K-nearest neighbour

On Enhancing the performance of nearest neighbour classifiers using Hassanat distance metric, Alkasassbeh, M., et al.

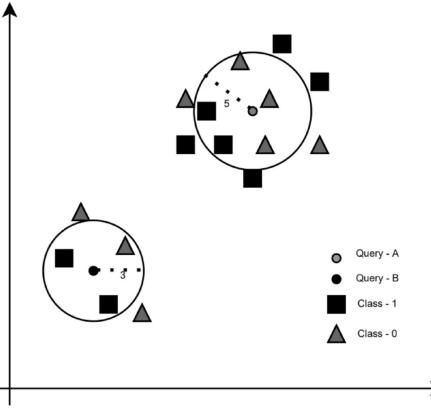
Presented by: Noah Bloss Frederik Hansen

Date: March 9, 2023

UNIVERSITY OF COPENHAGEN

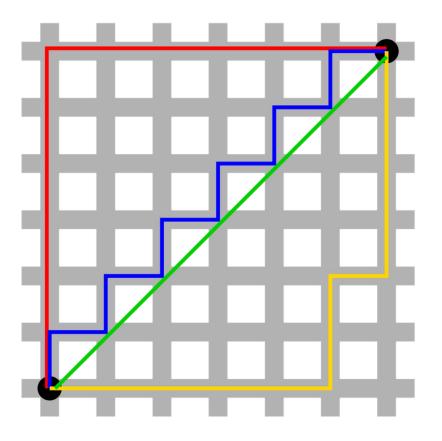
K-Nearest Neighbour

- Simple and effective classifier
- Choosing a class
 - Training the code
 - Classifying after training
- K as a variable
 - Most optimal K
 - Avoiding choosing a k



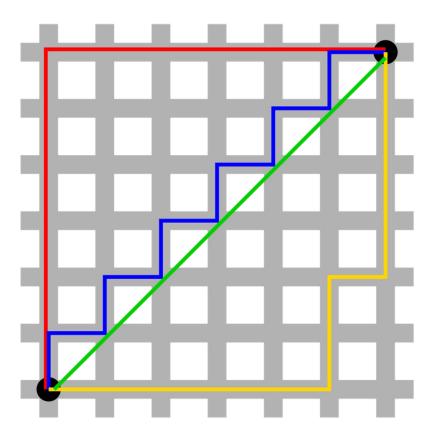
Distance Metrics

- Finding distance to nearest neighbour
- Common distance metrics
 - Euclidean
 - Manhattan



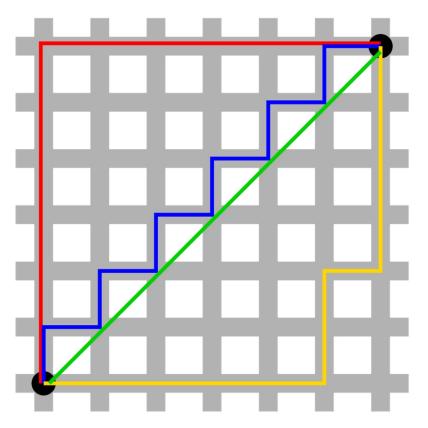
Distance Metrics

- Euclidean distance metric
 - $D_{Euclid}(x, x') = \sqrt{\sum_d |x_d x'_d|^2}$
- Manhattan distance metric
 - $D_{Manhattan}(x, x') = \sum_d |x_d x'_d|^2$



Distance Metrics

- Euclidean distance metric
 - $D_{Euclid}(x, x') = \sqrt{\sum_d |x_d x'_d|^2}$
- Manhattan distance metric
 - $D_{Manhattan}(x, x') = \sum_d |x_d x'_d|^2$
- Enhancing KNN with distance metrics
 - Hassanat distance metric



٠

Distance Metrics - Hassanat

Hassanat distance metric

$$D_{Hassanat}(A, B) = \sum_{i=1}^{m} (D(A_i, B_i))$$

$$D(A_i, B_i) = \begin{cases} 1 - \frac{1 + \min(A_i, B_i)}{1 + \max(A_i, B_i)}, & \min(A_i, B_i) \ge 0\\ 1 - \frac{1 + \min(A_i, B_i) + |\min(A_i, B_i)|}{1 + \max(A_i, B_i) + |\min(A_i, B_i)|}, & \min(A_i, B_i) < 0 \end{cases}$$

$$\lim_{\max(A_i,B_i)\to\infty} \left(D(A_i,B_i) \right) = \lim_{\min(A_i,B_i)\to-\infty} \left(D(A_i,B_i) \right) = 1$$

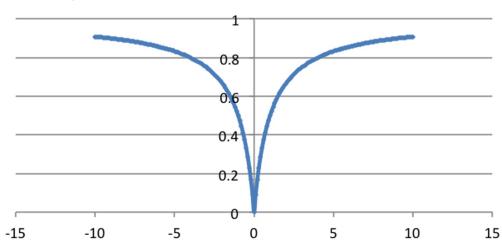
• Bounded in range [0,1[

Distance Metrics - Hassanat

• Hassanat distance metric $D_{Hassanat}(A, B) = \sum_{i=1}^{m} (D(A_i, B_i))$

$$\lim_{\max(A_i,B_i)\to\infty} \left(D(A_i,B_i) \right) = \lim_{\min(A_i,B_i)\to-\infty} \left(D(A_i,B_i) \right) = 1$$

- Bounded in range [0,1[
- Differences from other metrics
 - Not affected by noise
 - Outliers
 - Different data scale



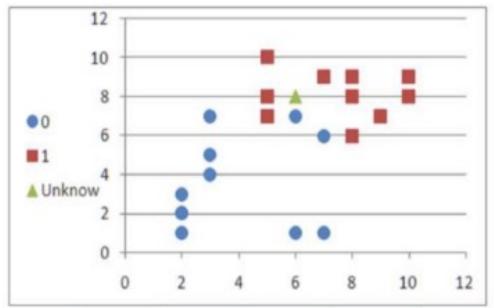
Inverted Indexes of Neighbours Classifier (IINC)

- K = number of training points
- Order distances smallest first
- Summation of the inverted indexes:

$$S_c = \sum_{i=1(c)}^{L_c} \frac{1}{i}$$

- Influence is proportional to the distance
- Probability for each class:

$$P(x|c) = \frac{S_c}{S}, \quad S = \sum_{i=1}^{N} \frac{1}{i}$$



Ensemble Nearest Neighbour (ENN)

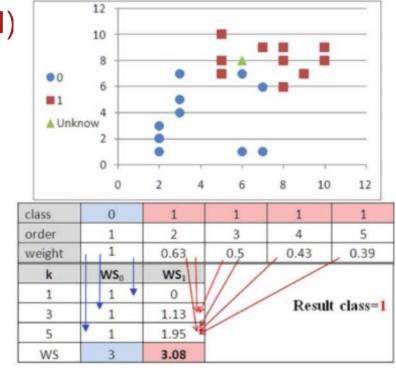
- K = all odd k up to \sqrt{n}
- Order distances smallest first
- Weight of each point:

$$w(k) = \frac{1}{\log_2(1+k)}$$

- Shorter distance more influence
- Weighted sum (WS)

 $class = \frac{argmax}{cWS_c}$

$$WS_{c} = \sum_{k=1}^{\sqrt{n}} \sum_{i=1}^{k} \begin{cases} w(i), & A_{i} \\ 0, & Otherwise' \end{cases}$$



$$k = k + 2$$

9

Comparison between enhanced and classic classifiers

- 28 data sets from the UCI Machine Learning Repository
 - 70% training data and 30% testing data
 - 10 different tests with training and test data random distributed
- Results
 - Comparing Manhattan and Hassanat distance metrics
 - Comparing classic KNN with enhanced (IINC and ENN)

Comparison between enhanced and classic classifiers

• Results using Manhattan distance metric

Algorithm	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.81	0.82	0.82	0.82	0.82	0.80	0.83	0.83

• Results using Hassanat distance metric

Algorithm	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.84	0.85	0.86	0.85	0.85	0.84	0.87	0.87

Comparison between enhanced and classic classifiers

Increase in accuracy after applying Hassanat distance metric

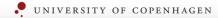
Algorithm	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.03	0.03	0.04	0.04	0.04	0.04	0.03	0.03

Conclusion

- Improvement in performance
 - Hassanat distance metric improves performance
 - IINC and ENN improves performance
 - Data sets are not always similar \rightarrow Classic KNN's are sometimes the best
- Missing comparison with Euclidean and other distance metrics
 - Better comparison \rightarrow more trustworthy results

The end

Thank you for your attention!



Extra Slides

All tables

Manhattan	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.81	0.82	0.82	0.82	0.82	0.80	0.83	0.83
Hassanat	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.84	0.85	0.86	0.85	0.85	0.84	0.87	0.87
						_		
Difference	1NN	3NN	5NN	7NN	9NN	\sqrt{n} NN	IINC	ENN
Average	0.03	0.03	0.04	0.04	0.04	0.04	0.03	0.03