I, and vesicle radius, R, are related as $I \sim R$, where k is a constant. k is found from the relation $k = \langle I \rangle / \langle R \rangle^2$, where $\langle R \rangle$ is the average vesicle diameter found by dynamic light scattering (DLS), see Supporting Information Figure S2, and $\langle I \rangle$ is the corresponding average intensity measured on a large number of trapped vesicles from the ensemble used for DLS. The inset of Supporting Information Figure S2 shows a control where the fluorescence of surface attached vesicles was quantified, the resulting curve resembled the DLS curve with a single maximum and a similar shape.

Small vesicles extruded at 50 or 100 nm and containing sucrose were individually trapped by random diffusion into the trap. The vesicle concentration was adjusted such that the typical waiting time for a vesicle to enter the trap (typically several minutes) was significantly longer than the data acquisition time (3 s). Both water-containing vesicles and vesicles filled by sucrose could be optically trapped. However, in accordance with observations from trapping of larger vesicles, vesicles without sucrose proved significantly more difficult to trap than vesicles with sucrose (see Supporting Information Videos 1 and 2). This is because the refractive index of 1 M sucrose (as predominantly used in the present work) is $n = 1.38$, which is significantly higher than that of water ($n = 1.33$). Micron-sized vesicles loaded with sucrose could be efficiently trapped at low laser powers ~ 10 mW whereas smaller sucrose loaded vesicles having diameters between 50–200 nm required laser powers of hundreds of milliwatts for optical trapping. Also, the sucrose-filled vesicles gave a significantly stronger signal on the photodiode. Therefore, and because several biologically relevant vesicles, for instance the large dense-core vesicles (LDCV) responsible for hormone secretion with a condensed protein core containing up to $500–1000$ mM adrenalin, have a high osmolarity and an index of refraction comparable to that of sucrose, in the following we focus on optical trapping of vesicles containing 1 M sucrose.

The effect of particle size on trapping efficiency is clearly demonstrated in Figure 2a for a $d = 130$ nm vesicle (green data) and a $d = 1.2 \mu m$ vesicle (blue data). From the power spectra shown in Figure 2a, κ for the larger vesicle was found to be roughly four times larger than κ for the smaller vesicle, despite
shown in (E).

Vesicles ranging in size from approximately 40 to 200 nm in size. We quantified for each vesicle (as described above) and an image was acquired to determine its size. We found corresponding values of k and size for a number of SUVs; the results are shown in Figure 2b. k scales with laser power, hence, in order to compare k obtained at different laser powers, the value of k plotted in Figure 2b is normalized by laser power. Vesicles ranging in size from approximately 40 to 200 nm show an increase of k with size. The measured scaling relation, $k \sim R^3$, differs from a scaling with particle volume, $k \sim R^3$, as observed for solid Rayleigh particles. It is well-known that sucrose encapsulation efficiency decreases with vesicle size, therefore, a scaling exponent lower than 3 is expected for optical trapping of sucrose loaded vesicles. For the larger vesicles the data do appear relatively spread. This could be due to imprecision in size determination caused by an inhomogeneous distribution of fluorophores among the vesicles, or because some of the vesicles are oligolamellar (contain one or several internal vesicles) that would influence trapping strength and lead to an overestimation of vesicle size.

As the vesicles were trapped using relatively high laser powers, a potential degradation of the fluorescent markers could occur even though the wavelength of the trapping laser was far from the peak absorption of the fluorescent molecule. A pronounced bleaching during the experiment could lead to an underestimate of vesicle size. We quantified the bleaching rate of the fluorophores used to label the vesicles, TR-DHPE, DiO, and AH. Figure 3a (red curve) shows the bleaching rate of TR-DHPE at relatively high laser powers, $P = 310$ mW. Bleaching rates for DiO were similar to those of TR-DHPE. AH inside a vesicle trapped with $P = 310$ mW (green curve in Figure 3a) bleaches more slowly than the membrane markers (TR-DHPE and DiO), after several minutes still \sim90% of the maximum AH signal prevails.

The bleaching rate is strongly dependent on trapping laser power. This is shown in Figure 3b where the intensity of membrane bound TR-DHPE is plotted as a function of time. The vesicle was initially trapped at $P = 20$ mW and after \sim10 min laser power was increased to 310 mW. Clearly, the TR-DHPE signal decreases more rapidly at high laser powers. This experiment demonstrates that the trapping laser and not the imaging laser is predominantly responsible for fluorophore bleaching. Bleaching of the membrane markers leads to an underestimation of the vesicle size. This error was minimized by acquiring the confocal image for size determination within the first 3 s of vesicle trapping. From the measured decay constant, we estimated the corresponding error in vesicle size determination to be up to 3% (using a relatively high 310 mW laser power).

The power level used to trap the smallest vesicles in Figure 2b has previously been shown to be sufficient to bend bilayers or deform vesicles, albeit, at shorter a wavelength. We did not observe any laser induced deformation of vesicles containing 1 M sucrose, a series of confocal images of a TR-DHPE labeled sucrose loaded vesicle trapped while increasing the laser power up to $P = 1$ W is shown in Figure 3c (and in Supporting Information Video 3). Vesicles that self-assembled in pure water and therefore contained only pure water deformed more easily. Left images in Figures 3d and 3e show a vesicle with an aqueous core trapped at $P = 170$ mW, subsequent pictures show significant deformation after the laser power at $t = 27.4$ s is raised to $P = 850$ mW (Figure 3d shows AH labeled lumen, Figure 3e shows TR-DHPE labeled membrane). Furthermore, optical trapping of a vesicle having the same index of refraction inside as outside results in trapping of the lipid bilayer (see Supporting Information Video 4).
The deformation, Δh, of an optically trapped vesicle of conserved volume containing a sucrose core is derived in ref 30 (and detailed in Supporting Information):

\[\Delta h = \frac{n_w P Q}{\pi cYT} \]

where \(Q = Q_{\text{back}} + Q_{\text{front}} \) with \(Q_{\text{back}} \) and \(Q_{\text{front}} \) being the fractions of momentum transferred at the back and front side of the vesicle, respectively. \(n_w \) is the refractive index of water, \(c \) is the speed of light, \(Y \) is Young’s modulus (=10^7 N/m for bilayers^31), and \(T \) is the membrane thickness (\(T = 5 \) nm). Hence, the deformation is linearly proportional to the total power incident on the vesicle. Typical high powers for trapping the larger vesicles used in this work were \(P = 50-100 \) mW, which should lead to deformations on the order of 1 nm for vesicles filled with 1 M of sucrose, a nonobservable deformation. The smaller vesicles have optical cross sections significantly smaller than the laser focus so the effective power becomes much lower than the total power passing through the focus, thus resulting in a nonobservable deformation.

The strength of an optical trap can alternatively be calibrated through image analysis using the “Stokes-drag” calibration method (detailed in Supporting Information). Using low-trapping laser powers SUVs can be imaged for extended periods of time, especially if imaged by AH emission. In the Stokes-drag method, the bead is exposed to a constant drag and its displacement from the equilibrium position is measured by image analysis. Supporting Information Figure S3 shows the positions visited by an optically trapped bead while moving the piezo-stage at constant speed by a triangular wave. By measuring the amplitude of the bead’s motion, \(\kappa \) can be extracted (as detailed in Supporting Information). For the same vesicle, we used both the photodiode and image-based analyses to determine the positions visited at three different trapping laser powers (data shown in Supporting Information Figure S4). Both methods yield the same amplitudes, within the uncertainties, and the same \(\kappa \) too, though a higher precision was reached by the photodiode based method than by the image-based method.

Optical trapping of vesicles will prove useful for probing membrane associated proteins during intermembrane interactions, as for instance mediated by the SNARE complex.32,35 As a proof of principle, we here show that an optically trapped vesicle with membrane incorporated biotin molecules approaching a supported lipid bilayer with neutravidin molecules can be used to probe the biotin—neutravidin interaction. A sketch of the experiment is shown in Figure 4a. For this experiment, a geometry was chosen where the interaction potential was probed in a direction along the propagating laser beam, the axial direction, hence, the trap needed calibration in the axial direction (as shown in Supporting Information Figure S1). The axial positions visited by the vesicle with respect to the focus of the optical trap is shown in Figure 4b. First, the bead performs normal Brownian motion in the trap while approaching the surface at a constant speed. Suddenly, around 27 s, the biotinylated particle jumps to the neutravidin surface. After this jump, the particle irreversibly sticks to the surface, its Brownian motion ceases, and it follows the surface as it is moved at constant speed toward and through the trap focus. Figure 4c illustrates a control experiment where a biotinylated vesicle approaches a lipid bilayer (without neutravidin). This particle performs normal Brownian fluctuations in the trap too. At \(\approx 180 \) s the surface, which is moved at constant speed toward the trap, collides with the particle and pushes the particle upward in the trap. Around 250 s, the surface is lowered with respect to the trap and the particle resumes Brownian motion. The vesicle does not jump and does not stick irreversibly to the surface; only steric repulsion was present between the two bilayers. Axes in (B) and (C) are relative, not absolute.

Figure 4. Probing of specific and unspecific intermembrane interactions using an optically trapped vesicle. (A) An optically trapped vesicle containing lipid-anchored biotin molecules approaches a supported lipid bilayer containing neutravidin molecules. (B) The axial positions visited by an optically trapped \(\sim 1 \) \(\mu \)m biotinylated vesicle approaching a neutravidin-coated supported lipid bilayer at constant speed (100 nm/s). At 27 s, the biotinylated bead jumps and irreversibly binds to the neutravidin. (C) Control experiment showing axial positions visited by an optically trapped \(\sim 2 \) \(\mu \)m biotinylated vesicle approaching a supported lipid bilayer (without neutravidin) at constant speed. At \(\sim 180 \) s, the surface encounters the particle; at \(\sim 250 \) s, the surface is lowered with respect to the optical trap and the particle resumes Brownian motion. The vesicle does not jump and does not stick irreversibly to the surface; only steric repulsion was present between the two bilayers. Axes in (B) and (C) are relative, not absolute.

An optical trap is weakest in the axial direction, hence, this is well suited for probing of soft long-range interaction potentials. The lateral potential is typically twice as strong as the axial potential. Hence, larger forces can be exerted and measured in the lateral directions. We explored the maximum lateral strength of liposome trapping by measuring the force at which a 2.2 \(\mu \)m
liposome escaped the trap using an assay where the stage was oscillated in a controlled fashion while the laser power was gradually decreased. At 90 mW, the vesicle occasionally escaped the trap (as shown in Supporting Information Figure S5), this corresponding to a force of 4.1 pN. As the force is linearly proportional to laser power and we can ramp the power up to 900 mW or more, optical forces of 40 pN can easily be applied to a micrometer-sized vesicle.

We have shown that individual vesicles with diameters down to 50 nm can be optically trapped using an infrared CW laser and used as force-transducers for precise force and distance measurements. Forces of tens of picoNewtons can easily be applied on micrometer-sized vesicles containing sucrose. By combined optical trapping and confocal microscopy the trapping strength was as well as the sizes of the individual vesicles were measured. The spring constant characterizing the optical trapping potential increased with vesicle size but scaled slower with size than solid Rayleigh particles do. Vesicles with a high refractive index sucrose core were significantly easier to trap than vesicles containing pure water. Also, the high viscosity sucrose core osmotically stabilized the shape of the vesicle and protected the vesicle against mechanical deformation due to optically induced stresses. Optical trapping with fast and precise position detection combined with confocal fluorescence imaging of vesicles could be useful for probing fast kinetics as well as interaction potentials of membrane bound proteins as for instance SNARE complexes.32,55

■ ASSOCIATED CONTENT

5 Supporting Information. Calculation of vesicle deformation, Stokes-drag calibration, Protocol for passivation of glass substrates. Figure S1: Power spectra and force calibration in the axial direction. Figure S2: Size distribution of extruded vesicles measured by dynamic light scattering measurement and by surface distribution. Figure S3: Image-based Stokes-drag calibration of an optically trapped vesicle. Figure S4: Comparison of photodiode detection and image-based detection of an optically trapped vesicle. Figure S5: Measurements of the maximum force exerted on a trapped liposome. Video 1: Vesicles with an aqueous core trapped by \(P = 170 \text{ mW} \), stage is oscillated at 0.5 Hz with an amplitude of 8 \(\mu \text{m} \). Video 2: Vesicles with a 1 M sucrose core trapped by \(P = 70 \text{ mW} \), stage is oscillated at 10 Hz with an amplitude of 8 \(\mu \text{m} \). Video 3: A vesicle (diameter \(\sim 1 \mu\text{m} \)) with a sucrose core is initially trapped at \(P = 70 \text{ mW} \). Laser power is subsequently increased to 1 W while the vesicle still shows no sign of deformation (same data is depicted in Figure 3c).

Video 4: Optical trapping of a large vesicle (diameter \(\sim 5 \mu\text{m} \)) with an aqueous core. The laser focus is marked by a red circle; it is clearly (only) the bilayer material which is trapped. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: oddershede@nbi.dk.

■ ACKNOWLEDGMENT

We acknowledge fruitful discussions with Jakob B. Sørensen. This work was supported by the Carlsberg foundation and by MolPhysX University of Copenhagen Center of Excellence.

■ REFERENCES

