
University of  Copenhagen Niels Bohr Institute

D. Jason Koskinen 
koskinen@nbi.ku.dk

Photo by Howard Jackman

Advanced Methods in Applied Statistics 
Feb - Apr 2016

Lecture 11:  
Multivariate Method - Boosted 

Decision Tree

Lecture Material Credits:  
H. Voss (MPIK) ,  TMVA group

mailto:koskinen@nbi.ku.dk?subject=


D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Using likelihoods and Neyman-Pearson lemma to separate 
background from signal is not always feasible 
• Likelihood is too complicated for analytic or Monte Carlo evaluation 
• High dimensionality makes Monte Carlo computationally expensive 

• Data sets which are linearly separable in variables, e.g. 
between signal and background, have useful tools for doing 
such a separation (Fisher Discriminant). 

• For linear and non-linear classification scenarios and/or where 
the available separators are weak, there is a class of 
multivariate tools 
• k-Nearest Neighbor 
• Random Forest 
• Artificial Neural Networks 
• Support Vector Machine (can be a linear regression classifier too) 
• (Boosted) Decision Trees 
• etc.

“Simple” Problems
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• We might not be able to easily calculate likelihoods or 
probability distribution functions, but we can separately 
identify data or generate Monte Carlo which is known 
signal and known background 

• Use the known signal/background as training samples for a 
learning algorithm to classify events as signal/background 
based on only the available variables 

• A user provides the events, true classification data sets, 
and variables, and the machine algorithm (hopefully) 
produces an inference which can be used on unclassified 
data to separate signal/background

Supervised Learning Algorithms
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• Depending on the kernel, the SVM maps the data into a 
higher or alternate dimension space, and makes 
classifications via hyperplanes 

Support Vector Machine 
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*”Support Vector Networks”, Cortes & Vapnik
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• Below are events in only x, y, and z for some class of signal 
and background, which are not clearly too separable via 
straight cuts 
• Machine algorithms can ‘see’ in higher dimensions very quickly 

• This semi-simple example with a boosted decision tree can get 88% 
signal efficiency at 1% background contamination

Training Samples
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• Decision Tree: Sequential 
application of cuts splits the 
data into nodes, where the 
final nodes (leaves) classify an 
event as signal or background 
• Easy to visualize and interpret 

• Resistant to outliers in data 

• Disadvantage is that statistical 
fluctuations in training create 
instability

Decision Tree

6



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Machine Learning algorithms can be overly optimized 
wherein statistical fluctuations from the training data are 
wrongly characterized as true features of the distributions 
• Deficit of training data statistics versus number of variables or 

complexity 

• Model flexibility, e.g. many free parameters

Overtraining
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• A common way to check over-training for any machine learning algorithm is to test 
the learned inference classification on a statistically independent data set of known 
signal/background 

• Classification should be as similar between the training sample results and testing 
sample results as statistical fluctuations permit. Significant differences, e.g. in the 
ROC curves, are a common indicator of over training.

Testing & Training
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• Start with a training sample and split using a variable that 
gives the best separation (for some definition of ‘best’, e.g. 
Gini-index) 

• Continue splitting until some threshold is met: 
• Statistics per node 

• Number of nodes 

• Depth of decision tree 

• Further splits fall below separation threshold 

• Events that fall in the final nodes are classified as signal/
background via some metric (binary classification, sig/bkg 
probability, etc.)

Creating the Tree
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• The decision tree (left) and the 2D space (right) which 
represent the different areas of x1 and x2 classified as 
signal/background regions by the decision tree

Decision Tree Walkthrough
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• Similar to machine learning algorithms, a decision tree can 
be overtrained. Specifically, it can be very sensitive to 
statistical fluctuations in the training sample.  
• High statistics training samples can minimize the impact, but never 

remove it 

• Removing nodes with low separation power, thereby reducing the 
complexity 

• Could generate multiple trees and combine them to 
increase separation power and decrease overtraining, but 
the decision process would create identical trees for the 
same training sample  

• Common solution is to use Boosting

Decision Tree Overtraining
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Adaptive Boosting Visually 
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*AdaBoost by Y. Freund & R. E.Schapire 
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• Past the first one, each iterative boosted decision tree 
(classifier) is trained on the ‘same’ events. But now, the events 
have weights according to whether they were previously 
wrongly classified.

Boosted Decision Trees
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• The combined classifier is the weighted average from all 
trees for the different regions 

• Works very well “out-of-the-box”

Boosted Decision Trees
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• After training, and hopefully testing, the BDT can generate 
a score when run over new data that allows signal/
background separation 
• More negative values are background 

• Place a cut at some score to get desired purity and efficiency

Boosted Decision Tree Classifier
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• It is common to throw an absurd number of variables into a 
BDT and have it signify the variables of importance, i.e. the 
‘kitchen sink’ approach. The more variables used in any 
supervised learning algorithm, the more difficult it is to 
debug when something goes wrong, e.g. user error. 

• The number of nodes, variables, events, and depth of each 
tree can influence the classification outcome. Because 
BDTs are generally fast to train, play around with the 
settings/options to see the effects. 

• Ensure that the variables used in training match the 
distribution shapes in data. Poor variable agreement will 
bias the BDT, and if the BDT uses many variables it can be 
hard to notice that a problem exists.

BDT Comments
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• On the class webpage there are 4 files which include signal 
and background for training and testing of a learning 
algorithm (nominally a boosted decision tree) 

• The data is generated as an unknown function of three 
variables 

• Plot the three variables for the signal and background 
samples for training: 
• 1D histograms, one for each variable 

• 2D graphs of the x vs. y, x vs. z, and y vs. z 

• After training the BDT, plot the BDT score for the test 
sample separated by color for the signal and background

Exercise #1
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• Not a whole lot of separation going on here

Exercise #1 Simple Plots
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• Not much better in 2D than it was in 1D

Exercise #1 in 2D
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Exercise #1 BDT Score Result
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• Now with 16 variables using the a single file on the 
webpage 

• Separate the data from the file into a training and testing 
sample and repeat 
• Do not use any training data as a test sample 

• Train a BDT (or some other machine learning algorithm) 
and plot the output scores 

• Are any variables essentially worthless? What happens 
when the lowest rank variable is removed from the 
training?

Exercise #2
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1D Histograms of the 16 Variables
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Exercise #2 Correlation Plots
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• Surprisingly from looking at the data, a BDT can get 
decent separation

Exercise #2 BDT Scores
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