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• Now would be a good to time to make sure you have: 

• Selected a topic 

• Selected a paper 

• Done some work on preparing the presentation and/or report

Oral Presentation and Report
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• Recap in 1D 

• Extension to 2D 

• Likelihoods 

• Contours 

• Uncertainties 

• This lecture is likely to extend beyond today; if we don’t 
get through everything today, we’ll use a portion of 
Thursday morning to finish it.

Outline 
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*Some material from T. Petersen, D. R. Grant, and G. Cowan 
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Confidence intervals
“Confidence intervals consist of a range of values (interval)
that act as good estimates of the unknown population parameter.”

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a
Gaussian distribution can be constructed as:
(z denotes the number of sigmas wanted)
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• -

Confidence intervals
Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true

parameter fall inside the interval:

Often, C is in terms of σ or percent 50%, 90%, 95%, and 99%

There is a choice as follows:
1. Require symmetric interval (x+ and x- are equidistant from μ).

2. Require the shortest interval (x+ to x- is a minimum).
3. Require a central interval (integral from x- to μ is the same as from μ to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.

Prob(x�  x  x+) =

Z x+

x�

P (x)dx = C
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• Confidence intervals are often denoted as C.L. or 
“Confidence Limits/Levels” 

• Central limits are different than upper/lower limits

Confidence Intervals
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• Used for 1 or 2 parameters when the maximum likelihood estimate and variance 
cannot be found analytically. Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term can used for information inequality 
(not covered here) 

• For 1 parameter:   

• Minimize, or scan, as a function of  to get   

• Uncertainty deduced from positions where lnL is reduced by 0.5.  For a 

Gaussian likelihood function w/ 1 fit parameter:

θ ̂θ

Variance of Estimators - Gaussian 
Estimators
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lnL(✓) = lnL(✓̂) + (
@ lnL

@✓
)✓=✓̂(✓ � ✓̂) +

1
2!

(
@2 lnL

@✓2
)✓=✓̂(✓ � ✓̂)2 + ...

lnL(✓̂ ± �̂✓̂) = lnLmax � 1

2

lnL(✓) = lnLmax � (✓ � ✓̂)2

2�̂2
✓̂

lnL(✓̂ ±N �̂✓̂) = lnLmax � N2

2
or For N standard 

deviations
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• Used for 1 or 2 parameters when the maximum likelihood estimate and variance 
cannot be found analytically. Expand lnL about its maximum via a Taylor series: 

• First term is lnLmax, 2nd term is zero, third term can used for information inequality 
(not covered here) 

• For 1 parameter:   

• Minimize, or scan, as a function of  to get   

• Uncertainty deduced from positions where lnL is reduced by 0.5.  For a 

Gaussian likelihood function w/ 1 fit parameter:

θ ̂θ

Variance of Estimators - Gaussian 
Estimators
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lnL(✓) = lnL(✓̂) + (
@ lnL

@✓
)✓=✓̂(✓ � ✓̂) +

1
2!

(
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For more information, see “Variance of ML Estimators” sections 
from “Statistical Data Analysis” (https://www.sherrytowers.com/

cowan_statistical_data_analysis.pdf) 

https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
https://www.sherrytowers.com/cowan_statistical_data_analysis.pdf
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• A change of 1 standard deviation (σ) in the maximum 
likelihood estimator (MLE) of the parameter θ leads to a 
change in the ln(likelihood) value of 0.5 for a gaussian 
distributed estimator 
• Even for a non-gaussian MLE, the 1σ regiona defined as LLH-1/2 can 

be an okay approximation 

• Because the regionsa defined with ΔLLH=1/2 are consistent with 
common 𝜒2  distributions multiplied by 1/2, we often calculate the 
likelihoods as (-)2*LLH 

• Translates to >1 fit parameters too, with the appropriate 
change in 2*LLH confidence values 

• 1 fit parameter,  Δ(2LLH)=1 for 68.3% C.L. 

• 2 fit parameter,  Δ(2LLH)=2.3 for 68.3% C.L.

ln(Likelihood) and 2*LLH 
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afor a distribution w/ 1 fit parameter 
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• First, we find the best-fit 
estimate of τ via our LLH 
minimization to get  

• Provides LLH( )=-53.0 

• We could scan to get , 
but it won’t be as precise or 
fast as a minimizer algorithm 

• We only have 1 fit parameter, 
so from slide 7 we know that 
values of  which cross 
LLH( )-0.5 are the 1σ 
ranges, i.e. when the LLH 
equals -53.5

̂τbest

̂τbest

̂τbest

̂τ
̂τbest

Variance of Estimator
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⌧̂ = 1.062
�⌧̂� = 0.137

�⌧̂+ = 0.165
�̂⌧̂ ⇡ �⌧̂� ⇡ �⌧̂+ ⇡ 0.15

exponential

sample size 50

f(t; ⌧) =
1

⌧
e�t/⌧

Likelihood is from Lecture 3 and is 
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• Central limits are often 
reported as  or            
if the error bars are asymmetric 

• What happens when upper or 
lower range away from the 
best-fit value(s) does not have 
the right coverage? E.g. for 
68% coverage, the lower 17% 
of the distribution includes the 
best fit point.  

• Quote the best-fit estimator of θ 
and the limit ranges separately. 
“Best fit is θ=0.21 and the 90% 
central confidence region is 
0.17-0.77”

̂θ ± σθ
̂θ+σ1
−σ2

Reporting Very Asymmetric Central 
Limits
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g(
✓̂,
✓)
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• Before we use the LLH values to determine the uncertainties 
for α and β, let’s do it via Monte Carlo first 

• Similar to the exercises 2-3 from Lecture 3,  we will use the 
theoretical prediction: 

• For α=0.5 and β=0.5, generate 2000 Monte Carlo data points using 
the above function transformed into a PDF over the range -0.95 ≤ x ≤ 
0.95 

• Remember to normalize the function properly to convert it to a 
proper PDF 

• Fit the MLE parameters  and  using a minimizer/maximizer 

• Repeat 100 to 500 times plotting the distributions of   and  (1-D 
histogram) as well as  versus  (2-D histogram or scatter plot)

α̂ ̂β
α̂ ̂β

α̂ ̂β

Exercise #1
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f(x;↵,�) = 1 + ↵x+ �x2
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• Shown are 500 Monte Carlo pseudo-experiments 

• The estimates average to approximately the true values, the variances 
are close to initial estimates from earlier slides and the estimator 
distributions are approximately Gaussian

Exercise #1
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• After finding the best-fit values via ln(likelihood) 
maximization/minimization from data, one of THE best and 
most robust calculations for the parameter uncertainties is 
to run numerous pseudo-experiments using the best-fit 
values for the Monte Carlo ‘true’ values and find out the 
spread in pseudo-experiment best-fit values 

• MLEs don’t have to be gaussian. Thus, a Monte Carlo based 
uncertainty is accurate even if the Central Limit Theorem is invalid for 
your data/parameters 

• The routine of ‘Monte Carlo plus fitting’ will take care of many 
parameter correlations 

• The problem is that it can be slow and gets exponentially slower with 
each dimension for multi-dimensional scenarios

Comments

14
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• If we either did not know, or did not trust, that our 
estimator(s) dare a nicely analytic PDF (gaussian) we can 
use our pseudo-experiments to establish the uncertainty 
on our best-fit values 

• Using original PDF, sample from original PDF with injected values of 
 and  that were found from our original ‘fit’ 

• Fit each pseudo-experiment 

• Repeat 

• Integrate ensuing estimator PDF

α̂obs
̂βobs

Brute Force
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• For the Monte Carlo brute force method, the lower value 
for the confidence interval is set at  and the upper value 
for the confidence interval is set at 

C−
C+

Brute Force
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• The previous method is known as a parametric bootstrap 
• Overkill for the previous example 

• Useful for estimators which are complicated 

• Finding the uncertainty using the integration of the tails 
works for bayesian posteriors in same way as for 
likelihoods

Brute Force cont.

17
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• Continuing from Exercise 1 and using the same procedure 
for the 100 or 500 values from the pseudo-experiments, 
i.e. parametric bootstrapping 

• Find the central 1σ confidence interval(s) for α as well as β using 
bootstrapping 

• Repeat, but now: 

• Fix α=0.5, and only fit for β, i.e. α is now a constant 

• What is the new 1σ central confidence interval for β? 

• Repeat with a new range of the -0.9 ≤ x ≤ 0.85 

• Again, fix α=0.5 

• 2000 Monte Carlo ‘data’ points

Exercise 1b
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• Using the range of -0.9 ≤ x ≤ 0.85, use the likelihood value 
to calculate the uncertainty for , i.e.   

• 2000 Monte Carlo ‘data’ points 

• Fix α=0.5, i.e.  is not a fit parameter and never changes. 

• Since  is fixed, the function  is a 1 parameter equation, and 
the PDF of  is also only dependent on 1 parameter. So the   
1  uncertainty is where , and 

 

• [optional] Check to see if  is asymmetric, i.e. ,  
for this problem when using the likelihood prescription to 
estimate the uncertainty. 

β σβ

α
α f(x; α, β)

f(x; α, β)
σ |ℒ(x; α, βbest−fit) − ℒ(x; α, βσ) | = 0.5

σβ = βbest−fit − βσ

σβ +σβ ≠ − σβ

Exercise 1c
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• The LLH minimization will give the best-fit values and often 
the uncertainty on the estimators. But, likelihood fits do 
not tell whether the data and the prediction agree 

• Remember that the likelihood has a form (PDF) that is provided by 
you and may not be correct 

• The PDF may be okay, but there may be some measurement 
systematic uncertainty that is unknown or at least unaccounted for 
which creates disagreement between the data and the best-fit 
prediction 

• Likelihood ratios between two hypotheses are a good way to 
exclude models, and we’ll cover hypothesis testing next week

Good?
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• Getting back to LLH confidence intervals 

• In one dimension fairly straightforward 

• Confidence intervals, i.e. uncertainty, can be deduced from the LLH 
difference(s) to the best-fit point 

• Brute force option is rarely a bad choice, and parametric 
bootstrapping is nice 

• Both strategies work in multi-dimensions too 

• Often produce 2D contours of θ vs. ϕ 

• There are some common mistakes to avoid

Multi-parameter

21
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• For 2 dimensions, i.e. 2-parameter fits, we can produce 
likelihood landscapes. In 3 dimensions a surface, and in 3+ 
dimensions a likelihood hypersurface. 

• The contours are then lines of with a constant value of 
likelihood or ln(likelihood)

Likelihood Contour/Surface
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• Two Parameter Contours 

• Tangent lines to the contours 
give the standard deviations  

Variance of Estimators - Graphical 
Method

23
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✓̂1

✓̂2

✓̂2 + �✓̂2

✓̂2 ��✓̂2

✓2

✓1✓̂1 ��✓̂1 ✓̂1 + �✓̂1

correct incorrect

lnL(↵,�) = lnLmax � 1/2
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• When the correct, tangential, 
method is used and the 
uncertainties are not dependent 
on the correlation of the variables.   

• The probability the ellipses of 
constant                           contains 
the true point,             , is:

Variance of Estimators - Graphical 
Method
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✓1

✓2

✓̂1
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✓̂2 + �✓̂2

✓̂2 ��✓̂2

✓̂1 ��✓̂1 ✓̂1 + �✓̂1

correct

lnL = lnLmax � a

✓1 and ✓2

a            
(1 DoF)

a          
  (2 DoF) σ

0.5 1.15 1

2.0 3.09 2

4.5 5.92 3
*DoF = Degree of freedom. Here it equates 

to the number of fit parameters in the 
likelihood. 
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Best Result Plot?

25
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• The LLH (or -2*LLH) landscape provides the necessary 
information to construct 2+ dimensional confidence 
intervals 

• Provided the respective MLEs are gaussian or well-approximated as 
gaussian the intervals are ‘easy’ to calculate 

• For non-gaussian MLEs — which is not uncommon — a more 
rigorous approach is needed, e.g. parametric bootstrapping 

• Some minimization programs will return the uncertainty on 
the parameter(s) after finding the best-fit values 

• The .migrad() call in iminuit 

• It is possible to write your own code to do this as well

Variance/Uncertainty - Using LLH 
Values

26
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• The uncertainty estimate from 
bootstrapping: uses multiple Monte 
Carlo generated samples and the best-
fit values of those samples to build a 
distribution. The ‘width’ of the ensuing 
best-fit values from the Monte Carlo 
constitutes the uncertainties. 

• The uncertainty estimate from 
likelihood(s): get the best-fit of a 
parameter. Establish the value of the 
parameter where the LLH difference to 
the best-fit point is equal to the critical 
value for the number of fit parameters. 

• See critical values on slide 24, or find chi-
square tables online for a more complete list

Uncertainty from Bootstrapping vs. 
Likelihood

27
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• Using the same function and 𝝰=0.5 and 𝝱=0.5 as Exercise 
#1, find the MLE values for a single Monte Carlo sample w/ 
2000 points 

• Plot the contours related to the 1σ, 2σ, and 3σ confidence 
regions 

• Remember that this function has 2 fit parameters  

• Because of different random number generators, your result is likely 
to vary from mine

Exercise #2

28
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Contours on Top of the LLH Space

29

α
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2648

2650

2652

2654

2656

2658

2660

2662

2664

2666

2668

LLHΔ-2*-2*LLH



D. Jason Koskinen - Advanced Methods in Applied Statistics

Just the Contours

30
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• 1D projections of the 2D contour in order to give the best-
fit values and their uncertainties

Real Data

31

�m2
32 = 2.72+0.19

�0.20 ⇥ 10�3eV2

sin2 ✓23 = 0.53+0.09
�0.12

*arXiv:1410.7227

Remember, even though 
they are 1D projections the 
ΔLLH conversion to σ must 

use the degrees-of-
freedom from the actual 

fitting routine
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• There is a file posted on the class webpage which has two 
columns of x numbers (not x and y, just x for 2 pseudo-
experiments) corresponding to x over the range -1 ≤ x ≤ 1 

• Using the function: 

• Find the best-fit for the unknown 𝝰 and 𝝱 

• [Optional] Using a chi-squared test statistic, calculate the goodness-of-
fit (p-value) by histogramming the data. The choice of bin width can 
be important 
• Too narrow and there are not enough events in each bin for the statistical comparison 

• Too wide and any difference between the ‘shape’ of the data and prediction 
histogram will be washed out, leaving the result uninformative and possibly 
misleading

Exercise #3
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• Use a 3-dimensional function for 𝝰=0.5, 𝝱=0.5, and Ɣ=0.9 
generate 2000 Monte Carlo data points using the function 
transformed into a PDF over the range -1 ≤ x ≤ 1 

• Find the best-fit values and uncertainties on 𝝰, 𝝱, and Ɣ 

• Similar to exercise #1, show that Monte Carlo re-sampling 
produces similar uncertainties as the ΔLLH prescription for 
the 3D hypersurface 

• In 3D, are 500 Monte Carlo pseudo-experiments enough? 

• Are 2000 Monte Carlo data points per pseudo-experiment enough? 

• Write a profiler to project the 2D contour onto 1D, properly

Extra
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