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• General idea -  Particle Physics context 

• Given the measurement of an 
individual event one has a collection 
of numbers: 

• The set of measurements follow some 
n-dimensional PDF that depends on 
the type of event produced.  For 
each reaction we can consider a 
hypothesis for the PDF. Example: 

• We call H0 the null (background) 
hypothesis (the event type we want 
to reject) and H1 the alternate (signal) 
hypothesis.

Statistical Tests - General Idea
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~x = (x1, ..., xn)
x1 = number of muons x2 = number of jets ...

f(~x|H0), f(~x|H1), ...
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• Hence, rather than estimating an unknown parameter, the results of an experiment 
may be used to determine if a given theoretical model is acceptable given the 
observations.  For example, suppose a model estimates the lifetime of a nucleus.   
Is a set of data compatible with the model: 

• The above is an example of a parametric test.  Typically a hypothesis can not be 
proven true or false but you can determine the probability for obtaining the 
observed result if you assume the hypothesis is true. 

• Hypothesis testing is also a part of data analysis when, for example you decide if a 
specific observed event is signal or background.  Suppose you have a data sample 
with two kinds of events that correspond to the null and alternate hypotheses and 
you want to select those that are of the type corresponding to the alternate 
hypothesis.  Then each event is a point in the space and we define a decision 
boundary of where to accept/reject events belonging to each of the event types.

Statistical Tests - General Idea
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H0 : ⌧ = ⌧0

H1 : ⌧ 6= ⌧0
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• Event Selection 

• selection cuts for events, e.g. 

• We would like to optimize this 
process...

Statistical Tests
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xi < cixj < cj

*G. Cowan
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• The decision boundary 
can be defined using an 
equation of the form: 

• Each hypothesis will 
imply a given PDF for the 
test statistic, t: 

• Define:

Statistical Tests - Decision Boundary
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t(x1, ..., xn) = tcut

g(t;H0) : PDF for t under H0 true

g(t;H1) : PDF for t under H1 true

t > tcut Critical Region

t < tcut Acceptance Region

tcut Decision Boundary
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• The decision boundary defines 
a test.  If the data falls into the 
critical region then we reject 
the null hypothesis. 

• Define the error of the first 
kind as α as a probability to 
reject the null hypothesis if the 
null hypothesis is true: 

• The statistical significance of 
rejection is given by the p-
value

Statistical Tests - Decision Boundary 
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↵ =
Z 1

tcut

g(t;H0)dt

α
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• A p-value is the probability under the assumption of a 
specific model or hypothesis, generally H0, of observing a 
test-statistic as compatible to, or less compatible with, the 
observed data. 
• A test-statistic (qμ) reflects the level of agreement between the data 

and the hypothesized value of μ 

• The test-statistic is generally constructed such that higher values 
represent increasing incompatibility of the model (H0) with the data.

P-Value
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pµ =

Z 1

qµ,obs

f(qµ|µ)dqµ

qμ is the test statistic 
for a hypothesized 

value of μ, and “qμ,obs” 
is the TS value from 
the observed data
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• For the instance where k=12, gaussian mean=500 and σ=61 
we’ve got some some issues

Even More Extreme
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Likelihood k=12

Prior

• The bayesian posterior 
best estimate is ~409, 
but the best likelihood 
estimate is ~125. 

• According to the 
likelihood PDF, how 
likely is it to have a value 
≥ 409? 

• (hint integrate the tail of 
the likelihood distribution 
≥ 409)

From Bayes Lecture
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• There is a file posted on the class webpage for “Class 7” 
which has two columns of x numbers (not x and y, only x 
for 2 pseudo-experiments) corresponding to x over the 
range -1 ≤ x ≤ 1 

• Using the function: 

• Find the best-fit for the unknown 𝝰 and 𝝱 

• Calculate the reduced chi-square goodness of fit by histogramming 
the data. The choice of bin width can be important. 
• Too narrow and there are not enough events in each bin for the statistical 

comparison.  

• Too wide and any difference between the ‘shape’ of the data and prediction 
histogram will be washed out, leaving the result uninformative and possibly 
misleading.

Exercise #3 From Previous Lecture
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f(x;↵,�) = 1 + ↵x+ �x

2
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• Histograms: the x-values of the two pseudo-experiments, 
the expectation from PDF using the best-fit values and the 
true values (which only I knew because I generated the 
data)

Previous Lecture Exercise
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x
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60
data - first column

data - second column

=0.51β=0.37 αPDF (fit) 

=0.60β=0.40 αPDF (true) 

=0.82β=1.40 αPDF (fit) 
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• In the last exercise I wrote to “Calculate the reduced chi-
square goodness of fit by histogramming the data”, but it 
may be more informative to calculate the p-value 
• Visually, the previous plot of the x data from the first and second 

column look to agree with the PDF using their best-fit values of 𝝰 
and 𝝱 returned by the LLH minimization 

• The actual PDF for the data in the second column was:

Follow-up on Exercise
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data 1: 
Power_divergenceResult(statistic=85.309866511741376, 
pvalue=0.79594451772149344) 
data 2: 
Power_divergenceResult(statistic=109.03531742268692, 
pvalue=0.18993322529688181)

f2(x) / 1 + ↵x+ �x

2 � �x

5

(↵ = 0.4,� = 0.6, � = 0.9)



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Someone asked “For repetitions, what should a 
distribution of p-values look like?”, and I didn’t know 
• There are proofs that when the hypothesis is correct, the distribution 

of p-values is uniform from 0-1, i.e. flat 

• I wanted to check ‘uniformity’ using the same PDF as before, but 
using the different values of 𝝰 and 𝝱 

• Because we have Monte Carlo capability, we can randomly 
sample from the ‘correct’ PDF, and use the 𝝌2 as the test-
statistic for the p-value calculations 
• By using Monte Carlo we are assured that the hypothesis we are 

comparing to the pseudo-experiments is correct

Funny Thing
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• For 800 pseudo-experiments (w/o any fitting), each having 
2000 points, one set of 𝝰 and 𝝱 values produce uniform p-
values while the other set does not.

Results - Odd

13

p-values
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=0.515]β=0.371 α [2χ

=0.823]β=1.396 α [2χ
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• First thoughts were to look at the underlying PDFs 
• The 𝝌2 test-statistic can be inaccurate in regions of low event rates 

• I increased the number of points in each pseudo-experiment by a 
factor of 4 to 5… but there was no change.

Debugging
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• I stopped trying to be clever and just brute force plotted 
things 
• I plotted the x values for 800 pseudo-experiments, each w/ 10k 

points and also the underlying PDF 

• For 𝝰=1.396 and 𝝱=0.823 they didn’t match at x values of 0.8-1.0

Clue
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x
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

50

100

150

200

250

=0.823β=1.396 αPDF (fit) 

Only 1 of 800 
pseudo-experiments 

had an upward 
fluctuation for x from 

0.98 to 1.0. But, I 
expect ~1/2 of the 

pseudo-experiments 
to have an upward 

fluctuation.
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• So I went back to my PDF calculation and using 𝝰=1.396 
and 𝝱=0.823 for: 

• What’s so special about x≈0.8? 
• Well, f( x=0.8; 𝝰=1.396, 𝝱=0.823)=1.039 

• The distribution is normalized to 1, but the instantaneous 
‘probability’ goes above 1 in the range of ~0.8-1. 

• My accept/reject method of sampling the PDF goes from -1 to 1 in x, 
but only 0 to 1 in ‘y’.

Solution
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f(x;↵,�) =
1 + ↵x + �x

2

2 + 2�/3

            x    = random.uniform(-1, 1) 
            y    = random.uniform(0, 1)
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• Changing the bounds on my accept/reject sampling fixes the problem 

• This was a silent failure mode, which can be incredibly difficult to 
debug. Be thankful when your code crashes, because then it’s obvious.

Fixed

17

p-values
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35
=0.515]β=0.371 α [2χ

=0.823]β=1.396 α [2χ



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• The decision boundary defines 
a test.  If the data falls into the 
critical region then we reject 
the null hypothesis. 

• Define the error of the first 
kind as α as a probability to 
reject the null hypothesis if the 
null hypothesis is true: 

• The statistical significance of 
rejection is given by the p-
value

Statistical Tests - Decision Boundary 
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↵ =
Z 1

tcut

g(t;H0)dt

α
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• Consider now the alternate 
hypothesis.    

• Define the error of the second 
kind as β as a probability to 
accept the null hypothesis but the 
true hypothesis was not the null 
but the alternate hypothesis. 

• The power of the test, probability 
of rejecting the null hypothesis 
when it is false, is (1-β).   

• A more powerful test leads to: (1-
β) = max.  Aim for α and β small 
as possible.

Statistical Tests - Decision Boundary
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β

� =
Z tcut

�1
g(t;H1)dt
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• The probability to reject a 
background hypothesis for 
background events is called the 
background efficiency: 

• The probability to accept a signal 
event as signal is the signal 
efficiency:

Statistical Tests - Signal & 
Background
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✏b =
Z 1

tcut

g(t; b)dt = ↵

✏s =
Z 1

tcut

g(t; s)dt = 1� �

g(t; b)

g(t;s)
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• Constructing the Test Statistic 

• Keep in mind the goal is to choose a test’s critical region in an optimal way.  

• The Neyman-Pearson lemma states: 

• We can demonstrate this method by choosing a critical value for x and both 
the null and alternate hypotheses are simple (only two possible values): 

• To maximize the power the take the region of 1-β, and define the set of 
points according to the above condition.   Note that k is determined from α.   

Statistical Tests - Test-Statistic
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To obtain the highest power for a given significance level in a 
test of the null/background hypothesis versus the alternate/

signal hypothesis, choose the critical region such that:

f(x|✓1)
f(x|✓0)

> k

↵ =
Z

R
f(x|✓0)dx

1� � =
Z

R
f(x|✓1)dx =

Z

R

f(x|✓1)
f(x|✓0)

f(x|✓0)dx

inside the region
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• Likelihood Ratio Test 

• A test based on the Neyman-Pearson acceptance region for the vector of 
test statistics, t, is a test using an one dimensional statistic given by the ratio: 

• This is known as the likelihood ratio with an acceptance region r > k.    The 
best test statistic, in terms of maximum power, for a given significance level 
is given by the Likelihood Ratio.     

• If r is approximately one, then it is likely the null hypothesis is true and if 
approximately 0 then it is unlikely the hypothesis is true.   

• For a large sample, one can use the asymptotic behavior for likelihood ratios 
such that if the null hypothesis imposes n constraints then  -2ln(r) is 
distributed as a chi-square with n degrees of freedom. 

• The PDFs are often determined by Monte Carlo simulation or calibration 
data (independent samples). 

Statistical Tests - Likelihood Ratio
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r =
g(t;H0)
g(t;H1)
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• An very common test-statistic for the likelihood ratio is: 

• Where the difference between the null hypothesis in the numerator 
and the alternative hypothesis in the denominator is that the null 
hypothesis has a fixed value of one (or more) of the θ parameters 
whereas the alternative hypothesis fits/maximizes the parameter. 

• The null hypothesis is named as such because it often has a 
parameter set to zero 

• For a normal distributed, i.e. gaussian, variable the ratio 
follows the 𝜒2 distribution, 
• NDOF = difference in dimensionality between the models 

• Also requires that Wilk’s Theorem is satisfied (more later)

Maximum Likelihood Ratio
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⇤(✓, x
obs

) = �2 ln
L(✓0|xobs

)

L(✓̂|x
obs

)
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• From the file posted on the class webpage for “Class 8”, 
use the ln-likelihood ratio and calculate the p-value of each 
data set using for -1 ≤ x ≤ 1: 

• The null hypothesis is the PDF from  

• The alternative hypothesis is 

• These hypotheses satisfy Wilk’s Theorem

Exercise #1
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f(x;↵,�) = 1 + ↵x+ �x

2

f(x;↵,�, �) = 1 + ↵x+ �x

2 � �x

5

(1) LLH h0:  -13303.0826723 
(1) LLH hA:  -13302.6439327 
(1) -2 delta LLH = 0.877479 
(1) p-value:  0.348893047268 

(2) LLH h0:  -13627.6308383 
(2) LLH hA:  -13468.658848 
(2) -2 delta LLH = 317.943981 
(2) p-value:  0.0
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• Used for 1 or 2 parameters when the ML estimate and variance cannot be found 
analytically.   Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term is used for information inequality. 

• For 1 parameter:   

• plot lnL as function of the θ and read off the value of      at the position 
where L is largest.  Sometimes there is more than one peak — take the 
highest. 

• Uncertainty deduced from positions where lnL is reduced by an amount 
1/2.  For a Gaussian Likelihood function:

Variance of Estimators - Graphical 
Method
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✓̂

lnL(✓) = lnL(✓̂) + (
@ lnL

@✓
)✓=✓̂(✓ � ✓̂) +

1
2!

(
@2 lnL

@✓2
)✓=✓̂(✓ � ✓̂)2 + ...

lnL(✓̂ ± �̂
✓̂

) = lnL
max

� 1

2

lnL(✓) = lnL
max

� (✓ � ✓̂)2

2�̂2
✓̂

lnL(✓̂ ±N �̂
✓̂

) = lnL
max

� N2

2
or

For N standard 
deviations

From last Lecture
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• The expression we derived earlier can be rewritten as a 
ratio of likelihood and ln-likelihoods that are 𝜒2 distributed: 

• But there are regions where the gaussian, and therefore 
Wilk’s and our use of 𝜒2, breaks down 

• Low number of events where the probability switches from gaussian 
to poisson 

• Bounds on the model parameters, e.g. as n→infinity the parameter 
does not smoothly vary, but has some truncation or discrete behavior 

• Parameters that have a near-infinite variance

Wilk’s Theorem… Kinda
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lnL(✓) = lnL
max

� (✓ � ✓̂)2

2�̂2
✓̂

⇤(✓, x
obs

) = �2 ln
L(✓0|xobs

)

L(✓̂|x
obs

)
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• The tests so far have been within the realm of Monte Carlo 
perfection and do not include any systematic uncertainties 
that are found in real experiments. In practice, i.e. when 
including systematics, 𝜒2 and p-values and other tests tend 
to give better agreement between data and hypothesis/
simulation/fits than what is expected. 

• Systematic uncertainties are almost always conservative, i.e. too big 

• Fitting procedures try to make the model/simulation/etc. look like 
the data as best as possible (maximum likelihood) 

• Fitting procedures will use systematic parameters to ‘damp’ 
statistical under- and over-fluctuations

Real World Application

27
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• Hypothesis testing is good 

• Take time to go back through previous class exercises if 
you have not already 

• Find journal article for the oral presentation 

• Nice link about quickly interpreting distributions of p-
values 
• http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

Conclusion
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