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THE TUNNELING ALGORITHM FOR THE GLOBAL
MINIMIZATION OF FUNCTIONS*

A. V. LEVYT AND A. MONTALVO#

Abstract. This paper considers the problem of finding the global minima of a function f(x): Q< R" > X.
For this purpose we present an algorithm composed of a sequence of cycles, each cycle consisting of two
phases: (a) a minimization phase having the purpose of lowering the current function value until a local
minimizer is found and, (b) a tunneling phase that has the purpose of finding a point x € (), other than the
last minimizer found, such that when employed as starting point for the next minimization phase, the new
stationary point will have a function value no greater than the previous minimum found.

In order to test the algorithm, several numerical examples are presented. The functions considered are
such that the number of relative minima varies between a few and several thousand; in all cases, the algorithm
presented here was able to find the global minimizer(s). When compared with alternate procedures, the
results show that the new algorithm converges more often to the global minimizer(s) than its competitors;
additionally, it becomes more efficient than the other procedures for problems with increasing density of
relative minima.



® KOBENHAVNS UNIVERSITET 10.03.2022 3

Introduction

e Assume f(X), Xmin < X < Xmax
« f(x) is real and has gradient Vf(x)

« We cannot solve x in Vf(x) = 0

+ We want to find the input x g(X)
corresponding to the minimum f(x)

e f(x) could be a — LLH fit of a model
with parameters x to experimental
data

* Forjust 1 parameter we could 1D
raster scan

* Not feasible for co-dependant
parameters in 8 dimentions
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Introduction

* This is attempted with minimization
algorithms

Newton’'s Method:

f(xXn)
xn+1 — xn _ f’(xn)

Gradient Descent:

Xn+1 = Xn — anf(xn)

Works if: All starting points x, lead to
the global minimum without passing
by local minima
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Introduction

Momentum;

e SGD with momentum to decrease
oscillations

Xn+1 = Xn — NV (xn) + aVf(xp-1) g(x
Adaptive Gradient (AdaGrad): )

e SGD with per-parameter scalar y,

 Maybe some parameters are on a
much larger scale than others

* G=Y9;"9g;

— .
An+1,j = Xn,j Ny gj
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The problem

* Gradient-based minimization
algorithms are prone to local minima

* The global minimum is the desired
minimum
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The Tunneling Algorithm

X/‘kf“=='-:1'ﬁﬁ\|—~|_.,~>)\

» Goal: Finding the global minimum
of a function f — avoiding local
minima

* An iterative algorithm in two
phases:

1: Minimizing phase

A gradient-based minimization
algorithm is started from a range of x,

The found local minima x* are saved
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The Tunneling Algorithm Ko | ey

2: Tunneling phase
) - F1(x)
T(x,x") =
R (D DT
A new function T is constructed by
altering f(x), adding po/es at x*.
1
X —Xx"
This discourages the gradient-based
minimization algorithm from
approaching the local minima on f(x)

— oo whenx = x*

Minimization algorithm is now used
on T(x,x")
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Measurement of success

How do we know if the minimization 5. Measure success P:
algorithm is better than SGD?
- Yo M
1. Choose test functions p — &i=1"1
i. 16 functions from 2 to 10 dimensions Ng - Ny

with known global minima .
N,.. Number of starting points

M;: Number of found global minima
N,: Number of global minima

2. Choose minimizers for comparison
I.  Gradient Descent

3. Attempt minimization of test
functions with all minimizers from
many starting points

4. Measure Njterations aNd tepy for each
minimization
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Test-function: The six-hump camelback function

f(xq, %) =[4=2.1x3+3x1]x71+ x, %, +[—4+4x3]x3, —-3=x,=3, —2=x,=2

6 local minima
2 global minima
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TABLE 1
Summary of numerical results for the tunneling, MRS, and MMRS methods.

Evaluations during
Total Total evaluations Minimization inimization phase °
time time Number of ‘
Ex/dim.| Method [(CPU-secs) |Functions | Gradient (CPU-secs) Functi Gradi inimization P
Tunnel 87.045 12,160 1,731 2.113 1,047 97 17 0.9445
1/2 MRS 88.089 35479 9,572 87.845 35,479 9,572 244 0.5
MMRS 87.066 50,462 7 0.148 75 7 1 0.0555
Tunnel 8.478 2912 390 1.045 525 53 3 1
2/2 MRS 5.197 * * * * * 10 0
MMRS 4313 N . . . . 2 0 m ° r
Tunnel 5.984 2,180 274 1.409 710 69 3 1 ' e
3/2 MRS 2.094 * * * * * 4 0
MMRS 6.018 3,350 19 0.292 136 19 1 0
Tunnel 1.984 1,496 148 0.033 57 17 2 1
4/2 MRS 0.036 61 19 0.034 61 19 2 1 “
MMRS 2.036 6,000 10 0.016 32 10 1 0.5
Tunnel 3.238 2,443 416 0.947 1,116 273 2.75 1
5/2 MRS 64.0 * * * * * 1 0
MMRS 1.062 1,241 287 0.997 1,195 287 3 1 . Py
Tunnel 12,915 7.325 1,328 4.435 3,823 848 3.25 1
6/3 MRS 3.516 2,861 784 3.485 2,861 784 3 1
MMRS 4.024 3,443 726 3.231 2,647 726 3 1
Tunnel 20.450 4,881 1,371 1.91 1,126 376 4.25 1
7/4 MRS 3.391 * * * * * 6 0
MMRS 4.335 3,076 457 2.289 1,369 457 2 1
Tunnel 11.885 7,540 1,122 9.32 6,471 881 2 1
8/5 MRS 8.107 * * * * * 1 0
MMRS 11.925 9,458 171 2.112 1,506 171 1 0
Tunnel 45.474 19,366 2,370 35.644 16,138 2,011 2.5 1
9/8 MRS 38.091 17,229 2,143 38.091 17,229 2,143 2 1
MMRS 45.535 22,193 1,771 30.757 14,126 1,771 1 0
Tunnel 68.22 23,982 3,272 67.283 22,191 3,135 2.5 1
10/10  |[MRS 192.0 * * * . * 1 0
MMRS 68.26 25,966 2913 62.47 23,093 2913 1 0
Tunnel 4.364 2,613 322 0.762 736 158 2.5 0.5
11/2 MRS 6.308 6,851 876 6.308 6,851 876 5 0
MMRS 1.792 1,867 250 1.406 1,441 250 4 1
Tunnel 12.378 6,955 754 3.927 3,142 479 4.25 0.75
12/3 MRS 13.291 10,566 1,652 13.227 10,566 1,652 9 0
MMRS 2.975 2,316 359 2.139 2,316 359 3 1
Tunnel 8.35 3,861 588 3.076 1,863 390 3.75 0.75
13/4 MRS 9.851 6,659 740 9.821 6,659 740 2 0
MMRS 8.376 6,234 273 2.294 1,419 273 2 0
Tunnel 28.33 10,715 1,507 7.249 3,565 797 5.5 0.75
14/5 MRS 51.707 28,347 4,002 51.712 28,347 4,002 ) 0
MMRS 28.362 17,339 1,098 11.150 5,746 1,098 3 0
Tunnel 33.173 12,786 1,777 17.282 7.839 1,329 3.5 1
15/6 MRS 41.065 19,301 2,784 41.028 19,301 2,784 2 0
MMRS 33.231 18,985 132 1.263 479 132 2 0
Tunnel 71.981 16,063 2,792 15.350 6,142 1,013 7.5 0.75
16/7 MRS 92.615 38,483 5,411 92.546 38,483 5411 8 0
MMRS 72.027 36,195 435 5.977 2,132 435 2 0

* Failure in convergence.
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Conclusion

The tunneling algorithm is better at finding the global minima than the
compared minimization algorithms.

Purpose of the tunneling algorithm: Find the global minimizer, avoid local
minima

The results indicate that it succeeds much more often than simple gradient-
descent based minimisers — Success!

Nota bene:

« Optimized for finding the global minimum - not always needed!

« Results highly dependant on chosen test functions

» Extremely cool name, much cooler than Gradient Descent
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