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Brief recap

- slides adapted from R. Barlow



Confidence intervals

e Important part of the statistical reporting of results

* Especially relevant for results which are basically null
results.

 E.g. upper limits on the branching ratio (BR) of a particle

decaying in a certain way, testing for new physics:
BR < 102°@ 90% CL

 Where we have a trade-off between statistical power and

size of the interval, e.g.
BR < 10" @ 95% CL
BR < 102" @ 90% CL



What is “@ 90% CL"?

* |t is not stating "the probabillity that the result is
true”

* Confidence levels are not probabilities for results

* However, they are strongly linked to probabilities,

so let us take a slight detour
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Probability

* The probability of an event to occur is equal to the fraction of
experiments where the event occurs compared to all
experiments (ensemble), in the limit of a large number of

experiments N
. event
P(event) = lim
N —inf N

e Examples

e Coin toss: P(tail) = 50%

ensemble

* Jau decay: P(T to pvyvy) = 17.4%



Depends on ensemple

The probability is dependent on the event AND the ensemble

Example: ‘Nordic study shows that men above 50 with a well-payed job have a
1% risk of getting skin cancer

S0 a 50-year old danish male has a 99% chance of reaching 51 without getting
cancer? No

It all depends on the ensemble you choose
e Danish males in the study,
e Danish males

Nordic males

Male sunbather champions
o etc...

Each give a different probability. All values will be valid (if done correctly!)



Probabilities are dependable
quantities.. right”

e The probability of the tau lepton decaying to a muon (T to
UVuve) 1S 17.4%.

(/ looked that up in the Particle Data Group (PDG) booklet,
So it must be true...)

Though in a given analysis that select muons, the fraction
of tau leptons that decay to muons might be >17.4%

It a given analysis is trying to reject muons, the probability
might be < 17.4%

It depends on the ensemble! So does the result in the
PDG!



Caveat: When there i1s no
ensemble

Consider the statement:

‘It s likely to be cloudy tomorrow”
or even
“There is a 90% probability for cloudy
weather tomorrow”

There is only one tomorrow. There is no ensemble!
So P(clouds) is either O/1=0 or 1/1=1

Strict frequentists will not be able to arrive at such a
statement (could be done with a Bayesian approach)



Getting around the caveat

* Frequentist can instead compile an ensemble of
statements, and determine that some of them are true:

The statement ‘[t will be cloudy tomorrow has a 90%
probability of being true

* Translates to defining
P(clouds) = P('It will be cloudy tomorrow’is true)

e \Where In this case
P(clouds) = 90%



Still, ensembles matter

* P(cloudy) = 90% can be true at the same time as
P(cloudy) = 50% is true

* P(cloudy) = 90% can be true at the same time as
P(sun) = 90% is true

* Depending on the ensembles used in the individual
studies used to claim those probabilities!



M. = 1776.82 +/- 0.16 MeV
(at 68% CL)

* 68% of all tau particles have a mass between
1776.66 and 1776.98 MeV? WRONG

* [he probability of tau-mass being in the range
1776.66-1776.98 MeV is 68%7? WRONG

* [he tau-mass has be measured to be 1//6.82
using a technique which give it a 68% probability of
being within 0.16 MeV of the true result?” CORRECT



m: = 1776.82 +/- 0.16 MeV
(at 68% CL)

e Said differently: The statement “the tau-mass is in
the range 1776.66-1776.98 MeV"™ has a 68%
orobability of being true.

e \We add the information about the confidence limit
to illustrate this: mt = 1776.82 +/- 0.16 MeV at 68%
confidence level (CL)



Confidence intervals

e |f the experiment is repeated many times, we would get
different intervals (ensemble of statements).

* They would be true 68% of the cases, as they would
bracket the true value in 68% of the cases.
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Confidence/significance

e Confidence level, CL = 1-a

e Significance q, is used when talking the language of hypothesis testing
A 95% CL result might be stated inversely, e.Q.

* 'The medicine was effectively reducing the risk at the 5% level

= |f the medicine does nothing, the probability of getting an
improvement this size (or better) is 5% (or less)

* Hypothesis testing: Given an observation/measurement the
corresponding probability is called the p-value, and the null hypothesis

s rejected if p-value < a

 We use this exact approach to construct the intervals



Construction of classic
frequentist intervals

- also known as the Neyman construction



Confidence interval
- kKnown true value

* The frequentist approach can give a statement about the
probability of observing a specific value of a parameter given
the probability density function (PDF).

* Use the expression for the PDF to calculate the probability of
getting n within the interval [a,b] for a parameter value of 6:

P(n € |a,bl||0) = P(n|0)



Intervals, Intervals, intervals

* You decide which intervals you want to do, though a
connected two- or one-sided interval iIs normally used

e All shaded intervals below hold 68% of all possible outcomes
of a Gaussian PDF, with mean = 150 and variance = 150

probability
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Determine the underlying
parameter

 \When you know the parameters of a process you can
predict the distribution of outcomes

Hypothesis -> Data (Experiment)

 However, we are often in the situation where we want to
infer an estimate of a parameter from data

Data -> Hypothesis (Statistics)

e That is the real power of confidence intervals (both for
frequentist or Bayesian approaches)



Hypothesis rejection

An observation of a parameter value that lies outside the 90%
confidence interval given a hypothesis (true value) will be

rejected at a 90% CL

However, most often we do not 0.035
know the true value of the parameter i3]
't could have a different value than 0.0251
. . >
we assumed in our hypothesis = 0.020
§ 0.015
o .
Hence we should look at other S
hypotheses. 0.010}
0.005
0.000

Observation
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Hypothesis rejection

 Each hypothesis will have an interval within which an
observation will confirm (or 'accept’) the hypothesis

* For multiple possible true values of the parameter, these
‘acceptance intervals’ can be 0.040

determined 0.035
0.030F

y
o
o
N
Ul

 Example figure: 90% central
interval for a few true values
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Acceptance belt

e This produce a band (‘acceptance belt’) that connects the
observed value of the parameter to the true value with the
correct frequentist interpretation

50

 [For a given observation, the
interval on the true parameter can
be determined at a given CL

1N
o

W
o

* By construction, this method gives
confidence intervals which contain
the true value with an exact known
probability. 10
(90% in the example to the right)

observed value

N
o

10 20 30 40 50
true value



probability

Acceptance belt

Similarly can we produce the acceptance belt for a
90% upper limit
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Exercise 1

 Assume a measurement of 6, that is distributed with a
(Gaussian from the true value B¢ With variance equal to one.
Do the following:

1. Plot the 68% central imit acceptance belt for values of Biye
between zero and ten, analytically or numerically (steps of 0.1)

2. From the plot, determine the 68% central limit on Byye resulting
from an observation of Byps = 8.

3. Extra: Repeat the exercise with a 68% upper and lower [imit.
Repeat at a 90% CL and 95% CL and compare the value of
Bobs required to set a lower limit above 0



Exercise 1

* Resulting limits on n

central




Complications for classic
frequentist intervals



Complication:
Discrete observations

It we use e.g. the poisson formula as a PDF, we can only
count integer values (even though 6 can be non-integer)

0"

n!

To make a 68% lower [imit: p(n|9) — e
* |Include 0,1,2,3,4 to get 57.0%

* Include 0,1,2,3,4,5 to get 73.6%
0 1.4 %
Be conservative and include 5, even though it 1 5.8 %
corresponds to too much’ probability 2 12.5 %
3 18.0 %
Actually, the probability of getting something 4 19.3 %
above 5 Is less than the 32% originally intended| 5 16.6 %
o 11.9 %




Complication:
Discrete observations

* For both a poisson with 8 = 4.3 and 6 = 4.5, the
same 5 values of n would have to be included In
the 68% lower [imit

I 68% Lower

* This will be the case over a range
of values of 8, so the confidence
belt will change in steps

observed value
O = N W &~ U1 O
| | | | | |

* Multiple true values will cover the
same range of observed values

-

1 2 3 4 5
true value



Coverage

* A frequentist test may have a coverage greater
than the confidence level = over-coverage

* Though it should never undercover (by
construction)

* |t it undercovers, the analyser did something
wrong!



Complication:
Discrete observations

 Use smallest true value of 6 for upper limit and largest
true value for lower (which correspond to the correct CL)

8 I I I I | I I I
68% central |
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report the
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T

observed value
w b
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other points
will overcover

“ﬁ'T’
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1 2 3 4 5 6 7 8
true value

o



Exercise 2

e Same as exercise 1, produce a 90% central limit
acceptance band assuming a poisson PDF,
between true values of O and 15 in steps of 0.1 or
less.

 Assume you measure n = 8 events, which
confidence interval do you report?

 Extra: Determine the coverage across numerous
values of 6




Exercise 2

e Results

central




Upper [Imits

Consider the case of observing Nops events

We assume poisson uncertainty on the number of
observed events given a true number of events n

The number of events are expected to be small, so
after our observation we will be reporting a 90%
upper limit on n.

Example, if zero events are observed (nops =0), a
90% upper limit of 2.3 can be set.



The hunt for discoveries

* |t the signal s is expected to be small, it would be
sensational it the number of observed events is

significantly above O

e |n that case we could be inclined to calculate a
central limit instead, to illustrate a discovery

e SO depending on the number of observed events
we Will quote either an upper limit or a central [imit



Complication:
Choosing strategy later

e Assume gaussian PDF with o = 1, with the strategy of
changing from 90% upper limits to 90% central limit if the
observation is 3o away from O (flip-flop)

10

[ 90% upper limit
0 90% central limit

observed value

Change strategy

0 2 4 6 8 10
true value



Complication:
Choosing strategy later

 Assume gaussian PDF with o = 1, with the strategy of
changing from 90% upper limits to 90% central limit if the
observation is 3o away from O (flip-flop)
10 . .

B flip-flop limit

observed value

Change strategy

0 2 4 6 8 10
true value



Complication:
Choosing strategy later

* Problem: Part of the range only has 85% coverage,

not the 90% that we designed the method for

10

B flip-flop limit

Only 85%!




Complication:
Choosing strategy later”? No!

* |n order tor the coverage to be meaningful, the type
of l[imit must be decided ahead of time

* Only way to get around the issue: Stick to the ideal
approach:

1. Choose strategy (upper/lower or central limit)
2. Examine data

3. Quote result



Signal+backgrouno

Consider the case of measuring a number of events
N = Ns+Np

With ns and np corresponding to the number of signal
and background events, respectively

Both signal and background are given by gaussian
distributions with mean s and b, and variance equal to
one

The signal is expected to be small, so after our
observation we will be reporting a 90% upper limit on s.



Complication:
Constrained parameters

Since we are counting events, the number cannot be
negative

Assume the background mean is known, b =7

For nops = 4 we can determine that N = s+b ~5.3 (at
90% CL)

Hence we can conclude that s < -1.7 (at 90% CL)

Or can we”? The number of events should be zero or
above



Complication:
Constrained parameters

Do we claim s < -1.7 (at 90% CL)?

Answer: The interval will only cover the right result
90% of the time, this is one of those 10%-cases

Answer: We should publish this result to avoid
biasing the reported numbers

Answer: This is clearly unphysical, we can not
oublish a result based on a broken approach, we
should use a statistical method that fixes this



Feldman-Cousins
Methoa

- also known as the “Unified Approach” (mainly by G.
Feldman and R. Cousins)

See paper: G J Feldman and R D Cousins, Unified approach to the classical

statistical analysis of small signals, Phys Rev D, 1998 vol. 57 (7) pp. 3873-3889.


http://link.aps.org/doi/10.1103/PhysRevD.57.3873

Approach
* Introduce ranking principle based on the following likelihood ratio,
K:
or ran L(n‘@)
R(n) =
L (TL ‘ ebest)

« With the likelihood value of observing n given a true value 6, or the
best fit value of the parameter Bpest given the dataset and any
constraints on 6

o Completely rethink the construction of acceptance intervals for the
acceptance belt: For a given true value 8, include values of n to the
interval from highest rank R(n) to lower, until the desired confidence
IS reached



Approach

* Determine the PDF for your hypothesis, which will provide the
ikelihood used

e For each true value 6:
1. Determine for all possible outcomes n:
A. The value Bpest that maximises the likelinood L
B. Calculate the rank R(n)
2. Construct the acceptance interval by including the values

of n, that has the highest rank R(n) to lower until the
desired confidence is reached



Approach - Example

* Assume a Poisson measurement, so L(n|B) =
Poisson(n|6)

 For a Poisson the ML estimator is Bpest = N

1. We determine the acceptance interval for one true
value (e.g. 6 = 1)

2. Repeat 1. for multiple values of 6



Approach - Example

e Assume a Poisson measurement with true value 8 = 1

* ‘rank’ Indicates in which order the values of n are included for a
90% Interval

P(nl6=1) Obest P(nlBpest) R(n)
0 0.368 0 1 0.368 3
1 0.368 1 0.368 1 1

0.271 0.680 2
0.224 0.274
0.195 0.079
0.175 0.017

2 0.184
3 0.061
4 0.015
5 0.003

O B~ W N



Example: Constrained
(Gaussian

Consider again the case of measuring a number of
events
N = Ns+Np

Where again both the signal and background are given
by Gaussian distributions with mean s and b, and
variance equal to one

Assume the background mean is known, b = 3

SO If we observe n = 1, which effectively corresponds to
Ns=N-b=-2



Example: Constrained

(Gaussian

However, when determining the 90% contidence interval on s, we

have to require that, s > 0

SO we incorporate this in the definition of Spest:

n—b 1tn>>b
Sbest — .
ost 0 otherwise

And use that when we calculate R(s)

For each signal true value the acceptance interval [Q,B] is
determined such that

90% = /B P(n|s) and R(a)=

8



Example:
Constrained Gaussian

Shown is the 90% confidence belt when applying the FC for a known
background of b = 3

It automatically transitions between
an upper limit and a central limit

Decides for you whether an upper
limit or central limit is appropriate
to quote based on the observation

If we observe n = ng+n, = 2 the
measured number of signal events
s effectively ng =-

observed value

The corresponding 90% interval
s then s < 0.81 (at 90% CL)

true value



Argument against (0)

 Argument: It iIs more cumbersome to implement!

* Yes. But, if your problem does not ofter any other
way around you will have to use it

* Just because it is right, does not mean that it Is
easy



Argument against (1)

 Argument: Takes power away from analysers!

* Yes. But that exactly why this method should be
used. Such that your results are statistically sound
(if applied correctly!)

* You are welcome to choose the CL, but once
chosen, this method invalidates the conventional
approach of having to make a choice



Experiment 1 (spent time/money removing backgrounds):
¢ b — O, nobs — 1
e Feldman-Cousins Iimit: s < 2.44 (at 90% CL)

Experiment 2 (less optimised):
* b=10, nobS=1
e Feldman-Cousins Iimit: s < 0.75 (at 90% CL)

Argument: This is unfair to the hardworking group!

But experiment 2 needs to get extremely lucky to get zero
events, and lucky experiments will always quote better limits
(though averaging out luck, experiment 1 will be better off)



Exercise 3

 For a measurement of n which is distributed by a
Poisson distribution from the true value ns.

1. Determine Feldman-Cousins 90 % acceptance belt

2. Suppose you observe n = 10 events what is the
90% confidence interval on ns, what it you observe
n=17

3. Compare to the central limit using the Neyman
method



Exercise 3 - extra

e Similarly to the previous exercise, now assume there is a known background
component. So we have a Poisson measurement of

n = ng + N,, with a known background of n, = 4
* Include the constraint: N et = 0 for N < 0
1. Determine Feldman-Cousins 90 % acceptance belt

2. Suppose you observe n = 10 events what is the 90% confidence interval on n,
what if you observe n = 17

3. Compare to the central limit using the Neyman method
4. Extra: Determine the coverage across the considered values of n

5. Extra Extra: Do the calculations for 68% and 95% and various values of n . .




Exercise 3

B 90% Feldman-Cousins

observed value

O | | | | | | |
0 2 4 6 8 10 12 14

true value




