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Abstract

One of the most frequent implementations of Markov Chain Monte Carlo uses the Metropolis-
Hastings Sampling algorithm. This method is defined by random walk behavior and is sensitive to
correlated parameters, which plagues it in high dimensionality. Hamiltonian Monte Carlo proposes a
solution to these problems by using first-order gradient information to determine steps. This allows it
to converge rapidly in high dimensional parameter space. This method comes with its own drawback in
the form of being incredibly sensitive to two user specified parameters, step size and number of steps.

1 Introduction
One of the main challenges in most scientific fields
arises when one has to search a multidimensional
parameter space and find the optimal answer.
Markov Chain Monte Carlo (MCMC) is a compu-
tational method which efficiently samples the pa-
rameter space to find the typical set. There exist
numerous different methods and algorithms which
implement MCMC, but one of the most known and
used is Metropolis-Hastings Sampling (MHS). This
method is especially efficient in low dimensional
problems, but suffers in high dimensional parame-
ter space. This paper provides an alternative in the
form of Hamiltonian Monte Carlo (HMC), which
is based of first-order gradient information of the
parameter space and an auxiliary momentum.

2 Review
2.1 The Typical Set
Regarding MCMC, it is important to have a robust
understanding of the typical set. When exploring
parameter space, especially with high dimensional-
ity, all regions should not be treated equally. One
needs to consider the balance between probability
density (π(q)) and volume (dq) in parameter space.
If one approximates the D-dimensional parameter
space to a D-dimensional hyper sphere, it quickly
becomes obvious that while the mode, which has
the highest probability density, lies in the center of
the sphere, it does not cover a large volume. And
vice versa when looking at the edge of the sphere,
the region contains a large volume, but a low prob-
ability density. The region that one truly wants to

explore is then the balance between the two extrem-
ities, called the typical set, which is the area with
highest probability. The width of the typical set
narrows exponentially with increasing dimensions.
Figure 1 shows a 1-dimensional visualization of the
typical set as balance of probability density and vol-
ume.

2.2 Metropolis-Hastings
MHS is one of the simplest implementations of
MCMC. It utilizes random walking to explore the
typical set. The next point in the Markov Chain is
initialized by the proposal function which lies a dis-
tance from the previous point which is chosen ran-
domly from a predetermined Gaussian distribution.
This proposal function is symmetric which reduces
the acceptance criterion to a simple formula which
is 1 if the new point lies in a region of higher prob-
ability density and the ratio between the new and
old points’ probability density if not.

a(q′ | q) = min
(

1,
π(q′)
π(q)

)
(2.1)

The random walk nature of the method is both its
strength and weakness. It makes it exceptionally
easy to implement, but in higher dimensionality, as
new points are Gaussian distributed about the old
point, it explores the typical set increasingly ineffi-
ciently. Moreover, the points become correlated as
can be seen in Figure 2. If the variance of the pro-
posal is large, the MCMC will move away from the
typical set, due to the large volume outside. If the
variance is small, the MCMC explores the typical
set very slowly.

1



Figure 1: The typical set is the
gaussian spanning the product of
π(q) and dq.

Figure 2: Correlation between
iterations in MHS.[2]

Figure 3: HMC moving along
the typical set as a satellite orbit-
ing earth.

2.3 Hamiltonian Monte Carlo
HMC is a MCMC method which utilizes first-order
gradient information of parameter space to more
efficiently survey the typical set. Naively following
the gradient would always lead to the mode, which
does not contain much information. Combining the
gradient information with an auxiliary momentum
allows the proposal function to glide through pa-
rameter space moving large distances and still re-
maining within the typical set, at least in theory as
shown in Figure 3. The dimensionality is doubled to
allow an accompanied momentum for each param-
eter thereby defining the joint density within phase
space. The definition of the joint density, which is a
function of both position and momentum, is shown
Eq. 2.2.

π(q, p) = π(p | q)π(q) = e−H(q,p) (2.2)

The time-evolution of a physical system can be pre-
cisely described by Hamiltonian mechanics. The
ideas developed in classical mechanics can inspire
how to create the proposal of Hamiltonian Monte
Carlo. Therefore, kinetic and potential energy is
defined from the joint density (Eq. 2.3)

H(q, p) = −logπ(p|q) − logπ(q)
≡ K(p, q) + V (q)

(2.3)

Having defined the kinetic and potential energies,
Hamilton’s equations describe the evolution of po-
sition and momentum (Eq. 2.4).

dq

dt
= +∂H

∂p
= ∂K

∂p

dp

dt
= −∂H

∂q
= −∂K

∂q
− ∂V

∂q

(2.4)

Having now the description of the time-evolution
of the position and momentum it can be integrated
over a time interval to arrive at a new state on the
given Hamiltonian level curve. If tuned correctly
this new point should be within the typical set.

In the implementation of Hamiltonian Monte Carlo
the tuning of variables is the biggest challenge.
Firstly, the parameter space needs to be sampled
repeatedly to build up the covariance matrix (Σ)
which is used to inform the momentum choice,
which creates an unbiased MCMC.[3] Moreover, the
integration over time is done by Leapfrog Updates
which takes two variables; the step size ϵ, and in-
tegration time T . This results in T/ϵ Leapfrog Up-
dates. ϵ needs to be balanced, as two small steps
will slow down the algorithm and two large can
make it leave the Hamiltonian level curve. If T is
too small the parameter space will not be surveyed
efficiently and if it is too large the point can end
up returning to its original position and accomplish
nothing. Even if well-calibrated, an acceptance cri-
terion similar to that in MHS (Eq. 2.1), but based
on the value of the Hamiltonian, is used to correct
the small errors made by Leapfrogging. Each new
integration starts with a random momentum to en-
sure the geometric ergodicity of the method.

3 Conclusion
The paper highlights the importance of understand-
ing how the typical set emerges as a balance be-
tween probability density and parameter volume,
and how the set narrows exponentially with in-
creasing dimensionality. In conclusion, Hamiltonian
Monte Carlo is a computational implementation of
Markov Chain Monte Carlo, which is most effective
in high dimensional problem solving, where sim-
ple implementations, like Metropolis-Hastings sam-
pling, have limited effectiveness. The paper pro-
vides a clear guide to understanding Hamiltonian
Monte Carlo, without the need to have an in-depth
mathematical understanding of differential geome-
try, and instead draws on classical physics intuition.
In addition, the paper also highlights the challenge
of choosing optimal parameters which, if not chosen
correctly, heavily limits the use of the method it.
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