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• Recap in 1D 

• Extension to 2D 

• Likelihoods 

• Contours 

• Uncertainties

Outline 
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*Material derived from T. Petersen, D. R. Grant, and G. Cowan 



Confidence intervals
“Confidence intervals consist of a range of values (interval)

that act as good estimates of the unknown population parameter.”

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a
Gaussian distribution can be constructed as:
(z denotes the number of sigmas wanted)
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Confidence intervals
Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true
parameter fall inside the interval:

Typically, C = 95% (thus around 2σ), but 90% and 99% are also used occasionally.

There is a choice as follows:
1. Require symmetric interval (x+ and x- are equidistant from μ).
2. Require the shortest interval (x+ - x- is a minimum).
3. Require a central interval (integral from x- to μ is the same as from μ to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.

Prob(x�  x  x+) =

Z
x+

x�

P (x)dx = C
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• Used for 1 or 2 parameters when the ML estimate and variance cannot be found 
analytically.   Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term is used for information inequality. 

• For 1 parameter:   

• plot lnL as function of the θ and read off the value of      at the position 
where L is largest.  Sometimes there is more than one peak — take the 
highest. 

• Uncertainty deduced from positions where lnL is reduced by an amount 
1/2.  For a Gaussian Likelihood function:

Variance of Estimators - Graphical 
Method
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• A change of 1 standard deviation (σ) in the maximum 
likelihood estimator (MLE) of the parameter θ leads to a 
decrease in the in the ln(likelihood) of 1/2 for a gaussian 
distributed estimator 

• Even for a non-gaussian MLE, the 1σ region defined as LLH-1/2 is a 
good approximation 

• Because the regions defined with ΔLLH=1/2 are consistent with 
common 𝜒2  distributions multiplied by 1/2, we often calculate the 
likelihoods as 2*LLH 

• Translates to >1 parameters too, with the appropriate 
change in 2*LLH confidence values 

• 1 parameter,  Δ(2LLH)=1 for 68.3% C.L. 

• 2 parameter,  Δ(2LLH)=2.3 for 68.3% C.L.

ln(Likelihood) and 2*LLH 
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• One Parameter cont.   

• The formula applies for non-
Gaussian case, i.e.  change 
variables to g(θ) which 
produces a Gaussian 
distribution.  L is invariant under 
parameter transformation.  

• If the Likelihood function is 
asymmetric, as happens for 
small sample size, then an 
asymmetric interval about the 
most likely value may result.

Variance of Estimators - Graphical 
Method

7

⌧̂ = 1.062
�⌧̂� = 0.137

�⌧̂+ = 0.165
�̂⌧̂ ⇡ �⌧̂� ⇡ �⌧̂+ ⇡ 0.15

exponential

sample size 50
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• Consider an example from scattering with an 
angular distribution given by 

• if                          then the PDF needs to be 
normalized: 

• Take the specific example where  𝝰=0.5 and 
𝝱=0.5 for 2000 points of -0.95 ≤ x ≤ 0.95 

• The maximum may be found numerically, 
giving: 

• The statistical errors can be estimated by 
numerically solving the 2nd derivative (shown 
here for completeness)

Variance of Estimators - Graphical 
Method
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• Before we use the LLH values to determine the 
uncertainties for 𝝰 and 𝝱, let’s do it via Monte Carlo first 

• Similar to the exercises 2-3 from Lecture 4, the theoretical 
prediction: 

• For 𝝰=0.5 and 𝝱=0.5, generate 2000 Monte Carlo data points using 
the above function transformed into a PDF over the range -0.95 ≤ x 
≤ 0.95 

• Remember to normalize the function properly to convert it to a 
proper PDF 

• Fit the MLE parameters     and    using a minimizer/maximizer 

• Repeat 100 to 500 times plotting the distributions of     and     as 
well as     vs.

Exercise #1
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• Shown are 500 Monte Carlo pseudo-
experiments 

• The estimates average to approximately 
the true values, the variances are close to 
initial estimates from slide 8 and the 
marginal pdfs are approximately Gaussian.

Exercise #1
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• After finding the best-fit values via ln(likelihood) 
maximization/minimization from data, one of THE best and 
most robust calculations for the parameter uncertainties is 
to run numerous pseudo-experiments using the best-fit 
values for the Monte Carlo ‘true’ values and find out the 
spread in pseudo-experiment best fit values 

• MLEs don’t have to be gaussian, i.e. uncertainty is accurate even if 
the Central Limit Theorem is invalid for your data/parameters 

• Monte Carlo plus fitting routine will take care of many parameter 
correlations 

• The problem is that it can be slow and gets exponentially slower with 
each dimension

Comments
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• The LLH maximization/minimization will give the best 
parameters and often the uncertainty on those parameters. 
But, likelihood fits do not tell whether the data and the 
prediction agree. 

• Remember that the likelihood has a form (PDF) that is provided by 
you and may not be correct. 

• The physics PDF may be okay, but there may be some systematic 
that is unknown or at least unaccounted for which creates 
disagreement between the data and the best-fit prediction. 

• Likelihood ratios between two hypotheses are a good way to 
exclude models, and we’ll cover hypothesis testing on Thursday.

Good?
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• Pearson’s Chi-square Test 

• A goodness of fit test that could be applied to a histogram of observed 
values, x, with N bins.   For the number of entries in bin i, ni, and the number 
of expected entries for the same bin, λi, the test statistic becomes: 

• If the data are Poisson distributed, and the number of entries is not too small 
in each bin (>5), then T follows a chi-square distribution of N degrees of 
freedom.  This is true regardless of the distribution of x, implying the chi-
square test is distribution free.  

• Even though finding the maximum likelihood estimator (MLE) 
best-fits are often done using an unbinned likelihood, it is often 
useful to use histograms to get a (reduced) chi-squared value as a 
goodness-of-fit parameter

Goodness-of-fit
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• Two Parameter Contours 

• For                 we can plot the contours of constant likelihood in the          plane. 

• For large n, lnL takes a quadratic form near the maximum: 

• There is often more than one maximum and if there is no clear peak over the 
others an additional experiment may be needed to identify which to consider. 

• To find the uncertainty we plot  the contour with                             and examine 
the projection of the contour on the two axes.  

Variance of Estimators - Graphical 
Method
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• Two Parameter Contours 

• Tangent lines to the contours 
give the standard deviations.   

• Angle of ellipse, ϕ, is related to 
the correlation:

Variance of Estimators - Graphical 
Method
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• Two Parameter Contour 

• When the correct, tangential, 
method is used then the 
uncertainties are not dependent 
on the correlation of the 
variables.   

• For a 2D Gaussian likelihood 
function, the probability to be in 
the error range is 0.683.   

• The probability the ellipses of 
constant                           
contains the true point,             , 
is:

Variance of Estimators - Graphical 
Method
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• Two Parameter Contour 

• If the likelihood function contours are very irregular so that a transformation to a 
2D Gaussian is not possible, or if the contour consists of more than one closed 
curve, it is usually better to show the likelihood function contour directly instead 
of quoting intervals.  

• For three or more parameters, larger samples are necessary to have the 
likelihood function to be Gaussian 

• A general max/min program will probably be necessary to find the estimate and 
the uncertainties (ie. MINUIT from CERNLIB, BRENT and POWELL from 
Numerical Recipes). 

• Example: Region for mean and variance in a normal distribution: 

• The joint maximum likelihood estimates of the mean and variance for the normal 
pdf are:   

Variance of Estimators - Graphical 
Method
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Best Result Plot?
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• Two Parameter Contour - with provided co-variance matrix 

• Example cont. 

• with covariance elements given by: 

•  The ellipse which gives a 95% joint likelihood region is: 

• Consider a gaussian sample with n=100, sample mean=1 and sample 
variance=1.  We want to find the ellipse or joint likelihood region.   Recall the 
region bounded by a parabola for 2 parameters for the equal tail probability:

Variance of Estimators - Graphical 
Method

19

c11 =
�2

n
c22 =

2�4

n

Q = (µ� µ̂)2
n

�̂2
+ (�2 � �̂2)2

n

2�̂4 Q = 2a) a = �ln(1� 0.95) = 2.996

p = 1/2(1�
p

0.95)



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Two Parameter Contour 

• The likelihood region 
(ellipse) and confidence 
region (intersected 
parabola) for the 95% CL. 

• Note the ellipse is 
smaller than the 
confidence region.   

• at n=100 one is not yet at 
the asymptotic limit (>500 
usually).  Thus, the 
likelihood region is an 
approximation of large n.

Variance of Estimators - Graphical 
Method
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• The LLH (or -2*LLH) landscape provides the necessary 
information to construct 2+ dimensional confidence 
intervals, provided the respective MLEs are gaussian or 
well-approximated as gaussian 

• Some minimization programs will return the uncertainty on 
the parameter(s) after finding the best-fit values 

• The .migrad() call in iminuit 

• It is possible to write your own code to do this as well

Variance/Uncertainty - Using LLH 
Values
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• Using the same function and 𝝰=0.5 and 𝝱=0.5 as Exercise 
#1, find the MLE values for a single Monte Carlo sample w/ 
2000 points 

• Plot the contours related to the 1σ, 2σ, and 3σ confidence 
regions 

• Remember that this function has 2 fit parameters  

• Because of different random number generators, your result is likely 
to vary from mine 

• Calculate a goodness-of-fit using a reduced chi-squared

Exercise #2
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Contours on Top of the LLH Space
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Just the Contours
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• 1D projections of the 2D contour in order to give the best-
fit values and their uncertainties

Real Data
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• There is a file posted on the class webpage for “Class 7” 
which has two columns of x numbers (not x and y, only x 
for 2 pseudo-experiments) correspond to x over the range 
-1 ≤ x ≤ 1 

• Using the function: 

• Find the best-fit for the unknown 𝝰 and 𝝱 

• Calculate the reduced chi-square goodness of fit by histogramming 
the data. The choice of bin width can be important. 
• Too narrow and there are not enough events in each bin for the statistical 

comparison.  

• Too wide and any difference between the ‘shape’ of the data and prediction 
histogram will be washed out, leaving the result uninformative and possibly 
misleading.

Exercise #3

26

f(x;↵,�) = 1 + ↵x+ �x

2



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Use a 3-dimensional function for 𝝰=0.5, 𝝱=0.5, and Ɣ=0.9 
generate 2000 Monte Carlo data points using the function 
transformed into a PDF over the range -1 ≤ x ≤ 1 

• Find the best-fit values and uncertainties on 𝝰, 𝝱, and Ɣ 

• Similar to exercise #1, show that Monte Carlo re-sampling 
produces similar uncertainties as the ΔLLH prescription for 
the 3D hyper-ellipse 

• In 3D, are 500 Monte Carlo pseudo-experiments enough? 

• Are 2000 Monte Carlo data points per pseudo-experiment enough? 

• Write a profiler to project the 2D contour onto 1D, properly

Extra
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• Use Markov Chain to get the likelihood minimum and then 
use the LLH (or -2*LLH) values to get the uncertainties. 

• Is the MCMC quicker to converge to the ‘best-fit’ than using your 
LLH minimizer? 

• The Markov Chain estimator (maximum a posteriori - MAP) has a 
precision on the variance of 𝒪(1/n) for n simulation points, i.e. you 
can’t get 99.9% interval without at least 1000 MCMC ‘steps’ after 
convergence. With a flat prior and using the 3-dimensional function 
the variance with an MCMC posterior distribution, do the best-fit 
values and uncertainties match what you get for the ΔLLH approach 

• Use the same 2000 data points for consistency from a single pseudo-experiment 

• Flat prior does not impact the 𝒪(1/n) variance, but just makes it easier to compare to 
the results already derived using the ΔLLH formulation for uncertainty

Extra Extra
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Extra
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• More than one parameter  

• For the case we estimate n parameters     .   The inverse minimum variance 
bound is given by the Fisher information matrix: 

• The information inequality state              is a positive semi-definite matrix with: 

• One will often find the inverse of the information matrix as an approximation 
for the covariance matrix, estimated using a matrix of 2nd derivatives at the 
maximum for the likelihood function L. 

• Two Parameters 

• For the 2D normal distribution, the consistent maximum likelihood estimators 
are:

Variance of Estimators - Graphical 
Method
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