Large-Scale Orientation Dependent Heating from a Single Irradiated Gold Nanorod

Haiyan Ma, Poul M. Bendix, and Lene B. Oddershede*

Niels Bohr Institute, University of Copenhagen, Denmark

Supporting Information

ABSTRACT: We quantify the extreme heating associated with resonant irradiation of individual gold nanorods by using a novel assay based on partitioning of lipophilic dyes between membrane phases. The temperature increase is sensitively dependent on the angle between the laser polarization and the orientation of the nanorod. A dramatic and irreversible decrease in the heating of a nanorod occurs at high-illumination intensities; this effect is attributed to surface melting of the nanorod causing it to restructure into a more spherical shape and lose its extreme photothermal properties.

KEYWORDS: Gold nanorod, photothermal effect, lipid bilayer, molecular partitioning, surface plasmon resonance, polarization

The use of plasmonic coupling between metallic nanostructures and near-infrared (NIR) light is emerging as a powerful tool to locally heat biological material. Since biological material is relatively transparent to NIR light, it is of great interest in the context of localized photothermal therapy in vivo visualization or drug delivery to design small nanostructures with peak absorption of NIR light. If irradiated at its surface plasmon resonance frequency, a metallic nanoparticle efficiently converts the absorbed energy into heat that is locally dissipated, thus resulting in a significant temperature increase around the nanoparticle. The surface plasmon resonance frequency of gold nanorods has been shown to depend sensitively on their aspect ratio and can therefore be tuned to the biologically transparent NIR window by increasing their aspect ratio.

The inherent asymmetry of a nanorod results in two resonant wavelengths, the longitudinal and the transverse, depending on whether the polarization is parallel or perpendicular to the long axis of the rod. This high degree of polarization anisotropy can be utilized for orientation sensing. Metallic nanoparticles can be optically trapped in three dimensions and gold nanorods as thin as 8 nm have been found to align along the polarization of the trapping laser while optically trapped in three dimensions. The torque exerted by the optical trap on a trapped gold nanorod has been found by monitoring the Brownian fluctuations in the trap, which also yielded an estimate of the associated heating. However, since the nanorod aligns with the polarization of the trapping laser, it is not possible to measure the anisotropy of nanorod absorption at different angles using this method. Moreover, since the trapping potential is relatively weak, there will be considerable axial, lateral, and rotational fluctuations of the heated rod in the laser focus which will smear out any orientation dependence and displace the rod from the most intense region of the laser beam.

The energy absorbed by an irradiated nanorod is dissipated as heat that could cause it to melt and restructure into a spherical shape as favored by surface tension. The structural stability of nanorods exposed to high temperatures has been measured by irradiating rods with pulsed lasers or simply by incubating nanorods at various temperatures. A gradual conversion of gold nanorods into spheres was found to start already at 200–300 °C, which is well below the bulk melting temperature of gold. Accordingly, it was recently shown that the photothermal effect in cells conjugated with high density of gold nanorods could be radically changed by laser irradiation probably because the gold nanorods underwent thermally induced shape changes.

A few methods have been developed to measure the temperature of irradiated metallic nanoparticles. For instance, the well characterized gel-to-fluid phase transition of lipid bilayers has been used to sense the heat dissipated from gold nanospheres irradiated off-resonance by NIR light. The interaction between NIR light and metallic nanoparticles is particularly interesting with respect to photothermal applications because biological material is relatively transparent in the NIR spectral range. Another method for local temperature determination around irradiated gold nanostructures utilizes a temperature-dependent photoluminescent thin film of AlGaN:Er embedded with Er ions. Also, thermally induced changes in refractive index or viscosity of the surrounding medium near the heated gold nanoparticles have been used to deduce particle temperatures. The temper-
The optical di... because light is picked up from out of focus light will also be picked up and contribute to the total signal. The temperature gradient around a heated metallic nanoparticle is very steep and can change drastically over a distance comparable to the diameter of the particle. Finally, the interpretation of measurements based on changes in viscosity or fluorescence polarization anisotropy are complicated by the fact that both quantities become nonlinear and less sensitive to temperature changes at temperatures exceeding 100 °C.

Here, we present measurements of the heating of an irradiated single gold nanorod (20 nm × 100 nm) using a continuous wave NIR laser (1064 nm). Our assay is based on the well-characterized phase transition of lipid bilayers containing only a single lipid species and on the differential partitioning of fluorescent lipophilic molecules between the two membrane phases. One strength of the method is that it requires no further knowledge about any physical parameters regarding neither the particle, its environment, nor the intensity distribution at the nanoscale. Another strength is its precision; the temperature quantification relies on accurate determination of the phase boundary of a fluoresceinly marked 2D bilayer (thickness ∼5 nm). As no light from below or above the bilayer enters the focal volume, the distance from the nanoparticle to the phase boundary can be accurately determined. Finally, it overcomes the restrictions of other methods where high temperatures are hard to access. Our results show that the temperature rise around a single irradiated gold nanorod is extremely dependent on its orientation with respect to the polarization vector of the heating laser. When the orientation is parallel to the polarization vector, the absorbance and associated surface temperature are significantly higher than that of a gold nanosphere which is 2 orders of magnitude larger in volume and irradiated off-resonance by the NIR laser. Our experimental results are supported by theoretical simulations of the expected absorbance of gold nanorods and spheres using the discrete dipole approximation (DDA). The extreme heating of a nanorod aligned with the polarization vector of the electromagnetic field leads to a partial melting of the rods, thus causing the nanoparticle to develop into a more spherical shape absorbing significantly less in the NIR region; this effect shuts down the extreme heating properties and is important to consider for photothermal applications.

To prepare the samples, gold nanorods were immobilized on a glass surface that was subsequently coated by a gel phase glass supported lipid bilayer. A sketch of the assay is shown in the zoom-in of Figure 1. From TEM images (shown in Supporting Information Figure S1A), we measured the size of the nanorods to be (20.6 ± 2.0) nm × (97.2 ± 25.5) nm (mean ± standard deviation, n = 45). The lipid bilayer consisted of DC15PC containing only a single lipid species and on the well characterized phase transition of lipid bilayers containing only a single lipid species and on the differential partitioning of fluorescent lipophilic molecules between the two membrane phases. One strength of the method is that it requires no further knowledge about any physical parameters regarding neither the particle, its environment, nor the intensity distribution at the nanoscale. Another strength is its precision; the temperature quantification relies on accurate determination of the phase boundary of a fluoresceinly marked 2D bilayer (thickness ∼5 nm). As no light from below or above the bilayer enters the focal volume, the distance from the nanoparticle to the phase boundary can be accurately determined. Finally, it overcomes the restrictions of other methods where high temperatures are hard to access. Our results show that the temperature rise around a single irradiated gold nanorod is extremely dependent on its orientation with respect to the polarization vector of the heating laser. When the orientation is parallel to the polarization vector, the absorbance and associated surface temperature are significantly higher than that of a gold nanosphere which is 2 orders of magnitude larger in volume and irradiated off-resonance by the NIR laser. Our experimental results are supported by theoretical simulations of the expected absorbance of gold nanorods and spheres using the discrete dipole approximation (DDA). The extreme heating of a nanorod aligned with the polarization vector of the electromagnetic field leads to a partial melting of the rods, thus causing the nanoparticle to develop into a more spherical shape absorbing significantly less in the NIR region; this effect shuts down the extreme heating properties and is important to consider for photothermal applications.

The accuracy of the temperature measurements relies on the sharpness of the lipid phase transition as well as on the differential affinity of the lipid fluorophore for the two lipid phases. The phase transition of multilamellar lipid vesicles consisting of DC15PC is cooperative with a phase transition temperature at \(T_m \sim 33 \, ^\circ C \) and a full width half-maximum (FWHM) of ∼0.1 °C (data shown in Supporting Information Figure S2). Our assay was based on a single lipid bilayer and not a multilamellar system that often exhibits cooperative thermodynamic effects. Therefore, we measured the heat capacity of unilamellar vesicles extruded through 100 nm polycarbonate filters. Extrusion through smaller pores would induce broadening of the phase transition due to membrane curvature effects, an artifact not present in our flat supported lipid bilayer. The resulting heat capacity curve of unilamellar DC15PC vesicles is shown in Supporting Information Figure S3 (red graph), it has \(T_m \sim 34 \, ^\circ C \) and a fwhm of ∼1 °C. To assess the effect of the fluorescent lipid conjugate, we also measured the differential heat capacity with the fluorophore in the bilayer (Supporting Information Figure S3, yellow graph). The fluorescent conjugate has two unsaturated bonds and consequently lowers the phase transition slightly to \(T_m \sim 33 \, ^\circ C \) (FWHM ∼1 °C). Because of their unsaturated alkyl tails, it...
is energetically favorable for DiOC$_{18}$-trifluorophores to partition into the fluid phase of the bilayer. It was crucial to clean the glass coverslips with detergent and organic solvents in sonication bath followed by plasma cleaning (ensuring a highly hydrophilic glass surface) before the bilayer was rapidly added. This preparation caused a ~2 nm lubricating layer of water to be present between the glass and the lower leaflet of the bilayer. The phase transition of a glass supported lipid bilayer prepared in this manner has been shown to behave very similar to that of a free bilayer (exhibiting only one main transition). The experiments were performed at an ambient temperature of 27 °C, hence, before switching on the NIR laser, the bilayer was in an ordered gel state. When a nanorod covered by a lipid bilayer was irradiated, it absorbed light and dissipated heat, thus heating up a localized region around the particle. As the temperature exceeded T_m, the bilayer locally transformed from gel phase to fluid phase, hence, the fluorophores preferably partitioned into the melted region around the nanorod which thus became visible. As shown in Figure 2A,B, a typical melting fingerprint, we performed a rotational average and smoothening of the circularly symmetric melted fingerprint to obtain a radial intensity profile. The radial intensity profiles for a nanorod and a nanosphere are shown in Figure 2C,D, respectively. We defined the radius of the melted region, r, as the distance from the center of the melted region (the center of the particle) to the point where the intensity curve is equal to the background plus the noise level (before smoothening). Consistent with the results in ref 18, a control where the laser irradiated the bilayer without any particle present did not produce a detectable fingerprint.

To quantify the temperature increase, ΔT, at a distance r from the center of a particle, one can model the nanoparticles as spherical heat radiators with an effective radius, R_{eff}, placed in an infinite medium with thermal conductivity, κ.

$$\Delta T(r) = \frac{I_{\text{abs}}}{4\pi \kappa} r > > R_{\text{eff}}$$

Here, I is the laser intensity incident on the particle and C_{abs} is the absorption cross section of the particle at the irradiating laser wavelength. Although eq 1 was originally derived for a spherical particle of radius R_{abs}, it has been proven valid for arbitrarily shaped particles at distances $r \gg R_{\text{eff}}$ if R_{eff} is chosen as the radius of a sphere with the same volume as the particle.

In the present case, however, the particles are not placed in an infinite medium, but on the interface between a glass coverslip and an aqueous medium. Therefore, κ should be replaced by $\kappa_{\text{eff}} = \kappa/\bar{b}$, where \bar{b} is a correction factor taking into account the presence of the interface. b is determined as

$$b(r) = 1 + \frac{K_2 - \kappa}{K_1 + \kappa} \frac{r}{\sqrt{r^2 + 4R_{\text{eff}}^2}}$$

Figure 2. Quantification of melting fingerprint and temperature profile. (A,B) Confocal images of fluorophores partitioning in fluid regions around an irradiated gold nanorod (of nominal size 20 nm x 100 nm) (A) or a gold nanosphere (nominal diameter = 200 nm) (B) under identical illumination conditions (1.8×10^{10} W/m2). (C,D) Intensities of fluorophores as a function of distance from the center of the irradiated nanoparticles, (C) is for the rod shown in (A), (D) is for the sphere shown in (B). Insets show the logarithm of the temperature increase as function of distance from the center of the irradiated nanoparticles.
where κ is the thermal conductivity of water (0.58 W m$^{-1}$ K$^{-1}$) and k_1 is the thermal conductivity of glass (1.05 W m$^{-1}$ K$^{-1}$). The value of b as function of r for a nanosphere with radius $=100$ nm and for a nanorod of dimensions 100 nm \times 20 nm is shown in Supporting Information Figure S4.

For a constant laser intensity, I, eq 1 can be rewritten as

$$\Delta T(r) = \frac{b(r)C}{r},$$

where $C = IC_{\text{bulk}}/4\pi\kappa$ is a constant including all physical parameters that are difficult to determine experimentally. Using eq 3 together with knowledge of the phase transition temperature (T_{m}), of the radius of the melted region, r_m, and of $b(r_m)$ provides C. Hence, we can quantify the entire temperature profile at a given laser intensity.

As one moves closer to a nanorod, the nonspherical shape becomes important for its temperature profile. The temperature at the surface of a metallic nanorod can be calculated by introducing a morphology dependent thermal-capacitance coefficient, β. Basically, the temperature at the surface can be found by dividing eqs 1 or 3 by β and substituting r with R_{eff}. For a sphere $\beta = 1$ and for a nanorod β is a function of its aspect ratio. For a 20 nm \times 100 nm nanorod, β equals to 1.61. The size of the melted fingerprints and the corresponding temperature profiles around irradiated nanoparticles were determined, see examples for a rod and a sphere in insets of Figure 2C,D. The orientation of the rod was parallel to the polarization vector of the laser light. Under identical illumination conditions (irradiated by 1.8×10^{10} W/m2 using a 1064 nm laser), the gold nanorod $(20$ nm \times 100 nm) and the gold nanosphere (radius $r = 100$ nm) had melting fingerprints of 1.06 and 1.29 μm in radius, respectively. The temperature increase ΔT at the surface of the nanorod was 269 °C while the temperature increase at the surface of the spherical particle was only 68 °C despite the fact that the volume of the sphere was \sim100 times that of the rod. The absorption of a nanoparticle is a function of its aspect ratio (as visualized in Supporting Information Figure S5). The rods have a broad longitudinal extinction spectrum peaking at 1000 nm (Supporting Information Figure S1B) and the 200 nm Au spheres have an extinction spectrum peaking around 527 nm in an aqueous solution. The difference in absorption between the two types of particles is caused by the fact that the NIR laser is off-resonance for the sphere but within the broad resonance peak of the rod.

Darker depletion regions surrounding the brighter fluid regions are visible in Figure 2A,B (most clearly in panel B). This decrease in intensity is caused by diffusion of fluorophores into the fluid phase from the nearby surrounding bilayer. Fluorophores more easily diffuse from the region where the temperature is within the 1–2 °C interval of the phase transition (see width of heat capacity curve in Supporting Information Figure S3) than from the solid gel phase further away from the nanorod where there is a negligible diffusion at the time scale of the experiments. As the temperature gradient around the sphere is steeper at T_m than for the rod, the depletion region surrounding the sphere is less smeared out and hence easier to detect. Another visible feature is the absence of fluorophore emission at the center of the melted fingerprint. This happened instantaneously with rods (as shown in Figure 2A) and was caused by a local ablation of the lipid bilayer. For the spheres, the fluorophores in the melted fingerprint initially appeared brighter in the center possibly due to fluorescence enhancement near the metal surface. However, after prolonged irradiation, fluorophores at the center of the fingerprint near the 200 nm gold nanoparticles also appeared darker due to local ablation of the lipid bilayer.

Contrary to the absorption spectrum of nanospheres that shows only one peak in the optical range, the plasmon resonance of gold nanorods splits into two modes, a longitudinal mode parallel to its long axis and a transverse mode orthogonal to its long axis. In our experiments, the nanorods were chosen such that their broad longitudinal resonance included the irradiating laser wavelength (Supporting Information Figure S1B shows the nanorod absorption spectrum). As the size distribution of the nanorods was relatively broad, we expected the peak of the absorption of individual rods to deviate somewhat from the peak of the ensemble graph. Figure 3A shows a series of confocal images from an experiment where a nanorod was irradiated with varying orientations of the polarization vector of the NIR laser (see also Supporting Information Video 1). The corresponding graph (left axis, green squares) shows the temperature at the surface of the gold nanorod as function of the angle of rotation of the laser polarization. The temperature increase exhibits a minimum when the rod is orthogonal to the polarization vector and a maximum when the rod is parallel to the polarization vector. Thus, we demonstrated a strong orientation dependence of the heating around an irradiated nanorod with temperature increases ranging between a few degrees Celsius and \sim200 °C depending on the orientation of the rod. Though to our knowledge these results are the first measurements of the temperature profile around a single irradiated nanorod and of how the temperature profile depends on the orientation of the nanoparticle, our results qualitatively parallel the polar-
Figure 4. Heat-induced shape changes of irradiated nanoparticles. (A) Average surface temperature increase versus laser intensity for gold nanorods (20 nm × 100 nm, n = 53). Inset shows TEM images of the rods. (B) As (A) but with spherical gold nanoparticles (d = 200 nm, n = 15), inset shows TEM image. (C) Heating curves versus laser intensity for two representative individual rods (green circles and blue squares, respectively) and one d = 200 nm sphere (red triangles). The inset shows the radius of the melted region as a function of laser intensity for two consecutive heating cycles of two individual rods. (D,E) Fluorescent images (upper panels) and confocal reflection images (lower panels) acquired simultaneously of a gold nanorod (D) and a gold nanosphere (E) in a bilayer at two different laser intensities (left, 9 mW/μm²; right, 34 mW/μm² for the gold nanorod and 55 mW/μm² for the gold nanosphere). The scale bar is 1 μm.

For both nanorods and nanospheres, the size of the melted region increased with laser intensity within a certain intensity interval. At very high laser intensities, extreme temperatures were reached. The spheres could occasionally blast off the surface or explosive boiling of the water phase could occur, consistent with previous findings.18,38 To avoid such extreme events, the data analyzed in the present paper were all acquired using laser intensities below 6 × 10¹⁰ W/m². However, even at low laser intensities the nanorods would be exposed to a significant heating if aligned with the laser polarization (see Figure 4A). The relatively large spread in size and shape give rise to different locations of the longitudinal resonance peak. The error bars in Figure 4A represent the corresponding heterogeneous heating (n = 53). It should be noted that we only sampled fingerprints from irradiated nanorods which were large enough to be visible and quantified. This eliminated data from off-resonance rods whose possible fingerprints were below the diffraction limit. The temperatures of nanospheres were linearly proportional to laser intensity as expected (Figure 4B). In contrast, the temperature increase of gold nanorods did not appear linear and leveled off at laser powers exceeding around 20 mW/μm² (Figure 4A). Also, the temperature versus laser intensity relation was rather different among the individual rods probed. This heterogeneous behavior is shown for two representative rods in Figure 4C. The temperature of Rod 1 (blue squares) starts with an almost linear increase with laser intensity, subsequently the temperature begins to decrease with laser intensity, and eventually the radius of the melted region becomes too small to allow for a quantification of the temperature increase. The temperature increase of Rod 2 (green circles) initially rises rapidly and then turns over to a slower, almost linear increase. Supporting Information Figure
S6 shows additional 15 randomly chosen temperature versus intensity relations. For comparison, we also plotted the heating for a single gold nanosphere in Figure 4C (red triangles) that heats linearly with laser power as expected.

The observed change in photonic properties of irradiated nanorods probably results from a temperature induced shape change. The thermal stability of gold nanorods is much lower than that of bulk gold and premature melting or structural changes of gold nanorods has been proven to occur at temperatures as low as ~200 °C under conditions of prolonged heating. Under these conditions the rod restructures into a more spherical shape thus blue shifting the resonance peak. This is supported by the data shown in the inset of Figure 4C that shows the radius of the melted region (directly proportional to surface temperature) as a function of laser intensity for two heating cycles of two gold nanorods (measured individually). First, the intensity of the laser was increased and the corresponding surface temperature measured (curves i + iii), then the laser was shut down until the fingerprint disappeared and afterward laser power was again increased (curves ii + iv). For both nanorods, the surface temperature at a given laser intensity on the initial curve is smaller than the surface temperature on the re-cycle curve. This suggests that the aspect ratio of the nanorod decreased between the initial and later measurements, probably caused by a partial melting of the rod.

Moreover, the occurrence of temperature induced shape changes of irradiated nanorods was supported by confocal and reflection images of the nanoparticles before and after the heating cycle as shown in Figure 4D,E. Reflective light from small nanoparticles depends on their size as well as on their surface plasmon frequency. Since the volume of the particle stays the same, we attribute any change in reflected light to a shift in the plasmon frequency. The reflection images of small gold nanoparticles placed on a partially reflective interface like glass/water exhibit a negative contrast. The dark spot becomes darker with increasing particle scattering up to a critical size after which the particle appears bright. The reflection images of Rod 1 (blue square in Figure 4C) at two laser intensities are shown in lower half of Figure 4D (left and right image, respectively). The appearance of the particle becomes darker. This could be due to shape induced blue shift in the surface plasmon frequency resulting in higher particle scattering at 594 nm. At the same time we observed in the corresponding confocal images of the bilayer (upper images) that the temperature of the rod was higher in the first image (low laser intensity) than in the last image (higher laser intensity), which can be explained by the same blue shift of the particle resonance away from the NIR heating laser at 1064 nm.

No significant changes were observed in the reflection images for the nanosphere (see Figure 4E), for which the increase of radius of the melted region was linearly proportional to the incident laser intensity.

By performing a linear fit to the data in Figure 4B and using the area of the focal region, A, of the laser beam (A = 2.27 μm²) was measured as described in Supporting Information the heating rate of a 200 nm sphere was found to be 1439 K/W. This is similar to the 1650 K/W reported from the same type of particle in ref 18. The temperature increase for the nanorods in Figure 4A is nonlinear, the slope of the first three data points in Figure 4A, 5897 K/W, gives a lower bound for the initial heating rate of the rods which clearly exceeds the heating rate of the d = 200 nm gold spheres in Figure 4B. The initial heating rate of an individual nanorod was found to be significantly higher than the 900 K/W reported for a 60 nm × 25 nm gold nanorod.14 As the optically trapped rods in ref 14 were irradiated by off-resonant light, possibly displaced from the most intense part of the laser beam, and in addition performed significant fluctuations both orientation wise and in and out of focus, the heating rate in our experiment where the rod was fixed was expected to be higher.

We have measured the temperature profile around a single gold nanorod irradiated by a 1064 nm NIR laser, whose wavelength coincides with the longitudinal plasmon resonance of the rod. The temperature profile was quantified using an assay where the nanoparticle was covered by a lipid bilayer containing fluorophores with a phase dependent partitioning. The relatively high accuracy of this method is caused by the fact that only light from the exact plane of the irradiated particle contributes to the signal. If also the polarization anisotropy of the fluorophores was detected,23 the method could be expanded, for example, to measurements on natively fluid cellular membranes. The temperature profile of an irradiated gold nanorod was found to be highly dependent on its orientation with respect to the laser polarization vector. The temperature increase was highest if they were parallel and nearly vanished if orthogonal. A resonant nanorod oriented parallel to the polarization vector attained temperatures significantly higher than a nonresonant spherical gold nanoparticle having a 100 times larger volume. Hence, gold nanorods are an excellent choice as remotely controlled heat transducers in, for example, medical applications where space is limited or where delivery of nanoparticles depends critically on size and where NIR radiation is preferred. When a gold nanorod was exposed to temperature increases exceeding 200 °C, we observed a partial melting of the rod into a more spherical shape, thus changing its absorption properties significantly. The fact that gold nanorods lose their ability to efficiently transform electromagnetic radiation into heat upon excessive heating is important to consider for photothermal applications.

ASSOCIATED CONTENT

Supporting Information

Supplementary methods as well as additional figures and video. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: oddershede@nbi.dk.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank S. N. S. Reihani for fruitful discussions, A. Kyrtsg for assistance with measuring the radius of the focal region, I. Jensen for assistance with the electron microscopy, and S. B. Madsen for assistance with the calorimetric measurements. This research was financially supported by a Niels Bohr Scholarship, the Carlsberg foundation, and a University of Copenhagen Excellence grant.
REFERENCES
