

TPC laser calibration system

Børge Svane Nielsen Niels Bohr Institute

ALICE Technical Board, CERN, 18 February 2002

Table of Contents

System Goals	1
Design of laser system: from laser to narrow beams	2
Spacial and angular precision	11
Production, installation and alignment	12

System Goals

System Goals

Use of laser calibration system:

- Electronics testing
- Sector alignment
- Drift velocity measurement
- Drift distortions: temperature effects, space charge and ExB effects

Goals for laser track layout and precision:

- 1 mm UV laser beams through most of TPC volume
- 1-5 mip equivalent ionization
- cross sector boundaries appropriately
- radial beams at different z and ϕ
- beam precision, production + installation: $\sim 10-20$ mm @ 2-3 m
- beam precision, alignment: $\sim 200 \ \mu m$

Technical principle:

– Wide laser beam (~ 25 mm) intersected by 1 mm mirrors inside TPC

Collaboration:

- Alexei Lebedev (STAR) can collaborate part-time
- micro-mirrors supplied from State Center Interphysica, Moscow

Laser from Spectron Laser Systems.

Special model: SL805-10-UPG

Pulsed UV laser (Nd:YAG) energy per pulse: 100 mJ @ 266 nm, upgradable to 180 mJ pulse width: 10 ns, repetition rate: max 10 Hz 'telescopic' resonator beam expander 9 mm \rightarrow 25 mm divergence < 8 mrad, pointing stability < 0.1 mrad (1 mm at 10 m) autotracking of 266 nm separator for temperature stability remote controllable

Running at NBI.

TPC laser calibration system-6

Micro mirror bundle

On order from Moscow Engineering School, State Center Interphysica.

Specifications:

- -1 mm diam. quartz fibres, cut at $45^\circ\pm$ 0.3 mrad and coated for 266 nm
- bundles assembled of 7 micro-mirrors in cup, $\Delta \theta$, $\Delta \phi \leq 1^{\circ}$
- all angles measured to $\Delta \theta$, $\Delta \phi \leq 0.05$ mrad.

Delivery:

- half in May 2002
- half in June/July 2002

TPC laser calibration system-9

Spacial and angular precision

Final alignment precision aim: 200–300 μ m space points

 Δx , Δy , Δz (mirrors) $\leq 200 \ \mu m$ $\Delta \phi$, $\Delta \theta$ (track angles) $\leq 0.1 \ mrad$

Sources of misalignment:

– Mirror bundle misalignment: Δx , Δy , Δz , $\Delta \phi$, $\Delta \theta$

– Laser beam angles: $\Delta \phi$, $\Delta \theta$

Other active/passive optics alignment is only to optimise the beam quality.

Error sources in mirror positions relative to nominal:

- Mirror bundle production
- Installation of mirror bundles in laser rods
- Installation of laser rods in TPC

 $\Delta x, \Delta y, \Delta z \text{ (mirrors)} \leq 200 \ \mu \text{m}$

 $\Delta \phi, \Delta \theta \text{ (mirrors)} \leq 1^{\circ}$

Error sources in measured mirror positions:

- Measurement of mirrors in bundles: $\Delta x, \Delta y, \Delta z \leq 100 \ \mu m$ $\Delta \phi, \Delta \theta \leq 0.05 \ mrad$ - Measurement of mirror bundles in rods: $\Delta x, \Delta y, \Delta z \leq 100 \ \mu m$ $\Delta \phi, \Delta \theta \leq 0.05 \ mrad$ - Measurements of assembled rods: $\Delta x, \Delta y, \Delta z \leq 100 \ \mu m$ $\Delta \phi, \Delta \theta \leq 0.1 \ mrad$ - Measurements of installed rods in TPC: $\Delta x, \Delta y, \Delta z \leq 200 \ \mu m$ $\Delta \theta \leq 0.1 \ mrad (OK - rods do not bend)$ $\Delta \phi \leq 0.1 \ mrad (tough!!)$ - Movements of outer cylinder, laser rods and mirror holders ?

Production, installation and alignment

Micro-mirror and rod production:

- Micro-mirror production and measurement as for STAR (in Moscow)
- Assembly and measurement of rod pieces at NBI
- Full rod assembly and measurement at CERN

TPC assembly:

- Rod installation: assure ϕ mechanically to 1° or better
- Alignment measurements on assembled TPC:
 - look through rods from end-plate to end-plate
- Measure some spots from HeNe laser inside TPC before chambers

Optics and laser control and monitoring:

- Detailed design and production in parallel with rod production
- Production of optics components industrial
- Production of mechanics and assembly at NBI
- Installation and alignment on TPC end-plates
- Laser hut and beam transport in surface test area
- Laser hut and beam transport in ALICE