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Persistent Homology is a topic within topology, which deals with the formation and destruction
of holes in different numbers of dimensions. From an arbitrary dataset, one can thus construct
persistence diagrams and fields, to reflect the ”shape” of the dataset, and how it compares to other
data. This tool can be useful to illustrate high dimensional datasets in two dimensions, as well
as illustrating and quantifying how much different datasets differ, or exploring how well different
models comparatively fit your data.

These articles deal with reionisation of the intergalactic medium during the so called Epoch of
Reionisation. Different models for galaxy formation and size distribution are explored and compared,
both with each other and with numerical models for the epoch of reionisation, and it shows that
different models can be differentiated, even with very noisy data.

FIG. 1: Homology of shapes with holes in 0, 1, and 2
dimensions. Figure borrowed from [1]

INTRODUCTION TO PERSISTENT HOMOLOGY

The study of persistent homology, in the context which
will be relevant here, deals with characterising the num-
ber of different topological features in a dataset, at dif-
ferent scales.

By ”topological features” we more precisely mean holes
in different numbers of dimensions. The first three of
these are illustrated on Figure 1 on page 1. A hole of n
dimensions is one which can be enclosed by a loop of n
dimensions. In 0, 1 and 2 dimensions these are points,
loops and shells, respectively.

This gives that a zero dimensional hole is the boundary
of a component, but may more intuitively be understood
as the ”gap” between two disjoint components. A one
dimensional hole becomes what we usually refer to as a
hole, a tunnel through a component, like the hole in a
donut. A two dimensional hole becomes a hollow space
enclosed on all sides by a component, like the hollow
inside of a balloon. Higher dimensional holes can not
easily be conceptualised, but can be computed.

To explain how this relates to the world of statistics,
we can imagine having a number of data points in an
arbitrary number of dimensions. For the sake of having
to imagine it, 2 dimensions are recommended. Then,
imagine a sphere - or circle in 2 dimensions - emanating
from each point, becoming objects with a volume. As
these circles grow in radius - which we will refer to as α,

FIG. 2: Illustration of how circles emanating from points merge
to form different features. Figure borrowed from [1]

they will merge, forming different features, as illustrated
on Figure 2 on page 1.
We can see that when α is small, the different points

remain disjoint, keeping the number of 0−d holes equal
to the number of points, as seen on the left. As α grows
larger, circles merge, ”killing” some of the 0−d holes seen
in the middle panel. At some point the circles start en-
closing empty spaces, thus ”birthing” 1−d holes, or tun-
nels, as seen on the right panel. When α grows yet larger,
these spaces will be filled, killing the tunnels again.
This gives us the needed framework to start doing

statistics.

PERSISTENCE DIAGRAMS

Given a set of data, we can find the number of holes in
different dimensions as a function of α. By tracking when
different features are born, and when they die, we can
construct a persistence diagram. For 300 Monte Carlo
simulated data for a Uniform and Normal distribution in
7 dimensions, such diagrams are shown on Figure 3 on
page 2. The radius α at which a feature is born is noted
on the x-axis, and the α at which it dies is noted on the
y-axis. Note that all 0−d holes are born at α = 0, as all
points enter the dataset simultaneously. The data would
be very difficult to visualise in 7− d, but we can clearly
see the difference between the two distributions.
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FIG. 3: Persistence diagrams constructed from data drawn from
a Normal and Uniform distribution in 7 dimensions

respectively.

An important feature of these diagrams is the ”pser-
sistence” of different features. That is, how long does a
particular feature last after it is born, which correspond
to the vertical distance of a feature above the x = y diag-
onal also drawn on the figures. This is the term that gives
”persistent homology” its name, and can contain impor-
tant information about the shape of ones data, though
this will depend heavily on the data, and on what is being
studied.

STATISTICAL METHODS

If we have a set of data, and we believe to have found
a new model, which better describes this data than an
existing model, we can compare how well the two differ-
ent models fit the data by utilising persistence diagrams.
First we construct persistence diagrams based on Monte
Carlo simulations of the two different models, as well
as our data. Then we calculate the ”distance” between
the diagrams. This distance can be found using the L2-
Wasserstein metric, in which, for two diagrams X and
Y

d(X,Y ) =

[
inf

ϕ:X→Y

∑
x∈X

||x− ϕ(x)||2
]1/2

(1.1)

where ϕ pairs a point in X to a point in Y , and the di-
agonal line x = y is included as many times as is needed,
such that a different number of points in X and Y is not
an issue.

A smaller distance will mean that the two datasets are
more similar. By doing a large number of monte carlo
simulations for each model, we can construct the Fréchet
Average as

F (Y ) =
1

n

n∑
i=1

d(Y,Xi)
2 (1.2)

where Y is our original data, and {Xi} is the set of Monte
Carlo datasets for each model. A smaller Fréchet Aver-

FIG. 4: Persistence fields. Initial dataset is generated from a
known PDF, and two different test models are used

age, will mean that a model is more likely to be consistent
with a dataset. The ”variance” on each point y ∈ Y is
described as

σ2
y =

1

n

n∑
i=1

||y − ϕi(y)||2 (1.3)

where ϕi is an optimal matching with Xi. This allows for
the construction of persistence fields, as shown on Figure
4 on page 2. The radius of a feature is proportional to
its variance, and its ”brightness” is proportional to the
square root of its persistence. More persistent features
reflect more significant, but less probable features in the
shape of the data, and these are thus brighter.

CONCLUSIONS: USE IN THE STUDY OF
REIONISATION

By looking at a semi-numerical model of galaxy forma-
tion and evolution, the topology of the cosmos during the
era of reionisation can be studied. Simulating a ”Bright
Galaxy” and a ”faint galaxy” model and constructing
persistence diagrams, with ionised regions of space re-
placing the shperes discussed above, and not constaining
all galaxies to form simultaneously, as is done above, Per-
sistence fields consistent with each model is constructed
[2]. It is shown that even when artificially introducing
noise consistent with what might be expected for actual
observational data, the two models can be effectively dif-
ferentiated, suggesting a promising way to learn about
the epoch of reionisation, though the lens of persistent
homology.
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