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The Hierarchical Bayesian Inference Model
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Hierarchical Bayesian inference (HBI) is a powerful mod-
elling approach, that can improve the accuracy and precision
of parameter estimation by accounting for variability across
groups. In this writeup we explore the HBI model and how
it differs from ’ordinary’ Bayesian methods. We provide an
analysis of a hierarchical data set with the aim of compar-
ing the parameter estimates from the hierarchical and non-
hierarchical methods. A discussion of the benefits and limita-
tions of the model is also included.

Introduction
Oftentimes, an underlying assumption about the source of
data is made: Observations are assumed to be independently
and identically distributed (i.i.d.) following a single distri-
bution with one or several unknown parameters [1]. It is,
however, in many situations not sensible to treat the obser-
vations as i.i.d. and as generated from individual but identical
distributions since often parameters are non-identical but still
related in some way by the structure of the problem. As an
example, consider a clinical trial: If patients in one hospital
have a certain survival probability, it would be reasonable to
expect patients in other hospitals to have a similar survival
probability, implying that the survival probabilities at differ-
ent hospitals can be described by a common population dis-
tribution [3].
When observations are somehow grouped hierarchical mod-
elling becomes relevant [2]. Here, observable outcomes are
modelled conditionally on certain parameters, which them-
selves are dependent on higher-level parameters, hyperparam-
eters. In the hospital example, this is achieved by using a
prior distribution in which the survival probabilities at each
hospital are viewed as a sample from a common population
distribution dependent on some hyperparameters [3].
To demonstrate how the hierarchical approach improves the
parameter estimates, we compare the results when analysing
the same hierarchical data set with two other models; one us-
ing completely pooling and one using no pooling.

Theory
When dealing with ’ordinary’ Bayesian statistics, we do not
consider our parameters as being dependent on other param-
eters. Instead, we specify the prior distributions using pre-
vious knowledge and if no knowledge is available we usu-
ally choose our priors to be flat and uninformative. The HBI
model differ from ’ordinary’ Bayesian statistics by letting the
parameters depend on hyperparameters. These hyperparame-
ters have priors of their own called hyperpriors.
In order to understand the hierarchical structure of the HBI
model, consider a data set consisting of j groups with i obser-
vations in each group. For each observation in each group an
outcome y ji is sampled from a distribution dependent on pa-
rameters θ j. The parameters θ j are assumed to be generated
exchangeably from a common population with a distribution
dependant on hyperparameters ϕ. The key hierarchical part of

this model is that the hyperparameters ϕ are not known, and
thus have their own prior distributions, P(ϕ). The joint prior
distribution of the data y becomes

P(ϕ|θ) = P(θ|ϕ)P(ϕ), (1)

resulting in the joint posterior distribution

P(θ, ϕ|y) =
P(y|θ, ϕ)P(θ|ϕ)

P(y)
=

P(y|θ)P(θ|ϕ)P(ϕ)
P(y)

(2)

where the latter simplification of the likelihood holds, because
the likelihood P(y|θ, ϕ) depends only on θ, meaning that the
hyperparameters ϕ only affect y through θ [3].

Methods
We create a hierarchical data set following the approach de-
scribed by Jørgen Bølstad [2]. This data set consists of 75
groups ( j ∈ {1, ...75}) with 5 observations (i ∈ {1, ...5}) in
each group. The outcome data y ji is normally distributed and
depends linearly on a covariate x ji according to the following
relation

y ji = N(α j + β jx ji, σ
2).

A key factor is that each group will have its own true intercept
α j as well as its own coefficient β j generated from the true
distributions given by N(2, 1) and N(−2, 1), respectively. The
parameters α j and β j are themselves normally distributed

α j ∼ N(µα, σ2
α) and β j ∼ N(µβ, σ2

β).

Their distributions can be described by the four hyperparam-
eters µα, σα, µβ and σβ described by the hyperpriors

µα, µβ ∼ N(0, 32) and σα, σβ ∼ U(0, 10).

σ is furthermore a parameter, of none particular interest, with
prior

σ ∼ U(0, 10).

The goal is to estimate α j and β j. Two other models are used
for comparison:
1. Completely pooling In contrast to the HBI model, a model
that uses completely pooling assumes that all α j and β j are
equal. The goal is to only estimate one single value for each
of the shared parameters α and β. This corresponds to running
a single regression on the entire data set.
2. No pooling Models using no pooling recognize each α j

and β j but do not assume that these are generated exchange-
ably from a common population. Instead each α j and β j are
assigned a wide, flat prior. This model allows no statistical
sharing between the different groups. This corresponds to
running separate regressions on each data set y j.

To obtain the best possible estimates of α and β we use a
MCMC Metropolis-Hastings sampler for the model using no
pooling and the HBI model. The estimates are plotted as a
function of the steps for one of the j groups in Figure 1. The
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Figure 1: A visualisation of the parameter estimations for one of
the j groups as a function of the MCMC Metropolis-Hastings
sampler steps for the HBI model and the no pooling model.

initial start guesses are purposely chosen far from the true
values to illustrate the convergence towards the true value. In
further data analysis, we choose start guesses slightly closer
to the true values and remove the first 2000 data points in
order for the sampler to reach equilibrium.

Results
The results of the parameter estimation of α and β for all three
models can be seen in Figure 2. The estimates for the model
using no pooling are clearly more dispersed than the estimates
for the HBI model. Considering the root mean square errors
(RMSEs) across the sets of α- and β-estimates we observe,
that the RMSEs for the models using completely pooling and
no pooling are similar and approximately 40% bigger than for
the HBI model. This means, that the HBI model on average
yields estimates closer to the true parameter values.

The comparison of the two non-hierarchical versus the hierar-
chical model clearly illustrates the strength of the hierarchical
model. The model using completely pooling clearly misun-
derstands the data set by estimating a single α and a single β
for all 75 groups. The α j- and β j-estimates in the model using
no pooling are pulled away from each other as a consequence
of using flat priors. In contrast, the hierarchical model ben-
efits from the prior structure based on data, which pulls the
estimates towards the true parameter distribution - an effect
known as shrinkage. This means that the HBI model is less
sensitive to noise and outliers, making it more robust.

Discussion
The HBI model provides a flexible framework for statistical
modelling that can capture variability across groups and im-
prove the accuracy and precision of the parameter estimates.
One of the main advantages of the HBI model is its ability to
incorporate prior information about the parameters. This can
be particularly useful when there is limited data available, as
prior information can help to reduce the uncertainty of the
parameter estimates. Moreover, the hyperprior distribution
can be chosen to reflect prior beliefs about the population-
level parameters, which can improve the robustness of the in-
ference. However, the choice of the hyperprior distributions
can be challenging and the results can be sensitive to these
choices. In most cases it is important to chose hyperprior dis-
tributions that are relatively uninformative so the priors are
mainly specified by the data itself.
Another advantage of the HBI model is its ability to estimate
dispersion within the group observations. This can be im-
portant in data sets where there is substantial heterogeneity
across the different groups. In the example with hospitals, the
HBI model can estimate variations in the treatment effective-
ness across the hospitals, which can be useful for examining
possible differences in the treatments. One downside of the
HBI model is, however, the increased complexity compared
with other models which can be more challenging to imple-
ment and be more computationally expensive.

Conclusion
In conclusion, HBI is a powerful modelling approach that
can improve the accuracy and precision of the parameter es-
timates. It allows for complex structures of joint priors in
order to reduce parameter uncertainties. However, the choice
of the hyperprior distributions can be challenging, and the in-
creased complexity of the model can be a barrier to adoption.
Nevertheless, the HBI model has great potential for parameter
estimation when dealing with hierarchical data structures.
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Figure 2: True values of α and β visualised as grey dots and the best estimates as black dots. Each pair of estimate and true value are
connected with a coloured line.


