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Classical scattering experiment: Rutherford (1912):

• Scattering of low energy α particle off atoms:
⇒ Atoms have small, heavy nucleus (r ≤ 10−14 m)

Advantageous to use electrons as projectile in stead of α’s:

❶ Point-like particle;

❷ Interaction via virtual photon exchange:

- well understood process (QED);

- coupling constant small (α = 1
137
) ⇒ higher order diagrams play

minor role; Born level calculation suffices.
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SCATTERING KINEMATICS

Structures under study are small: rnucleon ' 0.8 fm
⇒ Need electron beam with small wavelength

⇒ High momentum (p ≥ 200MeV/c) ⇒ highly relativistic electrons

Highly relativistic particles ⇒ use 4-vector notation:

x = (x0, x1, x2, x3) = (tc, x)

p = (p0, p1, p2, p3) = (E/c, p)

Special relativity reminder:

- Scalar product of two 4-vectors is Lorentz invariant.

- In particular, square of 4-vector is Lorentz invariant.

- Square of 4-momenta is invariant mass:

p2 = E2/c2 − p2 = m2c2

- Rearrange to get the important relationship:

E2 − p2c2 = m2c4

- In ultrarelativistic limit (E À mc2): E ' |p|c
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Electron scatters elastically off nucleus at rest:

E,p
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′

�

p = (E/c,p), p′ = (E′/c,p′), P = (Mc,0), P ′ = (E′
p/c,P

′)

From conservation of 4-momentum (energy and momentum):

One-to-one relationship between scattering angle, θ, and energy of

scattered particle, E ′:

E′ =
E

1 + (E/Mc2)(1− cos θ)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180
Θ (deg)

E
’/

E

E/Mc2 = 0.2

E/Mc2 = 0.5

E/Mc2 = 10

E/Mc2 = 0.01

3



RUTHERHORD CROSS SECTION

Classical Rutherford cross section for scattering of particle of charge

ze off nucleus of charge Ze (target recoil neglected):

(

dσ

dΩ

)

Rutherford

=
(zZe2)2

(4πε0)2(4Ekin)2 sin
4 θ

2

(Similar formula for “scattering” of comet in Suns gravitational field)

NON-RELATIVISTIC QUANTUM MECHANICS

Assumptions:

- heavy target ⇒ neglect recoil

- Ze small, so that Zα¿ 1 ⇒ Born approximation good

Describe incomming and outgoing (scattered) electron by plane waves:

ψi =
1√
V
eipx/~ ψf =

1√
V
eip

′x/~

According to Fermi’s Golden rule cross section is now

σv

V
=W =

2π

~
|〈ψf |Hint|ψi〉|2

dn

dE

Density of states:

dn(|p′|) = 4π|p
′|2d|p′| · V
(2π~)3

.

Cross section for scattering into solid angle element dΩ:

dσ · v · 1
V
=
2π

~
|〈ψf |Hint|ψi〉|2

V |p′|2d|p′|
(2π~)3dE

dΩ

For high energies (v → c, |p| → E/c):

dσ

dΩ
=

V 2E′2

(2π)2(~c)4
|〈ψf |Hint|ψi〉|2
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MATRIX ELEMENT

Interaction operator for charge e in electric field φ is Hint = eφ.

〈ψf |Hint|ψi〉 =
e

V

∫

e−ip
′x/~φ(x)eipx/~d3x

=
e

V

∫

φ(x)eiqx/~d3x,

where the momentum transfer is defined by

q ≡ p− p′.

By applying Green’s theorem, which says
∫

(

u∇2v − v∇2u
)

d3x = 0,

and inserting

eiqx/~ =
−~2

|q|2 ∇
2 eiqx/~

the matrix element now reads

〈ψf |Hint|ψi〉 =
−e~2

V |q|2
∫

[

∇2φ(x)
]

eiqx/~d3x

=
e~2

ε0V |q|2
∫

ρ(x)eiqx/~d3x,

where ρ(x) is the (static) charge density related to the field through

Poisson’s equation:

∇2φ(x) =
−ρ(x)
ε0

.

Insert the charge distribution function f defined by ρ(x) = Zef(x).

Normalized function f(x) describes spatial distribution of charge.

We have finally:

〈ψf |Hint|ψi〉 =
Z · 4πα~3c

|q|2 · V

∫

f(x) eiqx/~ d3x.
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Matrix element contains Fourier integral of the charge function f(x):

F (q) =

∫

f(x) eiqx/~ d3x

Form factor F (q) contains all information about the spatial

distribution of the charge of the object under study.

Rutherford scattering: neglect spatial extension of charge: f(x) = δ(x)

Thus, F (q) = 1 and one finds:

(

dσ

dΩ

)

Rutherford

=
4Z2α2(~c)2E′2

|qc|4 .

1/q4-dependence of electromagnetic cross section:

⇒ very low event rates at large momentum transfers (large angles)

With no recoil (E = E ′, |p| = |p′|):

p

p′
qθ/2 |q| = 2|p| sin θ

2

Relativistic Rutherford formula:
(

dσ

dΩ

)

Rutherford

=
Z2α2(~c)2

4 sin4 θ
2
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RUTHERFORD SCATTERING AND FIELD THEORY

The electromagnetic interaction of the electron with the charge

distribution is mediated by the exchange of a virtual photon:

�

p

p′
q

e

Ze

Photon couples with strength e to electron and Ze to nucleus:

⇒ factor Ze2 to matrix element and (Ze2)2 in cross section

Photon wavelength

λ =
h

|q| =
h

|p| ·
1

2 sin θ
2

If λÀ size of target particle:

⇒ internal structures cannot be resolved

⇒ target particle may be considered pointlike

Photon propagator term in amplitude:

1

Q2 +M2c2
−→ 1

Q2
,

since photon is massless (M = 0).

Contribution to cross section: 1/Q4

7



MOTT CROSS SECTION

Include effects due to electron spin:
(

dσ

dΩ

)∗

Mott

=

(

dσ

dΩ

)

Rutherford

·
(

1− β2 sin2 θ

2

)

, with β =
v

c
.

In ultra-relativistic limit (β → 1):
(

dσ

dΩ

)∗

Mott

=

(

dσ

dΩ

)

Rutherford

· cos2 θ
2

⇒ Mott falls off more rapidly at large angles than Rutherford.

Mott differs from Rutherford due to helicity conservation:

For highly relativistic particles, the projection of their spin s on the

direction of their motion p/|p| is a conserved quantity.

Define helicity by:

h =
s · p
|s| · |p|

Spin and momentum in same direction: h = +1

Spin and momentum in opposite directions: h = −1

Helicity conserved: scattering through 180◦ prohibited.
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NUCLEON FORM FACTORS

RECOIL

For nucleons, cannot ignore target recoil:
(

dσ

dΩ

)

Mott

=

(

dσ

dΩ

)∗

Mott

· E
′

E
.

Energy transfer from electron is now significant: must use Lorentz

invariant 4-momentum transfer to describe scattering:

q2 = (p− p′)2 = 2m2
ec

2 − 2 (EE′/c2 − |p||p′| cos θ)

' −4EE′

c2
sin2 θ

2

Often used in order to work with positive quantities:

Q2 = −q2
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MAGNETIC MOMENT

Must take into account:

1) interaction between electron charge and nucleon charge;

2) interaction between electron current and nucleon magnetic moment.

Magnetic moment of pointlike spin- 1
2
particle of mass M and charge e:

µ = g · e

2M
· ~
2

Gyromagnetic ratio g = 2 results from relativistic QM.

The magnetic interaction is associated with “spin flip” of the nucleon.

From conservation of helicity and total angular momentum:

- scattering at 0◦ prohibited

- scattering at 180◦ preferred

⇒ Extra factor sin2 θ
2
in cross section.

Use that sin2 θ
2
= cos2 θ

2
· tan2 θ

2
to write cross section in form:

(

dσ

dΩ

)

=

(

dσ

dΩ

)

Mott

·
[

1 + 2τ tan2 θ

2

]

where

τ =
Q2

4M2c2
.

Magnetic interaction: increased probability for large scattering angles.
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NUCLEON ANOMALOUS MAGNETIC MOMENT

Measured nucleon magnetic moments differ from pointlike expectation:

Proton: µp =
gp
2
µN = +2.79µN

Neutron: µn =
gn
2
µN = −1.91µN

where µN is nuclear magneton

µN =
e~
2Mp

Determination of charge and current distribution of nucleons:

Scattering cross section given by Rosenbluth formula:
(

dσ

dΩ

)

=

(

dσ

dΩ

)

Mott

·
[

G2
E(Q

2) + τG2
M(Q

2)

1 + τ
+ 2τG2

M(Q
2) tan2 θ

2

]

.

Separate electric and magnetic form factors, GE(Q
2) and GM(Q

2), by

measuring cross section for same Q2 but different values of tan2 θ
2

(Fig 6.1)

Important results in Q2 → 0 limit:

Gp
E(Q

2 = 0) = 1 Gn
E(Q

2 = 0) = 0

Gp
M(Q

2 = 0) = 2.79 Gn
M(Q

2 = 0) = −1.91

Measure form factors as function of Q2:

Both for proton and neutron, fall off ∼ described by dipole fit (Fig 6.2)

Gp
E(Q

2) =
Gp

M(Q
2)

2.79
=
Gn

M(Q
2)

−1.91 = Gdipole(Q2),

where

Gdipole(Q2) =

(

1 +
Q2

0.71 (GeV/c)2

)−2
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Form factors are Fourier transform of spatial distributions.

Dipole fit ⇒ spatial charge distribution is falling exponential

ρ(r) = ρ(0) e−ar with a = 4.27 fm−1

Nucleon “radius”
√

〈r2〉dipole = 0.81 fm.

Neutron: electrically neutral from outside, but study of form factor

shows that it has electrically charged constituents:

〈r2〉 = −0.113± 0.005 fm2.

CHARGE RADII OF PIONS AND KAONS

Pions and kaons are spin-0 particles: electric but no magnetic form

factor

Form factors measured in scattering of pion/kaon beam off electrons in

hydrogen target.

From form factors:

√

〈r2〉π = 0.67± 0.02 fm
√

〈r2〉K = 0.58± 0.04 fm

12


