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I. INTRODUCTION

Correlation and causality are often considered closely
related terms, but concluding on causality only based on
observations of correlation between variables can lead
to incorrect and contradictory results. Correlation is not
necessary for causality and neither does it directly imply
causality. At the same time, causality is an important
property to understand in complex systems and crucial for
making political decisions about e.g. climate or epidemiology.
Methods are thus needed to detect causality, and [1] presents a
previous method and a new alternative method with examples
of the latter used on simple models and real data, which will
be summarised here.

One commonly used method for determining causality be-
tween time-series variables is called ”Granger causality” (GC)
and it relies on the predictability of a time-series variable, Y ,
given a causally related time-series variable, X . X is said to
”Granger cause” Y if lagged values of X can significantly
predict values of Y , which also means that the predictability
of Y has to decline if X is removed from the system. Using
GC requires that the system is separable, meaning that if the
system consists of variables X and Y , where X causes Y ,
information about the effects of X is only contained in time-
series for X . This is known to be the case for purely stochastic
and linear systems. Consequently, GC is best suited to study
such systems. GC is not a useful method when the system is
non-separable, the variables are only weakly connected or if
the system consists of several variables that are all influenced
by a common external variable, which is usually the case for
e.g. complex ecosystems. In this case alternative methods are
needed, and this is where convergent cross mapping (CCM)
comes into the picture.

II. CONVERGENT CROSS MAPPING

Convergent cross mapping is developed as a method for
detecting causality in deterministic dynamical systems in
which the dynamics are not purely random but governed by
an underlying ”attractor manifold”. This manifold, M , is the
state space of the system with the variables e.g. X(t) and Y (t)
on the axes and a projection of the time series variables on the
manifold surface. When a variable X causes another variable
Y , CCM looks for causality between those by studying the
extent to which the time series of X can be reconstructed
from the time series of Y . Takens’ theorem says that lagged
time-series coordinates of X and Y generates the so-called
shadow manifolds of M , MX and MY with e.g. X(t) and

X(t−τ) on the axes, and each point on the shadow manifolds
maps to a point on the attractor manifold. This means that if
the variables are causally connected, it is also possible to map
directly between the two shadow manifolds (this concept of
cross mapping is shown in Figure 1). CCM thus attempts to
estimate X from MY and Y from MX . More specifically, the
algorithm takes a subset of MY with size L, estimates X̂ from
this subset and computes the correlation ρ between X and X̂ .
Letting L increase from a small number to the total size of
MY , ρ should increase and converge in the case that X is a
cause for Y . In CCM, it is thus possible to estimate X from
Y only if X drives Y which runs counter to GC.

Fig. 1. Cross mapping between shadow manifolds of variables X and Y in
the canonical Lorenz system (figure from video S2 in supplementary material
of [1]).

III. RESULTS

A. Simple model

In [1] an example of the use of CCM is presented where
the underlying equations are known making it possible to test
the performance of the method. The simple non-linear system

X(t+ 1) = X(t)[rx − rxX(t)− βx,yY (t)]

Y (t+ 1) = Y (t)[ry − ryY (t)− βy,xX(t)],
(1)

is studied for rx = 3.8, ry = 3.5, βx,y = 0.02 and βy,x =
0.1 meaning that there is a bidirectional coupling between X
and Y . This coupling is detected from convergence of the
correlation coefficient, ρ as a function of L. ρ is calculated
for the estimate of X from MY , X̂ , and for the estimate of
Y from MX , Ŷ . The former converges faster because of the
larger value of βy,x meaning that X drives Y to a larger degree
than the reverse, making the estimation of X from MY better
when using CCM. This can be seen in Figure 2.
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Fig. 2. Convergence of the correlation coefficients, ρ, in the simple system
from Eq. 1. The blue graph showing the cross mapping of X using MY

converges faster because of the stronger effect of X on Y [1].

An important thing to note from this example is that Eq. 1
can be algebraically rearranged describing X(t+ 1) in terms
of X(t) and X(t − 1) meaning that we can remove Y (t) as
an explicit variable without affecting the prediction of X . In
this case, GC would incorrectly deduce that Y does not cause
X , whereas CCM, as we saw, correctly concludes the opposite.

The unidirectional case of Eq. 1 is also tested where βx,y =
0. As expected, this shows that Y can no longer be estimated
from X , but X̂ remains well estimated. For unidirectional
coupling we encounter a special case when X very strongly
forces Y . Here, the dynamics of Y become subordinate and we
will see a convergence of ρ wrongly suggesting bidirectional
coupling. This is phenomenon is called ”synchrony” and has
to be ruled out before concluding bidirectional coupling with
CCM.

B. Complex models

Another use of the method arises when considering two non-
interacting species, X and Y , driven by a common external
forcing variable Z. Here, cross-correlation (between X and
Y ) might initially suggest that the two species are coupled,
however CCM shows that ρ does not converge, proving no
coupling between X and Y . CCM is thereby capable of
distinguishing true interaction from simple correlation created
by the common driving variable, which is one of the things
GC is not able to.

This can be expanded to a more complex system. Species
1, 2 and 3 all interact mutually, and act as external forcing
variables with respect to species 4 and 5, which do not interact.
1, 2 and 3 are extension of Z, with 4 and 5 corresponding
to the non-coupled pair X and Y . CCM is able to correctly
identify the network of all bi- and unidirectional links, as well
as the strength of each interaction link.

C. Real-world examples

Ecosystems often differ from systems commonly studied
with GC. One of the key differences is that ecosystems are
often subject to forcing by external factors such as temper-
ature. Non-interacting species that are exposed to the same
driving factor(s) in the same environment may have apparent
correlations in their populations. To accommodate spurious
correlations of this sort, it is import to address non-separable

systems, identify weakly coupled variables - and not least
distinguish direct causing interactions of species from effects
of their mutual environment.

A specific case of this mechanism is seen in the sardine-
anchovy-temperature problem. Historically two main theories
for the changes in the population sizes of sardines and an-
chovies have been proposed: either the species compete for
resources or an underlying environmental mechanism drives
the changes. Regarding the latter sea surface temperature
(SST) is examined in this paper. Both theories serve as
explanations for the species reciprocal abundance levels. CCM
shows no significant causative relation between the species.
Neither do the fishes affect the SST (as one would most likely
expect) according to the CCM method. However, SST seems to
asymmetrically affect both of the species. See Fig. 3. Thereby
CCM strongly suggests the theory of a common environmental
driving force being the cause of the fishes apparent correlation
in abundance. The coupling between SST and the fishes is
weak, implying other driving factors may be at play.

Fig. 3. Sardine-Anchovy-Temperature problem analyzed with CCM. D, E, F
respectively: CCM of sardines vs. anchovies, sardines vs. SST, anchovies vs.
SST[1]. D shows no coupling between sardines and anchovy populations. E
and F suggest a forcing of the SST on both populations.

IV. CONCLUSION

Understanding the connection but also distinction between
correlation and causality is important for understanding com-
plex systems such as climate, epidemics or ecological systems.
GC and CCM are two methods that aim to detect causality in
complex systems. [1] shows that CCM is a good alternative
to GC in cases where GC does not apply, including non-
separable systems with weak couplings or systems with a
shared driving variable. The method performs well and as
expected for constructed models and real data. It is able to
predict all uni- and bidirectional couplings expected for the
different models studied. The model is furthermore able to
distinguish interactions between variables from shared driving
variables of these which one of the weaknesses of GC.
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