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• In today’s lecture: 

• Introduction 

• Linear Least Squares Fit 

• Least Squares method estimate of variance 

• Non-linear Least Squares  

• Least Squares as goodness-of-fit statistic 

• Least Squares on binned data (maybe) 

• A lot, lot more math and analytic coverage than usual in today’s slides. Should be 
used as reference material, but focus on using your least squares minimization 
routines.

Method of Least Squares
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• Introduction 

• Most frequently used fitting method, but has no general optimal properties 
that would make that the case. 

• When the parameter dependence is linear, the method produces unbiased 
estimators of minimum variance. 

• The method is applied as follows: 

• for observation points, x, experimental values are measured, y.  The true 
functional form is defined by L parameters: 

• To find parameter estimates, θ, we minimize:

Method of Least Squares
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• Introduction 

• The method is applied as follows (cont.): 

• In the case of constant accuracy, all w = 1. 

• If the accuracy for y is given by       then 

• If the y values represent a poisson distributed random number: 

• If the observations are correlated, then the minimization function 
becomes: 

• where the values for independent variable(s) (generally x) are assumed to 
have be known precisely, i.e. no uncertainties.

Method of Least Squares
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• Introduction 

• The method is applied as follows (cont.): 

• In many cases the measured value, y, can be regarded as a Gaussian 
random variable centered about the true value, as expected from the 
Central Limit Theorem as long as the total error is the sum of a large 
number of small contributions.   

• The deviation from the true value has the form: 

• For a set of N independent Gaussian random variables, yi, of unknown 
mean, λi, and different but known variance σi

2, then the joint pdf can be 
written:

Method of Least Squares
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• Introduction 

• The method is applied as follows 
(cont.): 

• Again, the measurements are 
related to x, which is known 
without error.  We can write the 
true value in terms of a 
function of x with unknown 
parameters θ: 

• The goal is to estimate these 
parameters with the least 
squares method, a simple 
evaluation of the goodness of 
fit of the hypothesized function 
above.

Method of Least Squares
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• Introduction 

• The method is applied as follows (cont.): 

• The likelihood function is given by: 

• which corresponds to the log-likelihood function:

Method of Least Squares
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• Introduction 

• The method is applied as follows (cont.): 

• One may maximize lnL, or minimize: 

• The errors on the estimated parameters are obtained by evaluating the 
corresponding one standard deviation departure from the least-squares 
estimate: 

• Thus, if the measurements are Gaussian distributed, then the least square 
method is equivalent to the maximum likelihood method (covered on 
Thursday).  Further, the observables will be linear functions of the 
parameters and follow the chi-square distribution.  

Method of Least Squares
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• Introduction 

• This is the foundation for the LS method and it is used to look at the 
difference between between measured and hypothesized values, weighted 
by the inverse of the variance.   

• The method is applicable even when the individual measurements, y, are not 
Gaussian, as long as they are independent. 

• Repeated measurements can be treated as the sum: 

• where the quantity λ can be determined with the quadratic sum:

Method of Least Squares
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• Linear LS Fit 

• If the observables are linear functions of the unknown parameters and the 
weights are independent of the parameters, then the LS method has an 
exact solution that can be written in a closed form.   

• Consider  

• the a(x) terms are any linearly independent function of x such that λ is linear 
in the parameters θ.  The a(x) are generally not linear in x, but are linearly 
independent of each other.   

• In this case, an analytic solution for the estimators and their variances exists.  
The estimators will be unbiased from the MVB condition regardless of the 
number of measurements and the pdf of the individual measurements.

Method of Least Squares
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• Maximum Likelihood Estimator Properties 
• Unbiased 

• For finite data sets, an estimator is unbiased if its expectation value is not 
systematically shifted from the true parameter value and is centered around this 
value for all sample sizes.   

• It is natural to use the spread (dispersion) in estimates as a measure of acceptability 
of an estimator.  Note that although      may be unbiased,          may be biased. 

• Efficient 
• if a sufficient estimator exists then the Maximum Likelihood method produces it and 

will give the minimum attainable variance (the Minimum Variance Bound - MVB).  

Slight Detour - Maximum Likelihood 
Estimator
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• Linear LS Fit 

• Note that although the estimators and variances can be found analytically 
when it is a linear function for λ in terms of the parameters, one may use 
numerical methods for the estimation of the parameters.   

• Analytically: 

• We begin with: 

• For N independent measurements, y, with N>m and errors given by σ:

Method of Least Squares
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• Linear LS Fit 

• To find minimum chi-square, or maximum lnL, we set the derivative with 
respect to the parameters equal to zero: 

• Applying the error propagation formula to find the covariance matrix of the 
estimators: 

• This term coincides with the MVB for the inverse covariance matrix when the 
measurements are normally distributed.

Method of Least Squares
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• Linear LS Fit 

• Therefore:   

• Using the MVB equation for the variance, the one standard deviation 
contour in the parameter space where the tangents are given by                    
from the LS estimates is:

Method of Least Squares
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• LS Fit for a polynomial 

• As a hypothesis for              , you 
might want to use a polynomial of 
order m, in the case of m+1 
parameters, e.g. 

• This is a special case of the linear 
LS method with linearly 
independent weights: 

• Thus, just as before, 

Method of Least Squares
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• LS Fit for a polynomial 

• The illustration to the right is for 
different polynomial fits which are 
possible for least squares, including 
a flat constant, i.e. 0th order 
polynomial 

• With the following data, test a similar 
least squares fit for the points 
defined by: x = (0.0, 1.0, 2.0, 3.0,  
4.0,  5.0) and y = (0.0, 0.8, 0.9, 0.1, 
-0.8, -1.0) at different polynomial 
orders 

• Similar to the illustration, calculate 
the chi-square assuming each point 
has a uncertainty in y of ±0.5

Method of Least Squares
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• Using your random number generator, sample from a 
gaussian distribution of your own choosing, i.e. width and 
mean, for n=10, 100, 1000, and 10000 throws and fit each 
with a 2nd and 3rd order polynomial least squares fit. Use 
histograms. 

• Assume any negative predictions from the resulting polynomial fit 
are zero.  

• Calculate the chi-square for each combination of trials and 
polynomial least squares fits 

• The uncertainty is related to the expected poisson fluctuations from 
your samples of the random number generator. 

• Plot the resultant fits and see what happens for higher order 
polynomial fits, e.g. order 5, 7, 8, 12, whatever, etc… as the number 
of data points (random number generator throws) increases

Least Squares Examination

17
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• From the resultant fits for higher order polynomial fits, e.g. 
order 5, 7, 8, 12, whatever, etc… as the number of data 
points (random number generator throws) increases, 
calculate the chi-square using the uncertainty (or weight) as 
the expected poisson fluctuation 
• Where do the polynomial fits give a good ‘fit’ to a gaussian, even 

though a gaussian distribution and polynomial are not the same? 

• How does the agreement change as a function of polynomial order 
or throws from the random number generator?

Least Squares Examination (cont.)

18
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• Non-Linear LS Fit 

• Need a numerical method to evaluate the estimators and their covariance 
matrix.   ROOT and other packages provides this capability to fit any type 
of function, including that provided by a user defined routine. 

• Examples of user routine for a chi-square numerical minimization: 

• Polynomial of order m: 

• Gaussian:

Examples of Least Squares Routines
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• Non-Linear LS Fit 

• Examples of user routine for a chi-square numerical minimization: 

• Exponential: 

• Trigonometric: 

• Damped Oscillator

Examples of Least Squares Routines
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• Non-Linear LS Fit 

• Examples of user routine for a chi-square numerical minimization: 

• Breit-Wigner: 

• We of course want to find the relation between true values, according to 
some hypothesis, and measured quantities, y, at known observations with no 
errors, x. e.g.:

Examples of Least Squares Routines
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• Non-Linear LS Fit 

• We need to find the minimum function: 

• The convergence of a numerical (iterative) procedure will depend on if we 
are in an area of the phase space where the chi-square function is similar to a 
quadratic form.  That is to say, the non-linear case first approximation is the 
starting point for the numerical procedure.  For this simple algorithm to work 
we must be near the absolute minimum. 

• We expand the function around a set of first approximations for the (r) 
unknowns or parameters: 

Method of Least Squares
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• Non-Linear LS Fit 

• We expand this about  

• Which gives us: 

• elements of A: 

• and G is the inverse variance matrix.  

Method of Least Squares
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• Non-Linear LS Fit 

• Note that the second derivative must of course be positive at the minimum 
when the chi-square is of quadratic form: 

• A step beyond the simple iterative method, known as step-size reduction, 
applies the fact that on each side of the minimum the first derivative 
changes sign and the second derivative is positive.

Method of Least Squares
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• LS Fit as a goodness-of-fit 

• The value of the chi-square minimum reflects the agreement between 
data and hypothesis and can thus be used as a goodness-of-fit test 
statistic: 

• where our hypothesized function form is given by λ. 

• If the hypothesis is correct, then the test statistic, t, follows the chi-square 
pdf: 

• where nd is the number of data points - number of fitted parameters.

Method of Least Squares
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• LS Fit as a goodness-of-fit 

• The chi-square pdf has an expectation value equal to the number of 
degrees of freedom such that if the minimum chi-square is approximately 
the number of degrees of freedom then the fit is considered “good.” 

• We can find the p-value, here the probability of obtaining a chi-square 
minimum as large as the one measured, or higher, if the hypothesis is 
correct: 

• From the polynomial fit example: 

• 2 parameter fit:   

• 1 parameter fit:

Method of Least Squares
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• LS Fit as a goodness-of-fit vs. statistical 
errors 

• It is important to note that a small 
statistical error does not imply a 
good fit, nor does a good fit 
imply small statistical errors.   

• The curvature of the chi-square 
near its minimum is related to the 
statistical errors 

• The value of the chi-square 
minimum is the goodness-of-fit. 

• For horizontal line fit, move the 
data points (transform), keeping 
the errors on the points the same.

Method of Least Squares
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Variance is same as previously, so the 
chi-square minimum is now “good”
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• LS Fit as a goodness-of-fit vs. statistical errors 

• The variance of the estimator (statistical error) tells us that if the 
experiment were repeated many times, the width of the distribution of 
the estimates, but not if the hypothesis, is correct. 

• The p-value tells us that if the hypothesis is correct, and the experiment 
repeated many times, what fraction of those will give equal or worse 
agreement between data and hypothesis according to the chi-square 
minimum test statistic. 

• Thus, a low p-value may indicate the hypothesis is wrong, due to 
systematic error.

Method of Least Squares
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• LS method with binned data 

• If the data is split into N bins, 
with bin i containing ni entries, 
there is a probability for an 
event to populate, pi, that bin.    
Our hypothesized pdf is: 

• The expected number of 
events in each bin is given by:

Method of Least Squares
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• LS method with binned data 

• Now for the fit we minimize 

• where our variances are not known a priori.   We treat the y terms as 
Poisson random variables and, in place of the true variance, take either: 

• Note that the modified least squares is sometimes easier to compute, but 
the chi-square minimum statistic no longer follows the chi-square pdf if 
some of the bins have few or no entries.  

Method of Least Squares
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• LS method with binned data 

• We lose a degree of freedom because of the normalization condition: 

• such that the chi-square minimum statistic will follow: 

• assuming the model consists of L independent parameters. 

• It is NOT correct to fit for the normalization, e.g. 

• The estimator for n,    ,  will be bad.  

Method of Least Squares
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• LS method with binned data 

• Normalization example:   n=400 entries in N=20 bins. 

• The expected chi-square minimum is near N-m which means the relative 
error in the estimated normalization is large when N is large and n is 
small.    

• Ultimately get n directly from the data for LS method, or use a maximum 
likelihood.

Method of Least Squares
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• LS method with binned data 

• Choices of binning is critical.  Two common choices are: 

• equal width 

• equal probability 

• It is important not to choose the binning in order to make the chi-square 
minimum as small as possible!  Doing so would cause the statistic to no 
longer follow the chi-square distribution.   

• It is necessary to have several entries (>5) in each bin so that the statistic 
approximates a standard normal distribution.  

Method of Least Squares
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• Combining measurements with LS method 

• The LS method may be used to obtain the weighted average of N 
measurements of the true value λ. 

• Given measurements, y, the variance, assumed to be known, is: 

• For uncorrelated measurements: 

• and, as usual, we solve for the first derivative equated to zero.

Method of Least Squares
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• Combining measurements with LS method 

• If the covariance between measurements is                          , then 
minimize: 

• The least square estimate has zero bias and minimum variance according 
to the Gauss-Markov theorem.

Method of Least Squares
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• Using LS with biased data samples 

• It may happen that some data samples will not reflect the true distribution 
due to, for instance, unequal detection efficiency for each event.   To deal 
with this it is best to modify the theoretical model to account for the 
detection efficiency.  In doing so, no modification of the least squares 
minimization is necessary.  If that is not possible  you can either 

• Modify the events in a bin, ni:   If the detection efficiency for event j in bin 
i is: 

• Modify  

• Both work well when the variation of the weights is small, otherwise the 
uncertainty of the estimates are not well defined.  

Method of Least Squares
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