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Abstract

Engineered granular materials have gained considerable interest in recent years. For this substance. the primary design vari-
able is grain shape. Optimizing grain form to achieve a macroscopic property is difficult due to the infinite-dimensional func-
tion space particle shape inhabits. Nonetheless, by parameterizing morphology the dimension of the problem can be reduced.
In this work. we study the effects of both intuitive and machine-picked shape descriptors on granular material properties.
First, we investigate the effect of classical shape descriptors (roundness, convexity. and aspect ratio) on packing fraction ¢
and coordination number Z. We use a genetic algorithm to generate a uniform sampling of shapes across these three shape
parameters. The shapes are then simulated in the level set discrete element method. We discover that both ¢ and Z decrease
with decreasing convexity. and Z increases with decreasing aspect ratio across the large sampling of morphologies—including
among highly non-convex grains not commonly found in nature. Further. we find that subtle changes in mesoscopic proper-
ties can be attributed to a continuum of geometric phenomena. including tessellation. hexagonal packing, nematic order and
arching. Nonetheless, such descriptors alone can not entirely describe a shape. Thus, we find a set of 20 descriptors which
uniquely define a morphology via deep generative models. We show how two of these machine-derived parameters affect ¢
and Z. This methodology can be leveraged for topology optimization of granular materials, with applications ranging from
robotic grippers to materials with tunable mechanical properties.

Keywords Granular materials - Non-convex - Topology optimization - Deep generative models - Discrete element method -
LS-DEM
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Structure of the presentation

. Setting the stage

II. Genetic algorithms — generally and specifically

III. Variational autoencoders — a very brief introduction
IV. Results and discussion

V. Questions?

Genetic algorithms are the main focus of this presentation
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[. ~ Setting the stage

What we want: Predict the grain shape needed to give a granular material
certain physical properties specified by us

How we’ll do it:
— Create many particle shapes with a genetic algorithm
— Use these to train a VAE to construct a basis for grain shape

— For each grain shape of interest, simulate the interaction of many identical
grains to extract bulk properties

— Understand the mapping between the basis and bulk material properties
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II. ~ Genetic algorithms - Overview

o Stochastic global optimization scheme

o Biased towards better solutions, but allows for worse to avoid getting
stuck in local minima

o Many hyperparameters — careful and patient tuning necessary
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II. ~ Genetic algorithms - Stages

Initialize a population of N solutions (randomly or using prior knowledge)

At each iteration (not necessarily in this order).

1) Fitness evaluation & Selection: Evaluate the quality of each solution and
select k solutions through a selection scheme. Discard the rest

2) Crossover: Produce N-k new solutions by combining the current k
solutions through a crossover scheme

3) Mutation: Mutate each solution with probability p through a mutation
scheme

Terminate when convergence criterion or max iterations are met
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II. ~ Genetic algorithms — Selection stage

Fitness evaluation - evaluate the quality of all solutions:
o 'Quality’ is quantified by the cost function

o Incorporate prior knowledge into the cost function, e.g. by adding penalty
terms for non-physical solutions

Selection - select k individuals through a selection scheme like e.q.:
o Roulette wheel selection

o Tournament selection
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II. ~ Genetic algorithms — Crossover stage

Crossover stage - Produce N-k new solutions by combining the current k
solutions through a crossover scheme:

o Pick two solutions at random and crossover with probability p.
Crossover scheme examples:
o Linear combinations of two or more solutions
o Swapping one or more components of two solutions
Swapping Example: crossover at the second index:

Parent 1 = (x1,X3,X3,X4,X5), Parent 2 = (¥1,¥2,¥Y3, Y4, Vs)

yielding
Child 1 = (y1,Y2, X3, X4, x5), Child 2 = (x1,x2,Y3,Y4,Ys)
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II. ~ Genetic algorithms — Mutation stage

Mutation stage — Mutate each solution with probability p,, through a
mutation scheme:

o Perturb one or more components by a random value(s) drawn by some
distribution
— Gaussian results in mostly small steps
—  Lévy results in small steps combined with occasional big jumps

9
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II. ~ Using GAs for particle generation

Which parameters are relevant to the shape of a 2D object?

(a) (b)

N
R = di=1Ti Roundness (R)
"max
© #Mutation max
o /1N
5
a 2 QOO VAE
C = a, § Selection l l ConveX|ty (@) Aspect Ratlo (A
>
I
()
) Breedln
yl o
A = =1 Apuil

Az Particles fitting specified (R,C,A) values

10



.? UNIVERSITY OF COPENHAGEN 23/03/2023 11

I[I. ~ What does the cost function look like?

CoSt = (C - Ctarget)2 + (R — Rtarget)2 + (A — Atarget)2
+ 100 -SC + 100 SI + 100 BN

1, if any corner is too sharp
SC = .
0, otherwise

1, if particle self — intersects
SI = .
0, otherwise

1, if points of opposite side are too close
BN = .
0, otherwise
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II. ~ Generate particle with a given (R, ¢, A)

Initialize N = 50 particles, each one as 8 points uniformly distributed on an
ellipse with aspect ratio A

At each iteration:

o Breed k new solutions by choosing solution pairs at random with p,. = 0.2
and randomly swapping points.

o Mutate each particle point (r, 8) with p,, = 0.5 by drawing values from
Gaussians specified by (4, = 0,0, = 1) and (ug = 0, Gtperq = 0.05)
o Select the best ~ NZLR solutions by tournament selection. Duplicate the

winners until the population size is 50

Terminate when the minimum cost of a solution is less than 0.0005
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II. ~ Examples of generated particles

The point of everything so far has been to create 10,000 unique images as
training data for the VAE
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[II. ~ Variational autoencoders — very briefly

o Deep generative model
o Dimensionality reduction

o Latent space distribution

Input
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Image by Sunil
Yadav
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[II. ~ Variational autoencoders — very briefly

Possible latent distributions of a 2 dimensional latent space

: : ' 0.08 « : A{ :
0.1 4 : : - ; YN

: : 0.07 {
0.08 .- ’ 4 ; : : 0.06 :
' N : 0.05
006 R /' i
!.\ 004 ~ .l »\‘ ‘
0.04 0.03 |
0.02 J ‘
0.02
0.01 l
0 S 4 0

e
X \\\\\~
. ".“.““’\-‘\:

N
UL AN \ ‘:f“g\
v -\\\,‘ “:

.




UNIVERSITY OF COPENHAGEN 23/03/2023

[II. ~ Constructing a space of possible shapes

o Generate 10,000 unique images of particle shape as training data

o Assume that training data roughly ‘'maps out’ true shape space
— 1.e. no important regions of shape space without images

o During traning, the VAE learns to interpolate between shapes

o After training, the VAE maps any latent vector to a unique shape
— In this sense, we have built a space of possible grain shapes

16
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o Trained on the 10,000 images of particle shapes
o A 20-dimensional latent space enough for accurate reconstruction
o Unphysical shapes when z; ¢ [-4,4], i =1, ..., 20

o Using just 10 subdivisions per dimension - 104% unique shapes
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[V. ~ Results and discussion

o Having constructed space for possible grain shapes, mapping to bulk
properties can in principle be obtained

— Many simulations needed to establish relationships
— Not given that each dimension has a simple physical interpretation
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