The Hierarchical Bayesian Inference Model

Kathrine Kuszon og Sophia Wilson

09/03/2023

UNIVERSITY OF COPENHAGEN

When do we need the hierarchical Bayesian inference model?

Hierarchical data set

When do we need the hierarchical Bayesian inference model?

Hierarchical data set

CLINICAL TRIAL

Patients clustered within treatment centers nested within regions

When do we need the hierarchical Bayesian inference model?

Hierarchical data set

CLINICAL TRIAL

Patients clustered within treatment centers nested within regions

Parameter of interest:

Survival probability $\Theta_{n,j}$

How does the HBI model differ from 'ordinary' Bayesian statistics?

'Ordinary' Bayes

 $P(\theta|y) \propto P(y|\theta)P(\theta)$

Posterior Likelihood Prior

 $y|\theta \sim P(y|\theta)$ $\theta \sim P(\theta)$

How does the HBI model differ from 'ordinary' Bayesian statistics?

'Ordinary' Bayes

HBI model

 $P(\theta|y) \propto P(y|\theta)P(\theta)$

Posterior Likelihood Prior

 $y|\theta \sim P(y|\theta)$ $\theta \sim P(\theta)$

$$\begin{split} y|\theta,\phi &\sim P(y|\theta,\phi) \\ \theta|\phi &\sim P(\theta|\phi) \\ \phi &\sim P(\phi) \end{split}$$

How does the HBI model differ from 'ordinary' Bayesian statistics?

'Ordinary' Bayes

<u>HBI model</u>

$$\underbrace{P(\boldsymbol{\theta}|\boldsymbol{y})}_{\boldsymbol{P}(\boldsymbol{\theta})} \propto \underbrace{P(\boldsymbol{y}|\boldsymbol{\theta})}_{\boldsymbol{P}(\boldsymbol{\theta})} \underbrace{P(\boldsymbol{\theta})}_{\boldsymbol{P}(\boldsymbol{\theta})}$$

Posterior Likelihood Prior

$$\underbrace{P(\phi, \theta | y)}_{} \propto \underbrace{P(y | \theta, \phi)}_{} \underbrace{P(\theta | \phi)}_{} \underbrace{P(\theta | \phi)}_{} \underbrace{P(\phi)}_{} \underbrace{P(\phi | \phi)}_{} \underbrace{P(\theta | \phi)}_{}$$

Posterior

Likelihood Prior Hyperprior

 $y|\theta \sim P(y|\theta)$ $\theta \sim P(\theta)$

$$\begin{split} y|\theta,\phi &\sim P(y|\theta,\phi) \\ \theta|\phi &\sim P(\theta|\phi) \\ \phi &\sim P(\phi) \end{split}$$

- 75 groups (j \in {1,75})
- 5 observations (i \in {1,5}) in each group

- 75 groups (j \in {1,75})
- 5 observations (i \in {1,5}) in each group

$$\begin{array}{c|c} \mbox{ge} \\ \mbox{ge$$

- 75 groups (j ∈ {1,75})
- 5 observations (i \in {1,5}) in each group

$$\overset{\text{reg}}{\sqsubseteq} \quad y_{ij} | \alpha_j, \beta_j \sim N(\alpha_j + \beta_j x_{ij}, \sigma^2)$$

$$egin{aligned} &lpha_j | \mu_lpha, \sigma_lpha &\sim N(\mu_lpha, \sigma_lpha^2) \ η_j | \mu_eta, \sigma_eta &\sim N(\mu_eta, \sigma_eta^2) \ &\sigma &\sim U(0, 10) \end{aligned}$$

Creating a hierarchical data set

- 75 groups (j ∈ {1,75})
- 5 observations (i \in {1,5}) in each group

$$\underset{\Box}{\text{prod}} \quad y_{ij} | \alpha_j, \beta_j \sim N(\alpha_j + \beta_j x_{ij}, \sigma^2)$$

$$\begin{aligned} \alpha_{j} | \mu_{\alpha}, \sigma_{\alpha} \sim N(\mu_{\alpha}, \sigma_{\alpha}^{2}) \\ \beta_{j} | \mu_{\beta}, \sigma_{\beta} \sim N(\mu_{\beta}, \sigma_{\beta}^{2}) \\ \sigma \sim U(0, 10) \end{aligned}$$

 $\sigma_{\alpha}, \sigma_{\beta} \sim U(0, 10)$

$$\begin{array}{l} \mbox{form} \mbox{form} & y_{ij} | \alpha_j, \beta_j \sim N(\alpha_j + \beta_j x_{ij}, \sigma^2) \\ & \alpha_j | \mu_\alpha, \sigma_\alpha \sim N(\mu_\alpha, \sigma_\alpha^2) \\ & \beta_j | \mu_\beta, \sigma_\beta \sim N(\mu_\beta, \sigma_\beta^2) \\ & \sigma \sim U(0, 10) \end{array} \\ \end{array}$$

Overview of alternative models

Overview of alternative models

1) Completely pooling Assume that α and \Box are equal for all groups. Corresponds to running a single regression on the whole data set

Overview of alternative models

1) Completely pooling Assume that α and \Box are equal for all groups. Corresponds to running a single regression on the whole data set

```
2) No pooling
```

Assign each α and □ their own wide, flat prior. ↓ Corresponds to running a single regression on each group.

- Markov Chain Metropolis-Hastings sampler: Obtaining estimates of α and \Box

- Markov Chain Metropolis-Hastings sampler: Obtaining estimates of α and \Box

• Comparing estimates of α and \Box to the true values

The HBI model provides a flexible framework for statistical modeling that can capture **variability across groups** and **improve the accuracy and precision of the parameter estimates**

The HBI model provides a flexible framework for statistical modeling that can capture **variability across groups** and **improve the accuracy and precision of the parameter estimates**

Allows sharing of statistical strengths between the groups of data by assuming parameters come from common distributions

The HBI model provides a flexible framework for statistical modeling that can capture **variability across groups** and **improve the accuracy and precision of the parameter estimates**

- Allows sharing of statistical strengths between the groups of data by assuming parameters come from common distributions
- Lets the data shape the prior itself by introducing the hyperprior

The HBI model provides a flexible framework for statistical modeling that can capture **variability across groups** and **improve the accuracy and precision of the parameter estimates**

- Allows sharing of statistical strengths between the groups of data by assuming parameters come from common distributions
- The prior is affected by the data itself by introducing the hyperprior
- Estimates are less sensitive to noise as the prior structure pulls the estimates towards the population distribution (shrinkage)

Thank you for you attention :)