PARTICLE SHAPES FROM
SCATTERING EXPERIMENTS

Classical scattering experiment: Rutherford (1912):
e Scattering of low energy « particle off atoms:

= Atoms have small, heavy nucleus (r < 10~ m)

Advantageous to use electrons as projectile in stead of a’s:
[1 Point-like particle;

[l Interaction via virtual photon exchange:
- well understood process (QED);
- coupling constant small (« = %) = higher order diagrams play

minor role; Born level calculation suffices.



SCATTERING KINEMATICS

Structures under study are small: 7 ycleon =~ 0.8 fm
= Need electron beam with small wavelength

= High momentum (p > 200MeV /c) = highly relativistic electrons
Highly relativistic particles = use 4-vector notation:
r = (wo, 1, T2, T3) = (tc, )

p = (po, p1, P2, p3) = (E/c, p)

Special relativity reminder:
- Scalar product of two 4-vectors is Lorentz invariant.
- In particular, square of 4-vector is Lorentz invariant.

- Square of 4-momenta is invariant mass:
p2 _ E2/c2 —p2 — m2c2

- Rearrange to get the important relationship:

E? — p2c? = m2ct

- In ultrarelativistic limit (E > mc?): E ~ |p|c



Electron scatters elastically off nucleus at rest:
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p=(E/c,p), p =(FE/c,p), P=(Mc0), P = (Eé/c, P

From conservation of 4-momentum (energy and momentum):
One-to-one relationship between scattering angle, 6, and energy of

scattered particle, E’:
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RUTHERHORD CROSS SECTION

Classical Rutherford cross section for scattering of particle of charge

ze off nucleus of charge Ze (target recoil neglected):

( d_o' ) B (2Ze?)?
df2 Rutherford (47T€0)2(4Ekil’l)2 Sin4 g

(Similar formula for “scattering” of comet in Suns gravitational field)

NON-RELATIVISTIC QUANTUM MECHANICS
Assumptions:

- heavy target = neglect recoil

- Ze small, so that Zo <1 = Born approximation good

Describe incomming and outgoing (scattered) electron by plane waves:

P = Leipw/h vp = ieip’w/ﬁ

Vg Vv

According to Fermi’s Golden rule cross section is now
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Density of states:
dnlp'Pdlp’| - V

Cross section for scattering into solid angle element df2:

I _2n Vip'|*djp’
do v - — = — in i 2 dQ
For high energies (v — ¢, |p| — E/c):
do V2E" 9
d0 (271')2(710)4 ‘<¢f|Hint|¢i>‘




MATRIX ELEMENT

Interaction operator for charge e in electric field ¢ is Hint = €eo.
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where the momentum transfer is defined by

/

q=DP—DP.
By applying Green’s theorem, which says
/ (uV2v — vV2u) 3z = 0,

and inserting
. —h2 .
ezqa:/h _ VQ ezqw/h
g/
the matrix element now reads

—eh?

ilHelts) = i / V2o(x)] /P

eh? ,
= — x)e' /" Q3
A

where p(x) is the (static) charge density related to the field through

Poisson’s equation:

Vng(w) _ —p(iv) .

€0
Insert the charge distribution function f defined by p(x) = Zef(x).

Normalized function f(a) describes spatial distribution of charge.

We have finally:

Z - dmahle .
(V| Hing Y1) = |q|;T-V /f(m) e'a®/h g3y,




Matrix element contains Fourier integral of the charge function f(x):

F(@)= [ f@)e®/has

Form factor F(q) contains all information about the spatial

distribution of the charge of the object under study.

Rutherford scattering: neglect spatial extension of charge: f(x) = §(x)
Thus, F'(q) = 1 and one finds:

( do )  4220(he)2 B
d§2 Rutherford |qc|4 .

1/q*-dependence of electromagnetic cross section:

= very low event rates at large momentum transfers (large angles)

With no recoil (E = E’, |p| = |p'|):

Relativistic Rutherford formula:

(da)  Z202%(he)?

40 — 40
ds2 Rutherford 4 sin D)



RUTHERFORD SCATTERING AND FIELD THEORY

The electromagnetic interaction of the electron with the charge

distribution is mediated by the exchange of a virtual photon:

Photon couples with strength e to electron and Ze to nucleus:

= factor Ze? to matrix element and (Ze?)? in cross section

Photon wavelength

h h 1
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If XA > size of target particle:
= internal structures cannot be resolved

= target particle may be considered pointlike

Photon propagator term in amplitude:

1 1
Q2 + M2c2 02’

since photon is massless (M = 0).

Contribution to cross section: 1 / Q4



MOTT CROSS SECTION

Include effects due to electron spin:
do ) ’ < do ) ( 5 . o 0) , v
Y. = — - 1—=p08%sin" = |, with = —.
<dQ Mott d§2 Rutherford 2 ¢

In ultra-relativistic limit (8 — 1):

( do ) * ( do ) 5 0
— = | — - cOS” —
df2 Mott df2 Rutherford 2

= Mott falls off more rapidly at large angles than Rutherford.

Mott differs from Rutherford due to helicity conservation:
For highly relativistic particles, the projection of their spin s on the

direction of their motion p/|p| is a conserved quantity.

Define helicity by:

S .
h=—P
|s| - |p|
Spin and momentum in same direction: h=+1
Spin and momentum in opposite directions: h = —1

Helicity conserved: scattering through 180° prohibited.



NUCLEON FORM FACTORS

RECOIL

For nucleons, cannot ignore target recoil:
( do ) B ( do ) * E’
d§2 Mott d§2 Mott L

Energy transfer from electron is now significant: must use Lorentz

invariant 4-momentum transfer to describe scattering:

¢ = (p—p) =2mic —2(EE'/ — |p||p'|cosb)
—4FEE" 5 0
~ 5— sin” —
C 2

Often used in order to work with positive quantities:

Q° = —¢°



MAGNETIC MOMENT

Must take into account:
1) interaction between electron charge and nucleon charge;

2) interaction between electron current and nucleon magnetic moment.

Magnetic moment of pointlike spin—% particle of mass M and charge e:

o

9o 2

Gyromagnetic ratio g = 2 results from relativistic QM.

The magnetic interaction is associated with “spin flip” of the nucleon.
From conservation of helicity and total angular momentum:

- scattering at 0° prohibited

- scattering at 180° preferred

— Extra factor sin? g in cross section.

Use that sin? g — cos? g . tan? g to write cross section in form:

do do 5 0
(«J—(mQMm‘P+%m“J

Q2
T AM2ER

where

T

Magnetic interaction: increased probability for large scattering angles.
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NUCLEON ANOMALOUS MAGNETIC MOMENT

Measured nucleon magnetic moments differ from pointlike expectation:

Proton: Hp = ng,uN = 4+2.79 un
9n
Neutron: Ly = ?,LLN = —1.91 un
where py is nuclear magneton
_eh
N =3 M,

Determination of charge and current distribution of nucleons:

Scattering cross section given by Rosenbluth formula:

do\ (do GR(Q*) + 1G4 (Q%) 2 A2y 42 0
(45 - (m)w[ +2rCu(@ e’y

1+7

Separate electric and magnetic form factors, Gg(Q?) and Gy (Q?), by

measuring cross section for same Q? but different values of tan? g

(Fig 6.1)

Important results in Q? — 0 limit:
GR(Q*=0)=1 GE(Q*=0)=0
Gh(Q% =0) =2.79 GY(Q?=0)=—1.91

Measure form factors as function of Q?:
Both for proton and neutron, fall off ~ described by dipole fit (Fig 6.2)

Gﬁ/I(Q2) _ GHM(Q2) _ Gdipole
2.79 —1.91

GR(Q?) = (@),

where

Gdipole<Q2> . (1 4+ Q2 )2
B 0.71 (GeV/c)?
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Form factors are Fourier transform of spatial distributions.

Dipole fit = spatial charge distribution is falling exponential

p(r) = p(0)e " with @ = 4.27 fm™!

Nucleon “radius”
<T2>dipole = (.81 fm.

Neutron: electrically neutral from outside, but study of form factor

shows that it has electrically charged constituents:

(r?) = —0.113 £ 0.005 fm?.

CHARGE RADII OF PIONS AND KAONS

Pions and kaons are spin-0 particles: electric but no magnetic form

factor

Form factors measured in scattering of pion/kaon beam off electrons in
hydrogen target.

From form factors:

V(%) : = 0.67 +0.02 fm
V(2K = 0.58 4+ 0.04 fm
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